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Abstract. In this paper we shall give $L^{p}(R^{2})$ -boundedness of the Bochner-Riesz operator $S_{\delta}$ for $ 2<p<\infty$

and $\delta>0$ , restricting it to functions of product type. In this range, $ 2<p<\infty$ and $\delta>0$ , the strong $L^{p}$ -estimate is
valid for functions of product type but not for general functions.

1. Introduction and main theorem.

In this paper we shall prove a certain estimate for the Bochner-Riesz summing operator
$S\delta,$ $\delta>0$ , for functions of product type. We first recall definitions and state the main theorem.

For a function $f$ on the d-dimensional Euclidean space $R^{d},$ $d\geq 2$ , the Bochner-Riesz
operator $S_{\delta}f$ is defined by

$(S_{\delta}f)(x)=\int_{R^{d}}e^{2\pi i\langle x,\xi\rangle}(1-|\xi|^{2})_{+}^{\delta}\hat{f}(\xi)d\xi$ .

Here, $t_{+}^{\delta}=t^{\delta}$ for $t>0$ and zero otherwise, and $\hat{f}$ is the Fourier transform of $f$ :

$\hat{f}(\xi)=\int_{R^{d}}e^{-2\pi i\langle\xi,x\rangle}f(x)dx$ .

$S(R^{d}),$ $d\geq 1$ , will denote the set of all Schwartz-class functions on $R^{d}$ .
THEOREM 1. Let $d=2$ . If $\delta>0$ and $ 2<p<\infty$ , then the inequality

$||S_{\delta}f\Vert_{L^{p}(R^{2})}\leq C_{p,\delta}||f\Vert_{L^{p}(R^{2})}$ (1)

holds for all $f$ in $S(R^{2})$ of the form $f(x)=f_{1}(x_{1})f_{2}(x_{2})$ with a constant $C_{p,\delta}$ .
REMARK 2. By a standard approximation argument based on (1) we see that $S_{\delta}f$ can

be defined for $f(x)=f_{1}(x_{1})f_{2}(x_{2})$ with $f_{j}\in L^{p}(R)$ and (1) holds for such $f$ .
Before proceeding we shall make some remarks on the relation between known results

and the above theorem. Early history of the boundedness problem for the Bochner-Riesz
operator is summarized in [Fe]. In [Fe] C. Fefferman suggested a possible connection with
the Kakeya maximal operator. For the dimension two A. C\’ordoba [Col], [Co2] gave a proof
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of $L^{4}(R^{2})$ -boundedness of $S_{\delta}$ using a boundedness estimate for the Kakeya maximal operator.

The method of the proof in the present paper is based on the idea of [Ta2] combined with an
idea of C\’ordoba developed in [Col], [Co2]. However, the Kakeya maximal operator itself

does not appear explicitly in this work.
We shall now review some more recent results which are relevant to our work. (See [So]

and [St].)

The critical index $\delta(p)$ for $L^{p}(R^{d})$ is defined by

$\delta(p)=\max\{d|\frac{1}{2}-\frac{1}{p}|-\frac{1}{2},0\}$ , $ 1\leq p\leq\infty$ .

Note that $\delta(p)>0\Leftrightarrow p\not\in[2d/(d+1), 2d/(d-1)]$ . It is known that a necessary condition

in order that $f\rightarrow S_{\delta}f$ is bounded in $L^{p}(R^{d}),$ $p\neq 2$ , is that $\delta>\delta(p)$ . When $\delta(p)=0$ this

is a theorem of C. Feffernan. In other cases it follows from the fact that the kemel of $S_{\delta}$ is

in $L^{p}(R^{d})$ only when $\delta>\delta(p)$ for $1\leq p\leq 2d/(d+1)$ . Indeed, the kemel of $S_{\delta}$ has the

asymptotic form
$K_{\delta}(x)=|x|^{-(d+1)/2-\delta}a(x)+O(|x|^{-(d+3)/2-\delta})$

with
$a(x)=C_{\delta}\cos(2\pi|x|-(\pi/2)(d/2+\delta)-\pi/4)$ .

