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Abstract. A real hypersurface of a complex space form is called a Hopf hypersurface if the characteristic
vector field $\xi=-JN$ on $M$ is a principal curvature vector. The main purpose of this paper is to obtain several
simple geometric characterizations of all Hopf hypersurfaces with constant principal curvatures in nonflat complex
space forms.

0. Introduction.

It is an interesting and basic problem in differential geometry to understand hypersur-
faces with constant principal curvatures in a given Riemannian manifold $\tilde{M}^{n}$ . When the am-
bient manifold $\tilde{M}^{n}$ is a real space form $R^{n}(c)$ , i.e. $R^{n}(c)=E^{n},$ $S^{n}(c)$ or $H^{n}(c)$ (according as
the curvature $c$ is zero, positive or negative), such hypersurfaces $M^{n}$ are nothing but isopara-
metric hypersurfaces. Although isoparametric hypersurfaces in a standard sphere have been
studied extensively since $1930’ s$ by \’E. Cartan among others, the classification problem of
isoparametric hypersurfaces in a sphere remains open (see, for instance [5], [7], [8], [11],
[13], [15], [17]).

It is also very natural to consider real hypersurfaces with constant principal curvatures in
a nonflat complex complex space form $\tilde{M}_{n}(c)$ with complex dimension $n$ and complex struc-
ture $J$ , where $\tilde{M}_{n}(c)$ is $CP^{n}(c)$ or $CH^{n}(c)$ according as the holomorphic sectional curvature
$c$ is positive or negative. In this respect, M. Kimura in 1986 (resp. J. Bemdt in 1989) classifies
real hypersurfaces $M^{2n-1}$ in $CP^{n}(c)$ (resp. in $CH^{n}(c)$ ) with constant principal curvatures
under the condition:

(P) For every unit normal $N$ of $M^{2n-1}$ , the vector $\xi=-JN$ is a principal curvature vector
of $M^{2n-1}$ in $\tilde{M}_{n}(c)$ .

Following [4] we call a real hypersurface in $CP^{n}(c)$ (or in $CH^{n}(c)$ ) a Hopf hypersur-
face if it satisfies condition (P). Roughly speaking, Hopf hypersurfaces in $CP^{n}(c)$ (resp. in
$CH^{n}(c))$ are real hypersurfaces which lie in tubes of constant radius over some complex
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submanifolds of $CP^{n}(c)$ (resp. over some complex submanifolds or over some totally real
submanifolds of $CH^{n}(c))$ (cf. [6], [12]). These show that there exist many Hopf hypersur-
faces in complex projective spaces and in complex hyperbolic spaces and that condition (P) is
natural as well.

The main purpose of this paper is to obtain some simple geometric characterizations
of all Hopf hypersurfaces with constant principal curvatures in nonflat complex space forms.
More precisely, in Section 2 we characterize all Hopf hypersurfaces $M$ with constant principal
curvatures by using the holomorphic distribution $T^{0}(M)=\{X\in TM|X\perp\xi\}$ on $M$ . In
Section 3, we characterize such hypersurfaces by utilizing the extrinsic shape of geodesics in
Hopf hypersurfaces.

Finally we remark that each real hypersurface with three constant principal curvatures in
a nonflat complex space form $\tilde{M}_{n}(c),$ $n\geqq 3$ satisfies the condition (P) (see [18], [20]). More-
over, due to their results we can see that they are nothing but homogeneous real hypersurfaces
with three principal curvatures in $\tilde{M}_{n}(c)$ .

1. Auxiliary results.

In order to prove our results we present in this section some noations, terminology and
auxiliary results.

Let $M^{2n-1}$ be an orientable real hypersurface of an n-dimensional nonflat complex space
form $\tilde{M}_{n}(4c)$ of constant holomorphic sectional curvature $4c$ and $N$ a unit normal vector field
on $M$ . The Riemannian connections $\tilde{\nabla}$ of $\tilde{M}_{n}(4c)$ and $\nabla$ of $M$ are related by the following
formulas of Gauss and Weingarten:

(1.1) $\tilde{\nabla}_{X}Y=\nabla_{X}Y+(AX, Y)N$ ,

(1.2) $\tilde{\nabla}_{X}N=-AX$ ,

for vector fields $X$ and $Y$ tangent to $M$ , where $(, )$ denotes the Riemannian metric on $M$

induced from the matric $(, )$ on $\tilde{M}_{n}(4c)$ and $A$ denotes the shape operator of $M$ in $\tilde{M}_{n}(4c)$ . An
eigenvector $X$ of the shape operator $A$ is called aprincipal curvature vector and an eigenvalue
$\lambda$ of $A$ is called a principal curvature. We denote by $V_{\lambda}$ the eigenspace of $A$ associated with
eigenvalue $\lambda$ .

It is known that $M$ has an almost contact metric structure induced from the complex
structure $J$ of $\tilde{M}_{n}(4c)$ , namely we have a tensor field $\phi$ of type $(1, 1)$ , a vector field $\xi$ and a
l-form $\eta$ on $M$ defined by

$(\phi X, Y)=(JX, Y)$ and $(\xi, X)=\eta(X)=(JX, N)$

which satisfy

(1.3) $\phi^{2}X=-X+\eta(X)\xi$ , $(\xi,$ $\xi$ } $=1,$ $\phi\xi=0$ .
It follows that

(1.4) $(\nabla_{X}\phi)Y=\eta(Y)AX-\langle AX, Y\rangle\xi$ ,
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(1.5) $\nabla_{X}\xi=\phi AX$ .

Let $R$ be the curvature tensor of $M$ . We have the equations of Gauss and Codazzi given by:

$\langle R(X, Y)Z, W\rangle=c\{(Y,$ $ Z\rangle$ $(X,$ $ W\rangle$ $-\langle X, Z\rangle(Y, W\rangle+(\phi Y, Z)\langle\phi X, W)$

(1.6) $-(\phi X, Z)(\phi Y, W)-2(\phi X, Y\rangle\langle\phi Z, W)$ }
$+\langle AY, Z\rangle\langle AX, W\rangle-$ \langle $AX,$ $Z)$ (A $Y,$ $ W\rangle$ ,

(1.7) $(\nabla_{X}A)Y-(\nabla_{Y}A)X=c\{\eta(X)\phi Y-\eta(Y)\phi X-2(\phi X, Y\rangle\xi\}$ .
We recall the following classification theorems on Hopf hypersurfaces with constant principal
curvatures in nonflat complex space forms.

THEOREM A ([9], [19]). Let $M^{2n-1}$ be a Hopf hypersurface of $CP^{n}(n\geqq 2)$ with
constant principal curvatures. Then $M$ is locally congruent to one of the following:

$(A_{1})$ a tube of radius $r$ over hyperplane $CP^{n-1}$ , where $0<r<\pi/2$ ;
$(A_{2})$ a tube of radius $r$ over totally geodesic $CP^{k}(1\leqq k\leqq n-2)$ , where $0<r<$

$\pi/2$ ;
$(B)$ a tube of radius $r$ over complex hyperquadric $CQ^{n-1}$ , where $0<r<\pi/4$ ;
$(C)$ a tube of radius $r$ over $CP^{1}\times CP^{(n-1)/2}$ , where $0<r<\pi/4$ and $n(\geqq 5)$ is

odd;
$(D)$ a tube of radius $r$ over complex Grassmann $CG_{2,5}$ , where $0<r<\pi/4$ and

$n=9$ ;
$(E)$ a tube of radius $r$ over Hermitian symmetric space $SO(10)/U(5)$ , where $0<$

$r<\pi/4$ and $n=15$ .
THEOREM $B$ ([4]). Let $M^{2n-1}$ be a Hopfhypersurface of $CH^{n}(n\geqq 2)$ with constant

principal curvatures. Then $M$ is locally congruent to one of the following:
$(A_{0})$ a horosphere in $CH^{n}$ ;
$(A_{1})$ a tube of radius $r$ over $CH^{k}(k=0, n-1)$ , where $0<r<\infty$ ;
$(A_{2})$ a tube of radius $r$ over $CH^{k}(1\leqq k\leqq n-2)$ , where $ 0<r<\infty$ ;
$(B)$ a tube of radius $r$ over $RH^{n}$ , where $ 0<r<\infty$ .

The following proposition is fundamental conceming Hopf hypersurfaces in nonflat com-
plex space forms (cf. [14, pp. 244-245]).

PROPOSITION A. Let $M^{2n-1}(n\geqq 2)$ be a Hopf hypersuiface in a nonflat complex
space form $\tilde{M}_{n}(4c)$ and $\alpha$ the principal curvature corresponding to the characteristic vector

field $\xi$ . We have
(1) $\alpha$ is locally constant.
(2) If $X$ is a tangent vector of $M$ perpendicular to $\xi$ with $AX=\lambda X$ , then $(2\lambda-$

$\alpha)A\phi X=(\alpha\lambda+2c)\phi X$ . In particular, we have $A\phi X=\frac{\alpha\lambda+2c}{2\lambda-\alpha}\phi X$ whenever
$c>0$.



136 BANG-YEN CHEN AND SADAHIRO MAEDA

We simply call real hypersurfaces of type $(A_{0}),$ $(A_{1})$ and $(A_{2})$ given in the lists of The-
orem A and Theorem $B$ type A hypersutfaces. The following result is a well-known charac-
terization of type $A$ hypersurfaces (cf. [14, p. 264]).

PROPOSITION B. Let $M^{2n-1}(n\geqq 2)$ be a real hypersurface of a nonflat complex
space $fom\tilde{M}_{n}(4c)$ . Then the following three conditions are mutually equivalent:

(1) $M$ is locally congruent to a type A hypersurface.
(2) $\phi A=A\phi$ , where $\phi$ is the structure tensor and $A$ is the shape operator of $M$ in

$\tilde{M}_{n}(4c)$ .
(3) The covariant derivative ofthe shape operator $A$ of $M$ in $\tilde{M}_{n}(4c)$ satisfies $(\nabla_{X}A)Y$

$=-c(\{\phi X, Y\rangle\xi+\eta(Y)\phi X)$ .

2. Holomorphic distribution of Hopf hypersurfaces.

First we prove the following general result.

PROPOSITION 1. For every Hopf hypersurface $M^{2n-1}$ in a nonflat complex space
form, the holomorphic distribution $T^{0}M=:\{X\in TM|X\perp\xi\}$ is non-integrable.

PROOF. Suppose that $T^{0}M$ is integrable. Then Proposition 5 of [11] implies

$((\phi A+A\phi)X, Y)=0$ for any $X,$ $Y\in T^{0}M$ .

This, together with the hypothesis that $\xi$ is principal, yields $\phi A+A\phi\equiv 0$ on $M$ , which is a
contradiction (see [14, p. 252]). $\square $

Proposition 1 implies immediately that $T^{0}M$ is not integrable for every hypersurface $M$

given in the lists of Theorems A and B. However every Hopf hypersurface listed in Theorems
A and $B$ also satisfies the following decomposition condition:

CONDITION $(D)$ : $T^{0}M$ can be decomposed as the direct sum of principal foliations
$V_{\lambda;}’ s$ of $M$ in $\tilde{M}_{n}(4c)$ .

In this section we investigate the holomorphic distributions of Hopf hypersurfaces in
details. In particular, we study hypersurfaces in nonflat complex space forms which satisfy
condition $(D)$ ; thus, $T^{0}M=\sum_{i=1}^{g}V_{\lambda;}$ , where $V_{\lambda_{i}}=\{X\in T^{0}M|AX=\lambda_{i}X\}$ and $g$ denotes
the number of distinct principal curvatures in the directions orthogonal to $\xi$ . Needless to say,
$(D)$ always implies $(P)$ . Moreover, on the open dense subset $\mathcal{U}$ of $M$ defined by

$\mathcal{U}=\{p\in M|$ the multiplicity of each principal curvature of

$M$ in $\tilde{M}_{n}(4c)$ is constant on some neighborhood of $p$ } ,

these two conditions are equivalent locally. In this sense, in local theory condition $(P)$ and
condition $(D)$ are equivalent almost everywhere on $M$ .

In order to establish our main results we also need the following result which character-
izes type $B$ hypersurfaces given in the lists of Theorems A and $B$ for $n=2$ .
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PROPOSITION 2. Let $M$ be a real hypersurface of $\tilde{M}_{2}(4c)$ . If $T^{0}M=V_{\lambda_{1}}\oplus V_{\lambda_{2}}$ with
$\lambda_{1}\neq\lambda_{2}$ and $\dim V_{\lambda_{1}}=\dim V_{\lambda_{2}}=1$ and ifthe integrable curves of $V_{\lambda_{1}}$ and $V_{\lambda_{2}}$ are geodesics
in $M$ , then $\lambda_{1}$ and $\lambda_{2}$ are both locally constant on $M$ .

PROOF. Let $\{e_{1}, e_{2}, \xi\}$ be a local field of orthonormal frames in $M$ in such a way that
$e_{i}\in V_{\lambda_{i}}(i=1,2)$ and $e_{2}=\phi e_{1}$ . We first note that $\xi$ is principal, because $\{A\xi,$ $ e_{i}\rangle$ $=$

$\lambda_{i}\langle\xi, e;\rangle=0(i=1,2)$ . So it follows from (1.3) and (1.5) that $\nabla_{\xi}\xi=0$ . By hypothesis we
also have $\nabla_{e_{1}}e_{1}=\nabla_{e_{2}}e_{2}=0$ . From (1.5) we obtain

(2.1) $\nabla_{e_{1}}\xi=\lambda_{1}e_{2}$ , $\nabla_{e_{2}}\xi=-\lambda_{2}e_{1}$ , $\nabla_{e_{1}}e_{2}=-\lambda_{1}\xi$ , $\nabla_{e_{2}}e_{1}=\lambda_{2}\xi$ .

Equation (1.7) of Codazzi implies

$(\nabla_{e_{1}}A)e_{2}-(\nabla_{e_{2}}A)e_{1}=-2c\xi$ .

On the other hand, (2.1) yields

$(\nabla_{e_{1}}A)e_{2}-(\nabla_{e_{2}}A)e_{1}=\nabla_{e_{1}}(Ae_{2})-A\nabla_{e_{1}}e_{2}-\nabla_{e_{2}}(Ae_{1})+A\nabla_{e_{2}}e_{1}$

$=(e_{1}\lambda_{2})e_{2}+(\lambda_{2}I-A)\nabla_{e_{1}}e_{2}-(e_{2}\lambda_{1})e_{1}-(\lambda_{1}I-A)\nabla_{e_{2}}e_{1}$

$=-(e2\lambda 1)e1+(e\lambda)e2+\{\alpha(\lambda l+\lambda 2)-2\lambda\lambda\}\xi$ .

These two equations imply the following three relations:

(2.2) $-2c=\alpha(\lambda_{1}+\lambda_{2})-2\lambda_{1}\lambda_{2}$ .
(2.3) $e_{2}\lambda_{1}=0$ .
(2.4) $e_{1}\lambda_{2}=0$ .

Since $\alpha$ is locally constant, (2.2) and (2.3) imply

(2.5) $(\alpha-2\lambda_{1})(e_{2}\lambda_{2})=0$ .

Similarly, (2.2) and (2.4) imply

(2.6) $(\alpha-2\lambda_{2})(e_{1}\lambda_{1})=0$ .

Now assume $c=-1$ . It suffices to consider the following three cases.
Case (i): $\alpha\equiv 2\lambda_{2}$ locally and $\alpha\neq 2\lambda_{1}$ at some point $p\in M$ . In this case, (2.2) yields

$(\lambda_{2})^{2}=1$ . Without loss of generality, we may assume $\lambda_{2}=1$ and hence $\alpha=2$ . By putting
$\lambda_{1}=\lambda$ , we have

$\left\{\begin{array}{ll}\nabla_{e_{1}}e_{1}=\nabla_{e_{2}}e_{2}= & \nabla_{\xi}\xi=0,\\\nabla_{e_{1}}e_{2}=-\lambda\xi, & \nabla_{e_{2}}e_{1}=\xi,\\\nabla_{e_{1}}\xi=\lambda e_{2}, & \xi=-e_{1}.\end{array}\right.$

We note that $\lambda\neq 1$ on some neighborhood $\mathcal{V}$ of $p$ , due to the continuity of $\lambda$ . By putting
$\nabla_{\xi}e_{1}=\mu e_{2}$ we obtain from (1.7) that

$(\nabla_{e_{1}}A)\xi-(\nabla_{\xi}A)e_{1}=e2$ .
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On the other hand, we have

$(\nabla_{el}A)\xi-(\nabla_{\xi}A)e_{1}=2(\nabla_{e_{1}}\xi)-A(\nabla_{e_{1}}\xi)-\nabla_{\xi}(\lambda e_{1})+A(\nabla_{\xi}e_{1})$

$=\lambda e_{2}-(\xi\lambda)e_{1}-\lambda\mu e_{2}+\mu e_{2}$ .

These two equations imply $\mu=1$ on $\mathcal{V}$ , so we get $\nabla_{\xi}e1=e_{2}$ and hence $\nabla_{\xi}e_{2}=-e_{1}$ .
Let $R$ and $\tilde{R}$ denote the Riemannian curvature tensors of $M$ and $CH^{2}(-4)$ , respectively.

Then we obtain

$\langle R(e_{1}, e_{2})e_{2}, e_{1}\rangle=\lambda(\nabla_{e_{2}}\xi, e_{1})+\lambda\langle\nabla_{\xi}e_{2},$ $e_{1}$ ) $+(\nabla_{\xi}e_{2}, e_{1})$

$=-2\lambda-1$ .

On the other hand, from the Gauss equation we find

$(R(e_{1}, e_{2})e_{2},$ $e_{1}$ ) $=(\tilde{R}(e_{1}, e_{2})e_{2},$
$e_{1}$ ) $+(Ae_{1}, e_{1})\{Ae_{2},$ $e_{2}$ ) $-(Ae_{1}, e_{2})^{2}$

$=-4+\lambda$ .

Thus $\lambda=1$ on $\mathcal{V}$, which is a contradiction. Hence, case (i) cannnot occur.
Case (ii): $\alpha\equiv 2\lambda_{1}$ locally and $\alpha\neq 2\lambda_{2}$ at some point $p\in M$ . This case cannot occur

due to the same reasoning as in Case (i).