Choose $f$ in $C_{0}^{\infty}(R^{d})$ as an approximation of Dirac function. Then for $1\leq p\leq 2d/(d+1)$

$S_{\delta}f\in L^{p}(R^{d})\Rightarrow d<p(\frac{d+1}{2}+\delta)$ $\Leftrightarrow\delta>d(\frac{1}{p}-\frac{1}{2})-\frac{1}{2}=\delta(p)$ . (2)

REMARK 3. We note that $f$ in (2) can be choosen in the form $f(x)=\prod_{l=1}^{d}fi(x_{l})$ .
This shows that Theorem 1 cannot be extended to the range $p\in[1,4/3$).

As for sufficient conditions we quote the following theorem which is due to Carleson

and Sj\"olin [CS] in the two-dimensional case and Tomas [To] in the higher-dimensional case.

THEOREM 4 ([So, Theorem 2.3.1]). If
(i) $d\geq 3$ and $p\in[1, (2d+1)/(d+3)]\cup[2(d+1)/(d-1), \infty]$ or
(ii) $d=2$ and $ 1\leq p\leq\infty$ ,

it follows that
$||S_{\delta}f||_{L^{p}(R^{d})}\leq C_{p,\delta}||f||_{L^{p}(R^{d})}$

when $\delta>\delta(p)$ .
J. Bourgain and T. Wolff improved the range of (i) (see [Bo] and [Wo]).

For functioms of product type the following theorem is known.

THEOREM 5 ([Ig, Theorem 6]). If $\delta>0$ and $p\in[2d/(d+1), 2]$ , then the inequality

$||S_{\delta}f||_{L^{p}(R^{d})}\leq C_{p,\delta}||f||_{L^{p}(R^{d})}$

holds for all $f$ in $L^{p}(R^{d})$ of the form $f(x)=\prod_{l=1}^{d}f_{l}(x_{l})$ .

Thus, the really new part of Theorem 1 is the case of $ d=2,4<p<\infty$ , and $0<$

$\delta\leq\delta(p)$ with $f$ being of product type. We might emphasize, however, that this range of $p$ ,
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$\delta$ is outside the range of necessary condition for the $L^{p}$ -boundedness of $S_{\delta}$ . In this range the
strong $L^{p}$ -estimate is valid for functions of product type but not for general functions.

This paper is a part of the thesis of the doctor of science [Tal] Chapter 6 submitted to
Gakushuin university.

2. Reduction of the proof of Theorem 1.

In this section we shall reduce the proof of Theorem 1 to Theorem 6 below. This type
of argument is essentially known and we basically follow [Mi].

In the following $f^{v}$ will denote the inverse Fourier transform of $f$ .
Consider $\zeta(\xi)$ in $C^{\infty}(R^{2})$ such that $\zeta(\xi)$ equals $0$ in some neighborhood of $0$ and equals

1 in some neighborhood of $|\xi|=1$ . If we can prove that for one such $\zeta$ the inequality
$||(\zeta(\xi)(1-|\xi|)_{+}^{\delta}\hat{f}(\xi))^{\vee}||_{p}\leq C_{p,\delta}\Vert f\Vert_{p}$ (3)

holds for all $f$ in $S(R^{2})$ of product type with a constant $C_{p,\delta}$ which is independent of $f$ , then
we will obtain the boundedness of $S_{\delta}$ in $L^{p}(R^{2})$ for such $f$ by decomposing the multiplier as

$(1-|\xi|^{2})_{+}^{\delta}=(1-\zeta(\xi))(1-|\xi|^{2})_{+}^{\delta}+(1+|\xi|)^{\delta}\cdot\zeta(\xi)(1-|\xi|)_{+}^{\delta}$ .
Let $\alpha(t)$ in $C^{\infty}(R)$ be

$\alpha(t)=\left\{\begin{array}{ll}1, & t\leq 1,\\0, & t>2.\end{array}\right.$

Put $\beta(t)=\alpha(t)-\alpha(2t)$ . Note that $supp\beta\subset[1/2,2]$ and

$\sum_{k=k_{0}}^{\infty}\beta(2^{k}t)=\alpha(2^{k_{0}}t)=\left\{\begin{array}{ll}1 , & 0<t\leq 2^{-k_{0}},\\0, & t>2^{-k_{0}+1}\end{array}\right.$