Case (iii): $\alpha\neq 2\lambda_{1}$ and $\alpha\neq 2\lambda_{2}$ at some point $p\in M$ . In this case, equations (2.3),
(2.4), (2.5), (2.6) yield

$e1\lambda 2=e1\lambda 2=e2\lambda 1=e2\lambda 2=0$

on some neighborhood $\mathcal{V}$ of the point $p$ .
From (1.7) we have

$(\nabla_{e_{1}}A)\xi-(\nabla_{\xi}A)e_{1}=e_{2}$ .
On the other hand, we also have

$(\nabla_{e_{1}}A)\xi-(\nabla_{\xi}A)e_{1}=\nabla_{e_{1}}(A\xi)-A(\nabla_{e_{1}}\xi)-\nabla_{\xi}(Ae_{1})+A(\nabla_{\xi}e_{1})$

$=\alpha\lambda_{1}e_{2}-\lambda_{1}\lambda_{2}e_{2}-(\xi\lambda_{1})e_{1}-(\lambda_{1}I-A)(\nabla_{\xi}e_{1})$ .
Since $(\lambda_{1}I-A)(\nabla_{\xi}e_{1})$ is perpendicular to $e_{1}$ , these two equations imply $\xi\lambda_{1}=0$ . Similarly,
we also have $\xi\lambda_{2}=0$ . Hence, both $\lambda_{1}$ and $\lambda_{2}aIe$ locally constant.

Finally, we consider the case of $c=1$ . Note that $2\lambda-\alpha\neq 0$ for each principal curva-
ture $\lambda$ in the direction orthogonal to $\xi$ (see Proposition A). Therefore by applying the same
discussion as in Case (iii) we can conclude that both $\lambda_{1}$ and $\lambda_{2}$ are locally constant. $\square $

We are now in a position to prove the following theorem. In doctoral thesis “Uber Un-
termanningfaltigkeiten von komplexen Raumformen” (Koln, 1989), Bemdt proved one direc-
tion of the following theorem, namely he proved the integrability of the distribution for Hopf
hypersurfaces with constant principal curvatures. However we here write the proof of the
following theorem in detail for readers. The authors are grateful to Professor L. Vanhecke for
his information about the doctoral thesis.
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THEOREM 1. Let $M$ be a real $hypersu\oint ace$ of $CH^{n}$ with $n\geqq 2$. Suppose that the
holomorphic distribution $T^{0}M$ satisfies condition $(D)$ . Then $M$ is a Hopfhypersuiface with
constantprincipal curvatures ifand only if $T^{0}M$ satisfies one ofthefollowing two conditions:

(i) The distribution $V_{\lambda;}\otimes\{\xi\}_{R}$ is integrable for every principalfoliation $V_{\lambda;}$ of $T^{0}M$ .
(ii) Every principalfoliation $V_{\lambda_{i}}$ of $T^{0}M$ is integrable and every leafof $V_{\lambda;}$ is a totally

geodesic submamfold of $M$ .

PROOF. $(\Rightarrow)$ First we prove that the holomorphic distribution of every type $A$ hyper-
surface satisfies condition (i). Since this is obvious for type $A_{0}$ and type $A_{1}$ hypersurfaces, so
we assume $M$ is of type $A_{2}$ , and thus $T^{0}M$ is decomposed as $T^{0}M=V_{\tanh(r)}\oplus V_{\coth(r)}$ (cf.

[4]). Notice that

$ A\xi=2\coth(2r)\xi$ , $\phi(V_{\tanh(r)})=V_{\tanh(r)}$ , $\phi(V_{\coth(r)})=V_{\coth(r)}$ .

Our aim here is to verify that both $V_{\tanh(r)}\oplus\{\xi\}_{R}$ and $V_{\coth(r)}\oplus\{\xi\}_{R}$ are integrable and that
the leaves of $V_{\tanh(r)}\oplus\{\xi\}_{R}$ and $V_{\coth(r)}\oplus\{\xi\}_{R}$ are totally geodesic submanifolds of $M$ .

Put $\mathfrak{T}=V_{\tanh(r)}\oplus\{\xi\}_{R}$ . We claim the following.

$\nabla_{\xi}\xi\in \mathfrak{T}$ , $\nabla_{X}\xi\in \mathfrak{T}$ , $\nabla_{\xi}X\in \mathfrak{T}$ and $\nabla_{X}Y\in \mathfrak{T}$ , $\forall X,$ $Y\in V_{\tanh(r)}$ .

The first two assertions hold, since $\nabla_{\xi}\xi=0$ and $\nabla_{X}\xi=\phi AX=\tanh(r)\phi X\in V_{\tanh(r)}$ .
Next, we observe that

$(\nabla_{\xi}A)X-(\nabla_{X}A)\xi=\nabla_{\xi}(AX)-A\nabla_{\xi}X-\nabla_{X}(A\xi)+A\nabla_{X}\xi$

$=(tth(r)I-A)\nabla_{\xi}X-\alpha\phi AX+A\phi AX$

$=(\tanh(r)I-A)\nabla_{\xi}X+\tanh(r)(\tanh(r)-\alpha)\phi X$ .

On the other hand, from (1.7) we also have $(\nabla_{\xi}A)X-(\nabla_{X}A)\xi=-\phi X\in V_{\tanh(r)}$ . Thus,

for any $Z\in V_{\lambda}(\lambda\neq\tanh(r))$ , we find $\langle(\tanh(r)I-A)\nabla_{\xi}X, Z\rangle=0$ , and hence $\nabla_{\xi}X\in$

$V_{\tanh(r)}\subset \mathfrak{T}$ . This proves the third assertion.
Finally, for $X,$ $Y\in V_{\tanh(r)}$ and $Z\in V_{\coth(r)}$ , we have

( $(\nabla_{X}A)Y,$ $ Z\rangle$ $=$ \langle $\nabla_{X}$ (A $Y)-A\nabla_{X}Y,$ $ Z\rangle$

$=\langle(tth(r)I-A)\nabla_{X}Y, Z\rangle$

$=(tth(r)-\coth(r))(\nabla_{X}Y,$ $ Z\rangle$ .

On the other hand, since $A$ is symmetric, we obtain from ( $\phi X,$ $ Z\rangle$ $=0$ and equation (1.7) of
Codazzi that

$((\nabla_{X}A)Y, Z\rangle=((\nabla_{X}A)Z, Y)$

$=((\nabla_{Z}A)X, Y)$

$=(\nabla_{Z}(AX)-A\nabla_{Z}X,$ $Y\rangle$

$=((\tanh(r)I-A)\nabla_{Z}X, Y)$

$=(\nabla_{Z}X, (\tanh(r)I-A)Y\}=0$ .



140 BANG-YEN CHEN AND SADAHIRO MAEDA

These two formulas imply the fourth assertion: $\nabla_{X}Y\in \mathfrak{T}$, since $tth(r)-\coth(r)\neq 0$ . Conse-
quently, the distribution $V_{\tanh(r)}\oplus\{\xi\}_{R}$ is integrable (and moreover each leaf of $V_{\tanh(r)}\oplus\{\xi\}_{R}$

is a totally geodesic submanifold of $M$). A similar argument implies that $V_{\coth(r)}\oplus\{\xi\}_{R}$ is
also integrable.

Now, assume $M$ is of type $B$ . Then $T^{0}M$ is decomposed as: $T^{0}M=V_{\tanh(r)}\oplus V_{\coth(r)}$ .
Notice that in this case we have $ A\xi=2tth(2r)\xi$ and $\phi V_{\tanh(r)}=V_{\coth(r)}$ . We shall prove
that $T^{0}M$ satisfies condition (ii).

First we claim that $\nabla_{X}Y\in V_{\tanh(r)}$ , for $X,$ $Y$ in $V_{\tanh(r)}$ . This can be proved as follows:
For $X,$ $Y$ in $V_{\tanh(r)}$ , we have

$A\nabla_{X}Y=\nabla_{X}(AY)-(\nabla_{X}A)Y=tth(r)\nabla_{X}Y-(\nabla_{X}A)Y$ .
Since $(\phi X, Y)=0$ and $A$ is symmetric, equation (1.7) implies, for any $Z\in TM$ , that

$((\nabla_{X}A)Y, Z\rangle=((\nabla_{X}A)Z, Y)$ (by the symmetry of $A$ )

$=((\nabla_{Z}A)X, Y)$ (by equation (1.7))

$=(\nabla_{Z}(AX)-A\nabla_{Z}X, Y)$

$=((\tanh(r)I-A)\nabla_{Z}X, Y)=0$ .

These two equations show that $A(\nabla_{X}Y)=\tanh(r)\nabla_{X}Y$ for any $X,$ $Y\in V_{\tanh(r)}$ . Hence,
$V_{\tanh(r)}$ is integrable and every leaf $L_{\tanh(r)}$ of the principal foliation $V_{\tanh(r)}$ is a totally geo-
desic submanifold of M. (In fact, the leaf $L_{\tanh(r)}$ is a totally umbilic hypersurface of constant
curvature $c$ with $\sqrt{c+1}=tth(r)$ in $RH^{n}(-1)$ , and $RH^{n}(-1)$ is imbedded as a totally real
totally geodesic submanifold in $CH^{n}(-4))$ . Similar results also hold for $V_{\coth(r)}$ by applying
similar arguments.

$(\Leftarrow)$ Suppose that $T^{0}M$ satisfies the condition (i). Then, for any $X$ in $V_{\lambda_{i}}$ , we have
$\nabla_{X}\xi-\nabla_{\xi}X\in V_{\lambda_{i}}\oplus\{\xi\}_{R}$ . Since $\xi$ is principal, we also have $(\nabla_{\xi}X, \xi)=-(X,\tilde{\nabla}_{\xi}\xi)=$

(X, $ JA\xi\rangle$ $=0$ for any $X$ in $V_{\lambda_{i}}$ . These show that, for any $X$ in $V_{\lambda_{i}},$ $\nabla_{X}\xi-\nabla_{\xi}X$ is perpen-
dicular to $\xi$ . Hence, $\nabla_{X}\xi-\nabla_{\xi}X$ lies in $V_{\lambda_{i}}$ . Therefore

(2.7) $A(\nabla_{X}\xi-\nabla_{\xi}X)=\lambda_{i}(\nabla_{X}\xi-\nabla_{\xi}X)$ for $\forall X\in V_{\lambda_{i}}$ .
Now, we consider the case that $2\lambda_{i}-\alpha\neq 0$ on some neighborhood of an arbitrary fixed

point $p$ . It folllows from (2.7) and Proposition A that

(2.8) $(A-\lambda_{i}I)\nabla_{\xi}X=\lambda_{i}(\frac{\alpha\lambda_{i}-2}{2\lambda_{i}-\alpha}-x_{i})\phi X$ .

Applying (1.5) and (2.8) we obtain

$(\nabla_{X}A)\xi-(\nabla_{\xi}A)X=\nabla_{X}(\alpha\xi)-A\nabla_{X}\xi-\nabla_{\xi}(AX)+A\nabla_{\xi}X$

$=\lambda_{i}(\alpha-\lambda_{i})\phi X-(\xi\lambda_{i})X$ .
On the other hand, we obtain from (1.7) that

$(\nabla_{X}A)\xi-(\nabla_{\xi}A)X=\phi X$ .
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These two equations imply that the principal curvature $\lambda_{j}$ is a solution of the quadratic equa-
tion:

(2.9) $\lambda_{i}^{2}-\alpha\lambda_{i}+1=0$ ,

which implies that $\lambda_{i}$ is constant.
Next, consider the case that $2\lambda_{i}-\alpha=0$ at some point $p$ . In this case, the discussion

above for the case of $2\lambda_{i}-\alpha\neq 0$ tells us that $2\lambda_{i}-\alpha=0$ holds on some neighborhood of $p$ .
Thus, each principal curvature of $M$ is locally constant. Notice that $M$ is not of type $B$ , since
each principal curvature $\lambda_{i}$ of a type $B$ hypersurface satisfies neither (2.9) nor $2\lambda_{i}-\alpha=0$ .

Next, suppose that $T^{0}M$ satisfies the condition (ii). Then, for any $X,$ $Y\in V_{\lambda_{i}}$ , we have
$A\nabla_{X}Y=\lambda_{i}\nabla_{X}Y$ ; and hence $(\nabla_{X}A)Y=(X\lambda_{i})Y$ .

We divide our discussion into two cases.
Case (a): $\dim V_{\lambda_{i}}\geqq 2$ . In this case we have

$(\nabla_{X}A)Y-(\nabla_{Y}A)X=(X\lambda_{i})Y-(Y\lambda_{i})X$ for $\forall X,$ $Y\in V_{\lambda;}$ .

On the other hand, from (1.7) we also have

$(\nabla_{X}A)Y-(\nabla_{Y}A)X=2(\phi X,$ $Y\rangle$ $\xi$ for $\forall X,$ $Y\in V_{\lambda_{j}}$ .

By choosing $X,$ $Y$ arbitrary two independent vectors in $V_{\lambda;}$ , we obtain from these two equa-
tions that $X\lambda_{i}=Y\lambda_{i}=\langle\phi X,$ $Y$ ) $=(\nabla_{X}A)Y=0$ . Hence, by applying continuity, we obtain

(2.10) $(\nabla_{X}A)Y=\langle\phi X,$ $Y$ ) $=0$ , for $\forall X,$ $Y\in V_{\lambda_{i}}$ .
Therefore, for any unit vector $X\in V_{\lambda_{i}}$ and any $Z\in TM$ , we obtain from (1.7) and (2.10) that

$0=((\nabla_{X}A)X, Z)$

$=((\nabla_{X}A)Z,$ $ X\rangle$

$=((\nabla_{Z}A)X,$ $ X\rangle$

(2.11)
$=(\nabla_{Z}(AX)-A\nabla_{z}X, X)$

$=((Z\lambda_{i})X+(\lambda_{i}I-A)\nabla_{Z}X,$ $ X\rangle$

$=Z\lambda_{i}$ .
So, $\lambda$ is constant.

Case (b): $\dim V_{\lambda;}=1$ . Since $\alpha$ is constant by Proposition $A$ , we only need to consider
the case that $2\lambda;-\alpha\neq 0$ on some neighborhood of an arbitrary fixed point $p$ .

Let $e$ be a unit vector in $V_{\lambda_{i}}$ so that $Ae=\lambda_{i}e$ . Then Proposition A implies $A\phi e=$

$\frac{\alpha\lambda_{i}-2}{2\lambda_{i}-\alpha}\phi e$ . Hence, $\phi e\in V_{\lambda_{j}}$ for some $j$ with $\lambda_{j}=\frac{\alpha\lambda_{i}-2}{2\lambda_{i}-\alpha}\neq\lambda_{i}$ . When $\dim V_{\lambda_{j}}\geqq 2$ , Case (a)

implies that $\lambda_{j}$ is constant, and thus $\lambda_{i}$ is also constant. Therefore, this case reduces to the
case: $\dim V_{\lambda_{i}}=\dim V_{\lambda_{j}}=1$ .

We put $\mathfrak{T}=\{\xi, e, \phi e\}_{R}$ with $Ae=\lambda e$ and $A\phi e=\frac{\alpha\lambda-2}{2\lambda-\alpha}\phi e$ . For simplicity we denote
$\frac{\alpha\lambda-2}{2\lambda-\alpha}$ by $\mu$ . It follows from $\dim V_{\lambda}=1$ that $\lambda\neq\mu$ . Now, we prove that $\mathfrak{T}$ is integrable and
each leaf of $\mathfrak{T}$ is a totally geodesic submanifold of the real hypersurface $M$ .
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First, notice that $\nabla_{e}e=\nabla_{\phi e}\phi e=0$ , since both $\{e\}_{R}$ and $\{\phi e\}_{R}$ satisfy condition (ii) of
Theorem 1. Also, it is easy to verify that $\nabla_{\xi}\xi\in \mathfrak{T},$ $\nabla_{e}\xi\in \mathfrak{T}$ and $\nabla_{e}(\phi e)\in$ ES. Now, we prove
$\nabla_{\xi}e\in \mathfrak{T}$ . For this, we observe that

$(\nabla_{\xi}A)e-(\nabla_{e}A)\xi=\nabla_{\xi}(Ae)-A\nabla_{\xi}e-\nabla_{e}(A\xi)+A\nabla_{e}\xi$

$=(\xi\lambda)e+(\lambda I-A)\nabla_{\xi}e-\alpha\lambda\phi e+\lambda\mu\phi e$ .
On the other hand, equation (1.7) of Codazzi gives

$(\nabla_{\xi}A)e-(\nabla_{e}A)\xi=-\phi e$ .
Thus, we find

$(\lambda I-A)\nabla_{\xi}e=-\{\lambda(\mu-\alpha)+1\}\phi e$ .
Since $\lambda$ is different from other eigenvalues of $A$ and $\nabla_{\xi}e$ is perpendicular to $V_{\lambda}$ , the last
equation implies that $\nabla_{\xi}e\in\{\phi e\}_{R}\subset \mathfrak{T}$ . Similarly, we have $\nabla_{\xi}(\phi e)\in \mathfrak{T}$.

Next we prove $\nabla_{\phi e}e\in \mathfrak{T}$ . From $Ae=\lambda e$ and $A(\phi e)=\mu\phi e$ , we have

$(\nabla_{e}A)\phi e-(\nabla_{\phi e}A)e=(e\mu)\phi e+(\mu I-A)\nabla_{e}(\phi e)-\phi e(\lambda)\cdot e-(\lambda I-A)\nabla_{\phi e}e$ .
From (1.4) and $\nabla_{e}e=0$, we also have

$(\mu I-A)\nabla_{e}(\phi e)=-\lambda(\mu-\alpha)\xi$ .
On the other hand, equation (1.7) gives

$(\nabla_{e}A)\phi e-(\nabla_{\phi e}A)e=2\xi$ .
The three equations above yield

$2\xi=(e\mu)\phi e-\lambda(\mu-\alpha)\xi-\phi e(\lambda)\cdot e-(\lambda I-A)\nabla_{\phi e}e$ ,

which implies $\nabla_{\phi e}e\in\{\xi, \phi e\}_{R}\subset \mathfrak{T}$ . Consequently, $\mathfrak{T}$ is an integrable distribution and its
leaves are totally geodesic submanifolds of $M$ .

Assume $B$ is one of the leaves of $\mathfrak{T}$ . Then $B$ is totally geodesic in the real hypersurface
$M$ with $TB=\{e, \phi e, \xi\}_{R}$ . Let $N$ denote the normal bundle of $B$ in $M$ . Then $N$ is invariant
under the action of $J$ and it can be considered as the subbundle of the normal bundle $T^{\perp}B$ of
$B$ in $CH^{n}(-4)$ . Since $B$ is totally geodesic in $M$ , we have $\nabla_{X}Z\in N$ for any $X\in TB$ and
$Z\in N$ . Moreover, since $e,$ $\phi e$ and $\xi$ are principal vectors of $M$ , we also have $(AX, Z)=0$ .
Therefore, $\tilde{\nabla}_{X}Z\in N$ for any $X\in TB$ and $Z\in N$ . These show that $N$ is a holomorphic
normal subbundle over $B$ which is parallel in $T^{\perp}B$ and, moreover, the first normal spaces of
$B$ in $CH^{n}(-4)$ lie in $\{J\xi\}_{R}$ , which is also a parallel subbundle of $T^{\perp}B$ (due to the fact that
$\{J\xi\}_{R}$ is the orthogonal complement of $N$ in $T^{\perp}B$ ). Hence, by reduction theorem, $B$ is a real
hypersurface of a totally geodesic complex submanifold $CH^{2}(-4)$ of $CH^{n}(-4)$ . Because $B$

satisfies the hypothesis of Proposition 2, $\lambda$ must be locally constant along $B$ , which implies
$(\nabla_{e}A)e=0$ along $B$ . Therefore, we may apply the same computation as in (2.11) to obtain
$Z\lambda=0$ on $M$ for any $Z$ in $TM$ . Consequently, the principal curvature $\lambda$ associated with $e$

is constant too. By virtue of our argument we know that $M$ is locally congruent to a type $B$

hypersurface. $\square $
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Here we consider the list of Theorem A. Needless to say, the holomorphic distribution
$T^{0}M$ of a type A hypersurface $M$ (resp. a type $B$ hypersurface $M$) satisfies the condition (i)
(resp. the condition (ii)) of Theorem 1. Let $M$ be of type $C$ , type $D$ or type $E$ which is a tube
of radius $r(0<r<\pi/4)$ . Then $T^{0}M$ is decomposed as (see [19]):

$T^{0}M=V_{\lambda_{1}}\oplus V_{\lambda_{2}}\oplus V_{\lambda_{3}}\oplus V_{\lambda_{4}}$ ,

where

$\lambda_{1}=x$ , $\lambda_{2}=-\frac{1}{x}$ , $\lambda_{3}=\frac{1+x}{1-x}$ , $\lambda_{4}=\frac{x-1}{x+1}$ and $x=\cot r$ .

By the same calculation as in the proof of Theorem 1 we know the following:
(1) For each $V_{\lambda_{i}}(l=1,2)$ , the distribution $V_{\lambda;}\oplus\{\xi\}_{R}$ is integrable.
(2) For each $V_{\lambda_{j}}(i=3,4),$ $V_{\lambda_{i}}$ is integrable and every leaf of $V_{\lambda;}$ is a totally geodesic

submanifold of the real hypersurface $M$ .
Hence, from the argument in the proof of Theorem 1 and from Proposition 2 we obtain the
following:

THEOREM 2. Let $M$ be a real hypersurface of $CP^{n}(n\geqq 2)$ . Suppose that the holo-
morphic distribution $T^{0}M$ satisfies condition $(D)$ . Then $M$ is locally congruent to a Hopf
hypersurface with constant principal curvatures $\iota f$ and only $\iota f$ every principalfoliation $V_{\lambda_{i}}$ of
$T^{0}M$ satisfies one of the following two conditions:

(i) The distribution $V_{\lambda_{i}}\oplus\{\xi\}_{R}$ is integrable.
(ii) $V_{\lambda;}$ is integrable and every leafof $V_{\lambda_{i}}$ is a totally geodesic submanifold of the real

hypersuoface $M$ .
REMARKS ON THEOREM 2. (1) There does not exist $V_{\lambda;}$ which satisfies the both

conditions (i) and (ii) in Theorem 2.
(2) The following result shows that Theorem 2 is no longer true ifwe omit the condition

that every leaf of $V_{\lambda;}$ is a totally geodesic submanifold of the real hypersurface $M$

in (ii).

THEOREM 3. There exist Hopfhypersuifaces $M$ in $CP^{n}$ with $n\geqq 3$ which satisfy the
following properties:

(a) The holomorphic distribution $T^{0}M$ satisfies the decompositon condition $(D)$ .
(b) Every principalfoliation on $M$ is integrable.
(c) Not every leaf of the principal foliations on $M$ is a totally geodesic submamfold

of $M$ .
(d) Not every principal curvature of $M$ is locally constant.

PROOF. First recall that the Hopf fibration $\pi$ : $S^{2n+1}\rightarrow CP^{n}$ from $ S^{2n+1}\equiv\{z\in$

$C^{n+1}|\Vert z\Vert=1\}$ onto $CP^{n}$ is a principal fiber bundle with structure group $S^{1}\equiv\{e^{i\theta}|\theta\in R\}$ .
For each $z\in S^{2n+1}$ , let $T_{z}^{\prime}$ denote the horizontal subspace of $T_{z}S^{2n+1}$ consisting of all vectors
at $z$ which are orthogonal to $z$ and $iz$ Since $T^{\prime}$ is invariant by the action of $S^{1},$ $\pi$ induces an
isomorphism $\pi_{*}$ : $T_{z}^{\prime}\rightarrow T_{[z]}CP^{n}$ for any $z\in S^{2n+1}$ , where $[z]=\pi(z)$ .
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The Fubini-Study metric $\tilde{g}$ on $CP^{n}$ of constant holomorphic sectional curvature one is
defined as follows: For $\tilde{X},\tilde{Y}\in T_{[z]}CP^{n}$ , let $z$ be any point in $\pi^{-1}([z])\cap S^{2n+1}$ and let
$X,$ $Y\in T_{z}^{\prime}$ be the horizontal lifts of $\tilde{X},\tilde{Y}$ at $z$ , then $\tilde{g}_{[z]}(\tilde{X},\tilde{Y})=4g_{Z}(X, Y)$ . The metric $\tilde{g}$ is
well defined because if $z^{\prime}$ is also a representation of $[z],$ $z^{\prime}=e^{i\theta}z$ and so $g_{z^{\prime}}(e^{i\theta}X, e^{i\theta}Y)=$

$g_{z}(X, Y)$ .
Let

$f_{a,k}(z)=z_{0}^{2}+\cdots+z_{k}^{2}+a(z_{k+1}^{2}+\cdots+z_{n}^{2})$ ,
(2.12)

$z=(z0, z_{1}, \cdots z_{n})\in C^{n+1}$ ,

where $k\geqq 1,$ $n-k\geqq 2$ and $a$ is a positive real number different from 1. We put

$V_{a,k}^{n-1}=\{[z1=[zo, \cdots z_{n}]\in CP^{n}|f_{a,k}(z)=0\}$

which is a complex hypersurface of $CP^{n}$ .
For each $[z]\in V_{a,k}^{n-1}$ with $z\in\pi^{-1}([z])\cap S^{2n+1}$ , the tangent space $T_{[z]}V_{a,k}^{n-1}$ can be

identified with

(2.13) $T_{Z}=\{x\in C^{n+1}|(X, z)=(X,$ $ iz\rangle$ $=\{X,$ $\frac{\partial f_{a,k}}{\partial z}\}=\{X,$ $i\frac{\partial f_{a,k}}{\partial z}\}=0\}$ ,

where (, \rangle denotes the Euclidean inner product induced from $C^{n+1}$ . The vector field $\xi\equiv$

$\frac{\partial f_{a.k}}{\partial z}/(2\Vert\frac{\partial f_{a,k}}{\partial z}\Vert)$ can be regarded as a unit normal vector field of $V_{a,k}^{n-1}$ in $CP^{n}$ . For each
$X\in T_{[z1}V_{a,k}^{n-1}$ , the shape operator $A_{\xi}$ at $[z]\in V_{a,k}^{n-1}$ is given by (cf. [21]):

(2.14) $A_{\xi}(X)=-\frac{1}{2\Vert\frac{\partial f_{a.k}}{\partial z}\Vert}\overline{x}(\overline{\frac{\partial^{2}f_{a,k}}{\partial z_{i}\partial z_{j}}})+\zeta\overline{\frac{\partial f_{a,k}}{\partial z}}$ ,

where $\overline{w}$ is the complex conjugate of $w,$ $||||$ is the Euclidean norm, and

(2.15) $\zeta=\frac{1}{2\Vert\frac{\partial fa,k}{\partial z}\Vert^{3}}\overline{x}(\overline{\frac{\partial^{2}f_{a,k}}{\partial z_{i}\partial z_{j}}})(\frac{\partial f_{a,k}}{\partial z})^{T}$

We define three subsets $U_{1},$ $U_{2},$ $U_{3}$ of $V_{a,k}^{n-1}$ by

$U_{1}=\{[z_{0}, \cdots z_{n}]\in V_{a,k}^{n-1}|z_{k+1}=\cdots=z_{n}=0\}$ ,

$U_{2}=\{[z0, \cdots z_{n}]\in V_{a,k}^{n-1}|zo=\cdots=z_{k}=0\}$ ,

$U_{3}=\{[z0, \cdots , z_{n}]\in V_{a,k}^{n-1}|\sum_{j=0}^{k}||z_{j}||\neq 0$ and $\sum_{i=k+1}^{n}||z_{i}\Vert\neq 0\}$ .

Clearly, $U_{3}$ is a dense open subset of $V_{a,k}^{n-1}$ and $U_{1}$ can be regarded as the complex quadric
$Q_{k-1}\equiv\{[z_{0}, \cdots , z_{k}]|\sum_{j=0}^{k}z_{j}^{2}=0\}$ in $CP^{k}$ , which is a totally geodesic complex subman-
ifold of $CP^{n}$ defined by $CP^{k}\equiv\{[z]\in CP^{n}|z_{k+1}=\cdots=z_{n}=0\}$ . Similarly, $U_{2}$ can be
regarded as a complex quadric in $CP^{n-k-1}\subset CP^{n}$ .

Now, we determine the eigenvalues of the shape operator together with their multiplici-
ties.
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Case (a): $p\in U_{1}$ . Since the group $A(CP^{k})$ of holomorphic isometries of $CP^{k}$ acts
transitively on $Q_{k-1}$ and $A(CP^{k})$ is a subgroup of $A(CP^{n})$ , by applying a suitable holomor-
phic isometry on $CP^{n}$ if necessary we may assume the homogeneous coordinates of $p$ take
the form $[z]_{p}=[z0, z_{1},0, \cdots , 0]$ with $z0,$ $z_{1}\neq 0$ . By direct computations we obtain

(2.16) $T_{[z]_{p}}V_{a,k}^{n-1}=\{(0,0, v_{2}, \cdots v_{n})|v_{2}, \cdots , v_{n}\in C\}$ .

(2.17) $(\frac{\partial f_{a,k}}{\partial z})_{p}=2(zoz_{1},0, \cdots 0)$ ,

(2.18) $(\frac{\partial^{2}f_{a,k}}{\partial z_{i}\partial z_{j}})_{p}=2\left(\begin{array}{ll}I_{k+1} & 0\\0 & aI_{n-k}\end{array}\right)$ ,

where $I_{r}$ is the identity matrix of ordr $r$ . From $(2.14)-(2.18)$ we obtain $\zeta=0$ and $||\frac{\partial f_{a,k}}{\partial z}||=2$

at $p$ , and also

(2.19) $A_{\xi}(V)=-\frac{1}{2}(0,0,\overline{v}_{2}, \cdots \overline{v}_{k}, a\overline{v}_{k+1}, \cdots a\overline{v}_{n})$

for $V=(0,0, v_{2}, \cdots v_{n})\in T_{[z]_{p}}V_{a,k}^{n-1}$ . $(2.19)$ implies that

$V_{1}=\{(0,0, r_{2}, \cdots r_{k}, 0, \cdots 0)|r_{2}, \cdots rk\in R\}$ ,

$V_{2}=\{i(0,0, r_{2}, \cdots r_{k}, 0, \cdots 0)|r_{2}, \cdots rk\in R\}$ ,

$V_{3}=\{(0, \cdots 0, r_{k+1}, \cdots r_{n})|r_{k+1}, \cdots r_{n}\in R\}$ ,

$V_{4}=\{i(0, \cdots 0, r_{k+1}, \cdots r_{n})|r_{k+1}, \cdots r_{n}\in R\}$ ,

are eigenspaces of $A_{\xi}$ with eigenvalues $-1/2,1/2,$ $-a/2,$ $a/2$ and with multiplicities $k-$

$1,$ $k-1,$ $n-k,$ $n-k$ , respectively. With respect to given orthonormal bases

$\{e_{2}, \cdots e_{k}\}$ , $\{ie_{2}, \cdots ie_{k}\}$ , $\{e_{k+1}, \cdots e_{n}\}$ , $\{ie_{k+1}, \cdots ie_{n}\}$

of $V_{1},$ $V_{2},$ $V_{3},$ $V_{4}$ respectively, we obtain

(2.20) $A_{\xi}=\frac{1}{2}\left(\begin{array}{llll}-I_{k-1} & O & 0 & 0\\O & I_{n-k} & 0 & O\\0 & 0 & -aI_{n-k} & 0\\0 & O & 0 & aI_{n-k}\end{array}\right)$

Therefore, by $A_{J\xi}=JA_{\xi}$ and (2.20), we find

(2.21) $A_{J\xi}=-\frac{1}{2}\left(\begin{array}{llll}0 & I_{k-1} & O & 0\\I_{n-k} & O & O & 0\\O & 0 & 0 & aI_{n-k}\\O & 0 & aI_{n-k} & 0\end{array}\right)$

(2.20) and (2.21) imply that, for any unit normal vector $\eta=(\cos\theta)\xi+(\sin\theta)J\xi$ , we have

(2.21) $A_{\eta}=-\frac{1}{2}\left(\begin{array}{llll}cos\theta I_{k-1} & sin\theta I_{k-1} & 0 & 0\\sin\theta I_{k-l} & -cos\theta I_{k-l} & O & 0\\0 & 0 & acos\theta I_{n-k} & asin\theta I_{n-k}\\0 & 0 & asin\theta I_{n-k} & -acos\theta I_{n-k}\end{array}\right)$
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which implies that, for each unit normal vector $\eta,$ $A_{\eta}$ has $eigenvalues-1/2,1/2,$ $-a/2,$ $a/2$

with multiplicities given by $k-1,$ $k-1,$ $n-k,$ $n-k$ , respectively.
Case (b): $p\in U_{2}$ . In this case, arguments similar to Case (a) show that, for each unit

normal vector $\eta$ of $U_{2}$ at $p,$ $A_{\eta}$ has $eigenvalues-1/2a,$ $1/2a,$ $-1/2,1/2$ with multiplicities
given by $k+1,$ $k+1,$ $n-k-2,$ $n-k-2$ , respectively.

Case (c): $p\in U_{3}$ . First we claim that there is a holomorphic isometry of $CP^{n}$

which canies $p$ to a point $\hat{p}\in U_{3}$ whose homogeneous coordinates take the form $[z]_{\hat{p}}=$

$[z0,0, \cdots 0, z_{n}]$ with $z0,$ $z_{n}\neq 0$ . This can be seen as follows:
Suppose $p=[w_{0}, \cdots w_{n}]\in U_{3}$ . Then $\sum_{j=0}^{k}\Vert w_{j}\Vert\neq 0$ and $\sum_{j=k+1}^{n}||w_{j}||\neq 0$ .

Let $U_{3}^{1}\equiv\{[v_{0}, \cdots , v_{n}]\in U_{3}|v_{k+1}=w_{k+1}, \cdots v_{n}=w_{n}\}$ which is the intersection of
$U_{3}$ with the $n-k$ linear subspaces of $CP^{n}$ defined by $z_{j}=w_{j},$ $j=k+1,$ $\cdots$ $n$ . From
$\sum_{j=k+1}^{n}||w_{j}||\neq 0$, it follows that there is a point $q$ in $U_{3}^{1}$ whose homogeneous coordinate
takes the form $[zo0, \cdots 0, w_{k+1}, \cdots w_{n}]$ with $z0\neq 0$ . Since the group $A(CP^{n})$ acts tran-
sitively on $CP^{n}$ , there is a holomorphic isometry of $CP^{n}$ which camies $p$ to $q$ . Similarly,
there is a holomorphic isometry of $CP^{n}$ which camies $q$ to a point $\hat{p}\in U_{3}$ whose homoge-
neous coordinates take the form $[z]_{\hat{p}}=[z_{0},0, \cdots 0, z_{n}]$ with $zo,$ $z_{n}\neq 0$ . Consequently,
without loss of generality, we may assume that the homogeneous coordinates of $p$ take the
form $[z00, \cdots 0, z_{n}]$ with $z0z_{n}\neq 0$ , by applying a suitable holomorphic isometry of $CP^{n}$

if necessary.
By direct computations we obtain

(2.22) $T_{[z]_{p}}V_{a,k}^{n-1}=\{(0, v_{1}, \cdots v_{n-1},0)|v_{1}, \cdots v_{n-1}\in C\}$ .

(2.23) $(\frac{\partial^{2}f_{a,k}}{\partial z_{i}\partial z_{j}})_{p}=2\left(\begin{array}{ll}I_{k+1} & O\\0 & aI_{n-k}\end{array}\right)$ .

From (2.14), (2.22) and (2.23) we obtain $\zeta=0$ and

(2.24) $A_{\xi}(V)=-\frac{1}{\Vert\frac{\partial f_{a,k}}{\partial z}\Vert}(0,\overline{v}_{1}, \cdots \overline{v}_{k}, a\overline{v}_{k+1}, \cdots , a\overline{v}_{n-1},0)$

for $V=(O, v_{1}, \cdots v_{n-1},0)\in T_{[z]_{P}}V_{a,k}^{n-1}$ . $(2.24)$ implies that $A_{\xi}$ has $eigenvalues-\Vert\frac{\partial f_{a.k}}{\partial z}\Vert^{-1}$

$\Vert\frac{\partial f_{a,k}}{\partial z}\Vert^{-1},$ $-a\Vert\frac{\partial f_{a.k}}{\partial z}\Vert^{-1}$ and $a\Vert\frac{\partial f_{a,k}}{\partial z}\Vert^{-1}$ with multiplicities $k,$ $k,$ $n-k-1$ and $n-k-1$ , re-
spectively. By applying the same argument as in Case (a), we also know that, for each unit
normal vector $\eta,$ $A_{\eta}$ has the same eigenvalues and with the same multiplicities as $A_{\xi}$ .

Since $k\geqq 1$ and $n-k\geqq 2$ , these imply that $U_{3}$ has four distinct principal curvatures
and they satisfy the following two properties:

(1) Each eigenvalue of the shape operator of $U_{3}$ with respect to any given unit normal
vector $\eta$ is not zero.

(2) The multiplicity of each eigenvalue of $A_{\eta}$ with respect to any unit normal vector $\eta$

constant.
Let $M$ be the real hypersurface in $CP^{n}$ given by the tube of radius $r(r>0)$ over

the complex hypersurface $U_{3}$ . Then $M$ has at most five distinct principal curvatures in $CP^{n}$ .
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Moreover, the holomorphic distribution $T^{0}M$ of $M$ satisfies properties (a) and (b) of Theorem
3 (cf. [6]). Furthermore, because $M$ is not in the list of Theorem $A$ , properties (c) and (d) must
hold according to Theorem 2. $\square $

3. Another characterization of Hopf hypersurfaces with constant principal
curvatures.

A unit speed curve $\gamma=\gamma(s)$ in a Riemannian manifold $M$ is called a circle if there
exists a field of unit vectors $Y=Y(s)$ along the curve and a constant $\kappa(\geqq 0)$ which satisfy
the differential equations: $\nabla_{\dot{\gamma}}\dot{\gamma}=\kappa Y$ and $\nabla_{\dot{\gamma}}Y=-\kappa\dot{\gamma}$ , where $\nabla_{\gamma}$ denotes the covariant
differentiation along 7 with respect to the Riemannian connection $\nabla$ of $M$ . The constant $\kappa$ is
called the curvature of the circle. A circle with zero curvature is nothing but a geodesic.

It is well-known that a hypersurface $M^{n}$ in $E^{n+1}$ is locally an ordinary sphere if and only
if all geodesics of $M$ are circles of positive curvature in $E^{n+1}$ . However, there do not exist
real hypersurfaces in a nonflat complex space form $\tilde{M}_{n}(c)$ all of whose geodesics are circles
in $\tilde{M}_{n}(c)$ . This fact shows that the condition that all geodesics of $M$ are circles in $\tilde{M}_{n}(c)$ is
too strong for real hypersurfaces $M$ in nonflat complex space forms. So, one shall consider a
weaker condition.

THEOREM 4. A connected real hypersurface $M$ of a nonflat complex space form
$M_{n}(4c)$ is a Hopf hypersurface with constant principal curvatures $\iota f$ and only $lf$, at each
point $p$ of $M$ , there exist orthonormal vectors $v_{1},$ $v_{2},$ $\cdots$ , $v_{2n-2}$ perpendicular to the charac-
teristic vector $\xi$ such that all the geodesics $\gamma_{i}=\gamma_{i}(s)(1\leqq i\leqq 2n-2)$ in $M$ with $\gamma_{i}(O)=p$

and $\dot{\gamma}_{i}(0)=v_{i}$ are circles with positive curvature in $\tilde{M}_{n}(4c)$ .
PROOF. When $c>0$ , this is done in [3]. So, we only to prove the theorem in the case

of $c<0$ . Without loss of generality, we may assume $c=-1$ .
$(\Rightarrow)$ We shall prove, for each member in the list of Theorem $B$ case by case that, at

each point $p\in M$ there exist $2n-2$ orthonormal principal curvature vectors $v_{1},$ $\cdots$ , $v_{2n-2}$

perpendicular to $\xi$ such that all of the geodesics $\gamma_{i}=\gamma_{i}(s)(1\leqq i\leqq 2n-2)$ in $M$ with
$\gamma_{i}(0)=p$ and $\dot{\gamma}_{i}(0)=v_{i}$ are circles with positive curvature in $CH^{n}$ .

First, assume $M$ is of type A (i.e., $M$ is of type $A_{0}$ , type $A_{1}$ or type $A_{2}$ ). We shall show
that $\dot{\gamma}_{i}(s)$ is a principal vector field. Since $\dot{\gamma}_{i}(0)=v_{i}$ is principal, we can set $A\dot{\gamma}_{i}(0)=$

$k_{i}\dot{\gamma}_{i}(0)$ . Observe that
$\nabla_{\dot{\gamma}_{i}}\Vert A\dot{\gamma}_{i}(s)-k_{j}\dot{\gamma}_{i}(s)\Vert^{2}=\nabla_{\gamma_{i}}\langle A\dot{\gamma}_{i}, A\dot{\gamma}_{i}\rangle-2k_{i}\nabla_{\gamma_{i}}(A\dot{\gamma}_{i},\dot{\gamma}_{i})$

$=\langle(\nabla_{Yi}A)\dot{\gamma}_{i}, A\dot{\gamma}_{i}\rangle-2k_{i}((\nabla_{Yi}A)\dot{\gamma}_{i},\dot{\gamma}_{i}\rangle$

$=2\eta(\dot{\gamma}_{i})\langle\phi\dot{\gamma}_{i}, A\dot{\gamma}_{i}\rangle$ .
On the other hand, Proposition $B$ implies

$\eta(\gamma_{i})\langle\phi\gamma_{i},$ $A\gamma_{i}$ ) $=\eta(\dot{\gamma}_{i})\langle A\phi\dot{\gamma}_{i},\dot{\gamma}_{i})$

$=\eta(\gamma_{i})\langle\phi A\dot{\gamma}_{i},\dot{\gamma}_{i})$

$=-\eta(\gamma_{i})\langle A\gamma_{i},\phi\gamma_{i}\rangle$ .
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Thus, $\eta(\dot{\gamma}_{i})\langle\phi\dot{\gamma}_{i},$ $A\dot{\gamma}_{i}$ ) $=0$, and hence $\Vert A\dot{\gamma}_{i}(s)-k_{i}\dot{\gamma}_{i}(s)\Vert$ is constant on $\dot{\gamma}_{i}$ . Since $A\dot{\gamma}_{i}(0)=$

$k;\dot{\gamma}_{i}(0)$ , these imply $A\dot{\gamma}_{i}(s)=k_{j}\dot{\gamma}_{i}(s)$ for any $s$ , i.e., $\dot{\gamma}_{i}(s)$ is principal. Combining this
with (1.1) and (1.2), we have $\tilde{\nabla}_{\dot{\gamma}_{i}}\dot{\gamma}_{i}=k_{i}N$ and $\tilde{\nabla}_{\dot{V}i}N=-k_{i}\dot{\gamma}_{i}$ . Therefore, every geodesic
$Vi=\gamma_{i}(s)$ in $M$ with $\gamma_{i}(0)=p$ and $\dot{\gamma}_{i}(0)=v_{i}(\perp\xi)$ is a circle of curvature $|k_{i}|$ in $CH^{n}$ for
each $i\in\{1, \cdots , 2n-2\}$ .

Next, assume $M$ is of type B. Then $T^{0}M$ is decomposed as: $T^{0}M=V_{\tanh(r)}\oplus V_{\coth(r)}$ .
Let $L_{\tanh(r)}$ and $L_{\coth(r)}$ be leaves of the principal foliations $V_{\tanh(r)}$ and $V_{\coth(r)}$ , respectively.
From the proof of Theorem 1 we know that each geodesic of $L_{\tanh(r)}$ (resp. $L_{\coth(r)}$ ) is a
geodesic of the real hypersurface $M$ and moreover it is a circle of positive curvature $tth(r)$

(resp. $\coth(r)$ ) in $CH^{n}$ .
$(\Leftarrow)$ Assume that at each point $p$ of $M$ there exist $2n-2$ orthonormal vectors

$v_{1},$ $v_{2},$ $\cdots$ , $ v_{2n-2}\perp\xi$ such that the geodesics $\gamma_{i}=\gamma_{i}(s)(1\leqq i\leq 2n-2)$ in $M$ with $\gamma_{i}(0)=p$

and $\dot{\gamma}_{i}(0)=v_{i}$ are circles with positive curvature in $CH^{n}$ . These circles satisfy

(3.1) $\tilde{\nabla}_{\dot{Y}i}(\tilde{\nabla}_{\dot{Y}i}\dot{\gamma}_{i})=-k_{i}^{2}\dot{\gamma}_{i}$ ,

for some positive constants $k_{i}$ , where V is the Riemannian connection of $CH^{n}$ .
On the other hand, it follows from (1.1) and (1.2) that

(3.2) $\tilde{\nabla}_{\dot{Y}i}(\tilde{\nabla}_{\dot{\gamma}_{i}}\dot{\gamma}_{i})=((\nabla_{\dot{\gamma}i}A)\dot{\gamma}_{i},\dot{\gamma}_{i})N-\langle A\dot{\gamma}_{i},\dot{\gamma}_{i})A\dot{\gamma}_{i}$ .

By comparing the tangential components of (3.1) and of (3.2) we find
$(A\dot{\gamma}_{i}(s),\dot{\gamma}_{i}(s))A\dot{\gamma}_{i}(s)=k_{i}^{2}\dot{\gamma}_{i}(s)$ ,

so we obtain at $s=0$
$(Av_{i}, v_{i})Av_{i}=k_{i}^{2}v_{i}$ .

Note that $k;\neq 0,1\leqq i\leqq 2n-2$ . Hence, we have

(3.3) $Av_{i}=k_{i}v_{i}$ or $Av_{i}=-k_{i}v_{i}$ for $i=1,$ $\cdots$ , $2n-2$ ,

which implies that $\xi$ is principal.
Now, consider the open dense subset $\mathcal{U}$ of $M$ defined by

$\mathcal{U}=\{p\in M|$ the multiplicity of each principal curvature of
$M$ in $CH^{n}$ is constant on some neighborhood $\mathcal{V}_{p}$ of $p$ }.

Recall that principal curvatures are differentiable on $\mathcal{U}$ and, moreover, the principal curvature
vectors can be chosen to be smooth on a sufficiently small neighborhood of each point $p\in \mathcal{U}$ .
In the following, we shall work on a such fixed neighborhood $\mathcal{V}_{p}$ of $p$ .

We divide our discussion into the following two cases:
(I) $\alpha\neq k$; and $\alpha\neq-k_{i}$ for $\forall i\in\{1, \cdots , 2n-2\}$ at some point $p\in \mathcal{U}$ .

(II) There exists $i\in\{1, \cdots , 2n-2\}$ such that $\alpha=k_{i}$ or $\alpha=-k_{i}$ holds on $\mathcal{U}$ .
Case (I): At the fixed point $p$ , the tangent space $T_{p}M$ is decomposed as:

$ T_{p}M=\{\xi\}_{R}\oplus\{v\in T_{p}M|Av=-k_{i_{1}}v\}\oplus\{v\in T_{p}M|Av=k_{i_{1}}v\}\oplus\cdots$

$\oplus\{v\in T_{p}M|Av=-k_{i_{9}}v\}\oplus\{v\in T_{p}M|Av=k_{i_{g}}v\}$ ,
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where $0<k_{i_{1}}<k_{i_{2}}<\cdots<k_{i_{g}}$ and $g$ denotes the number of positive distinct $k_{j},$ $j=$

$1,$ $\cdots$ $2n-2$ . Note that each $k_{i_{j}}$ is differentiable on $\mathcal{V}_{p}$ .
Now we prove the constancy of $k_{i_{1}},$ $\cdots$ , $k_{i_{g}}$ . It suffices to prove the case of $Av_{i_{j}}=$

$k_{i_{j}}v_{i_{j}}$ . By hypothesis we have $v_{i_{j}}k_{i_{j}}=0$ for $j=1,$ $\cdots$ $g$. Since $A$ is symmetric, we also
have

(3.4) $((\nabla_{v_{i_{j}}}A)v_{l}, v_{i_{j}})=\langle v\iota, (\nabla_{v_{i_{j}}}A)v_{i_{j}}\rangle$ , $1\leqq l\neq i_{j}\leqq 2n-2$ .

In order to apply (3.4), we extend $v_{l},$ $v_{i_{j}}\in T_{p}M$ to vector fields $V_{l},$ $V_{i_{j}}$ on some sufficient
small neighborhood $\mathcal{W}_{p}(\subset \mathcal{V}_{p})$ as follows:

We define $V_{l}$ to be a vector field on $\mathcal{W}_{p}$ satisfying $(V_{l})_{p}=v_{l}$ and $ V_{l}\perp\xi$ . In order to
define $V_{i_{j}}$ , first we define a smooth vector field $W_{i_{j}}$ on $\mathcal{W}_{p}$ by using the parallel displacement
of the vector $v_{i_{j}}$ along geodesics through $p$ . We remark that although $W_{i_{j}}$ is not principal on
$\mathcal{W}_{p}$ in general, but we have $AW_{i_{j}}=k_{i_{j}}W_{i_{j}}$ along the geodesic $\gamma=\gamma(s)$ with $\gamma(0)=p$ and
$\dot{\gamma}(0)=v_{i_{j}}$ . We define a vector field $U_{i_{j}}$ on $\mathcal{W}_{p}$ by $U_{i_{j}}=(\prod_{\kappa\neq k_{i_{j}}}(A-\kappa I))W_{i_{j}}$ , where $\kappa$

runs over the set of all distinct principal curvatures of $M$ except $k_{i_{j}}$ . Then

$AU_{i_{j}}=A(\prod_{\kappa\neq k_{i_{j}}}(A-\kappa I))W_{i_{j}}=(\prod_{\kappa\neq k_{i_{j}}}(A-\kappa I))A$ ( $V_{k_{i_{j}}}$ component of $W_{i_{j}}$ )

$=k_{i_{j}}U_{i_{j}}\neq 0$

on $\mathcal{W}_{p}$ . We put $V_{i_{j}}=U_{i_{j}}/||U_{i_{j}}||$ . Our construction guarantees that $AV_{i_{j}}=k_{i_{j}}V_{i_{j}},$ $(V_{i_{j}})_{p}=$

$v_{i_{j}}$ and the integral curve of $V_{i_{j}}$ through the point $p$ is a geodesic of $M$ . In particular, we
obtain $(\nabla_{V_{i_{j}}}V_{i_{j}})_{p}=0$ .

Since the equation (1.7) of Codazzi implies

$\langle(\nabla_{X}A)Y, Z\rangle=((\nabla_{Y}A)X, Z)$ for $\forall X,$ $Y,$ $ Z\perp\xi$ ,

at the point $p$ , we find

(The left hand side of $(3.4)$) $=\langle(\nabla_{v_{l}}A)v_{i_{j}}, v_{i_{j}}\rangle$

$=\{(\nabla_{V_{l}}A)V_{i_{j}},$ $V_{i_{j}}\rangle_{p}$

$=((V_{l}k_{i_{j}})V_{i_{j}}+(k_{i_{j}}I-A)\nabla_{V_{l}}V_{i_{j}}, V_{i_{j}})_{p}$

$=v_{l}k_{i_{j}}$ .

Similarly we get

(The right hand side of $(3.4)$) $=(V_{l}, (\nabla_{V_{i_{j}}}A)V_{i_{j}}\}_{p}$

$=(V_{l}, \nabla_{V_{i_{j}}}(k_{i_{j}}V_{i_{j}})-A\nabla_{V_{i_{j}}}V_{i_{j}})_{p}$

$=(v_{l}, (v_{i_{j}}k_{i_{j}})v_{i_{j}}\rangle=0$ .

These imply that $Xk_{t_{j}}=0$ for any $X\in T_{p}M$ which is perpendicular to $\xi$ .
Next, we prove $\xi k_{i_{j}}=0$ . We divide the proof into two cases:
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Case $(I_{a})$ : $2k_{i_{j}}-\alpha\neq 0$ at a point $p\in \mathcal{U}$ . In this case, we obtain from Proposition A
that

$A\phi V_{i_{j}}=(\frac{\alpha k_{i_{j}}-2}{2k_{i_{j}}-\alpha})\phi V_{i_{j}}$

on some neighborhood $\mathcal{W}_{p}(\subset \mathcal{V}_{p})$ of $p$ . This, together with (1.5), yields

$(\nabla_{\xi}A)V_{i_{j}}-(\nabla_{V_{i_{j}}}A)\xi=\nabla_{\xi}(AV_{i_{j}})-A\nabla_{\xi}V_{i_{j}}-\nabla_{V_{i_{j}}}(\alpha\xi)+A\nabla_{V_{i_{j}}}\xi$

$=\nabla_{\xi}(k_{t_{j}}V_{i_{j}})-A\nabla_{\xi}V_{i_{j}}-\alpha\phi AV_{i_{j}}+A\phi AV_{i_{j}}$

$=(\xi k_{i_{j}})V_{i_{j}}+(k_{i_{j}}I-A)\nabla_{\xi}V_{i_{j}}-k_{i_{j}}(\alpha-\frac{\alpha k_{i_{j}}-2}{2k_{i_{j}}-\alpha})\phi V_{i_{j}}$ .

On the other hand, (1.7) yields

$(\nabla_{\xi}A)V_{i_{j}}-(\nabla_{V_{i_{j}}}A)\xi=-\phi V_{i_{j}}$ .

By combining these two equations we find $\xi k_{i_{j}}=0$ . Consequently, $k_{i_{j}}$ is constant on $\mathcal{W}_{p}$ .
Case $(I_{b})$ : $2k_{i_{j}}-\alpha=0$ on $\mathcal{U}$ . In this case, $k_{i_{j}}=\alpha/2$ is locally constant. This case

occurs only when $M$ is a type $(A_{0})$ hypersurface, i.e., a horosphere.
Case (II): Let $p$ be a point in $\mathcal{U}$ . Recall that the multiplicity of each principal curvature

of $M$ is constant on some neighborhood $\mathcal{V}_{p}$ of $p$ . Since $\alpha$ is locally constant, the assumption
$\alpha=k$; or $\alpha=-k_{i}$ implies that $k_{i}$ is locally constant. The constancy of the other distinct $k$;

follows from the same discussion as in Case (I).

Consequently, we know that every principal curvature of $M$ is locally constant on the
open dense subset $\mathcal{U}$ of $M$ . Since $M$ is assumed to be connected, each principal curvature is
constant on $M$ . Finally we remark that Case (II) occurs only when $M$ is a type $B$ hypersurface
with radius $r=\log_{e}(2+\sqrt{3})$ (cf. [12]). $\square $

The following result is an immediate consequence of Theorem 4.

COROLLARY. Let $M$ be a connected real hypersufface $ofa$ nonflat complex space$fom$
$M_{n}(4c)$ . Then $M$ is locally congruent to one of type $A_{1}$ hypersurface with radius $r(0<r<$
$\pi/2)$ or a type $A_{2}$ hypersuiface with radius $r=\pi/4$ in the list of Theorem $A$ ; or one of
type $A_{0}$ hypersurface with radius $r(0<r<\infty)$ and type $A_{1}$ hypersurface with radius
$r(0<r<\infty)$ in the list of Theorem $B$ if and only if, at each point $p$ of $M$ , there exist
orthonormal vectors $v_{1},$ $\cdots$ , $v_{2n-2}$ orthogonal to the characteristic vector $\xi$ such that all the
geodesics $\gamma_{i}=\gamma_{i}(s)(1\leqq i\leqq 2n-2)$ on $M$ with $\gamma_{i}(0)=p$ and $\dot{\gamma}_{i}(0)=v_{i}$ are circles in
$\tilde{M}_{n}(4c)$ with the same positive curvature.

REMARKS ON THEOREM 4. (1) In Theorem 4 we do not need to assume that
$\{v_{1}, v_{2}, \cdots , v_{2n-2}\}$ is a local fields of orthonormal frames. However, for each member $M$

in the lists of Theorem A and Theorem $B$ , one can take a local field of orthonormal frames in
$M$ satisfying the hypothesis of Theorem 4.

(2) Every circle in $CP^{n}(4)$ (resp. $CH^{n}(-4)$ ) given in Theorem 4 is a simple curve
lying in some totally real totally geodesic $RP^{2}(1)$ (resp. $RH^{2}(-1)$ ). However, the feature of
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circles in $CH^{n}(-4)$ is more complicated than circles in $CP^{n}(4)$ . In case of $CP^{n}(4)$ every
circle given in Theorem 4 is closed. On the other hand, in the case of $CH^{n}(-4)$ a circle given
in Theorem 4 is closed if and only if its curvature is greater than 1 (see [1], [2] for details).
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