It follows from this equality that

$\alpha(2^{k_{0}}(1-|\xi|))(1-|\xi|)_{+}^{\delta}=\sum_{k=k_{0}}^{\infty}\beta(2^{k}(1-|\xi|))(1-|\xi|)^{\delta}$

$=\sum_{k=k_{0}}^{\infty}2^{-k\delta}\beta(2^{k}(1-|\xi|))(2^{k}(1-|\xi|))^{\delta}$

Put $\varphi(t)=\beta(t)t^{\delta}$ . If we can prove that for every $\epsilon>0$ there exist $k_{0}\geq 2$ and a constant
$C=C_{\epsilon,\varphi,p}$ such that

$||(\varphi(2^{k}(1-|\xi|))\hat{f}(\xi))^{\vee}||_{p}\leq C2^{k\epsilon}\Vert f\Vert_{p}$ , $\forall k\geq k_{0}$ , (4)

holds for all $f$ in $S(R^{2})$ of product type, then we obtain

$||(\alpha(2^{k_{0}}(1-|\xi|))(1-|\xi|)_{+}^{\delta}f(\xi))^{\vee}\Vert_{p}\leq C\sum_{k=k_{0}}^{\infty}2^{(\epsilon-\delta)k}\Vert f\Vert_{p}\leq C_{p,\delta}\Vert f\Vert_{p}$ . (5)
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by choosing $\epsilon<\delta$ . Thus, by (3) and (5) the proof of Theorem 1 is reduced to proving (4)

(choose $\zeta(\xi)=\alpha(2^{k_{0}}(1-|\xi|))$ ).

We introduce the operator $T_{a},$ $0<a<1/4$ , as follows. Let $\varphi$ be a function in $C_{0}^{\infty}(R)$

with support in [1/2, 2]. For a function $f$ in $S(R^{2})$ define $T_{a}f$ by

$(T_{a}f)(x)=\int_{R^{2}}e^{2\pi i(x,\xi)}\varphi(\frac{1-|\xi|}{a})\hat{f}(\xi)d\xi$ .

Then (4) follows from the next theorem. In fact, take $a=2^{-k}$ in (6) and choose $k_{0}$ so that

2$k_{0}\epsilon>\sqrt{k_{0}}$ .

THEOREM 6. Let $d=2$ . For every $ 2<p<\infty$ there exists a constant $C_{p}$ indepen-

dent of $f$ and $a$ such that

$||T_{a}f||_{L^{p}(R^{2})}\leq C_{p}(\log(\frac{1}{a}))^{1/2}\Vert f||_{L^{p}(R^{2})}$ (6)

holds for all $f$ in $S(R^{2})$ of the $fomf(x)=f\iota(x_{1})f2(x2)$ .

In the following $C’ s$ will denote constants independent of $f$ and $a$ . It will be different in

each occasion.

3. Proof of Theorem 6.

3.1. Decomposition of $T_{a}$ by an angular partition of unity. Hereafter, we denote

by $[x]$ the largest integer not greater than $x$ .
Fix $a,$ $0<a<1/4$ . We shall consider a decomposition of $T_{a}$ .
For the integers

$k\in[1,$ $[\frac{\pi}{2\sqrt{a}}]-1]$ ,

and $m=0,1,2,3$ let the sequence $\{p_{k,m}\}$ on the unit circle $S^{1}$ be

$p_{k,m}=(\cos(\frac{\pi m}{2}+\sqrt{a}k),$ $\sin(\frac{\pi m}{2}+\sqrt{a}k))$ .

Choose $\psi\geq 0$ in $C_{0}^{\infty}(R)$ which equals 1 for $0\leq t\leq 4$ . Define the function $\psi k,m(\omega)$ on $S^{1}$

as
$\psi_{k,m}(\omega)=\psi(\frac{|\omega-p_{k,m}|^{2}}{a})$ .

If $\omega\in S^{1}$ , then $\psi_{k,m}(\omega)\neq 0$ for some $k,$ $m$ and the number of such $k,$ $m$ is uniformly

bounded. If we put $\Psi_{k,m}(\omega)=\psi_{k,m}(\omega)/(\sum_{k,m^{\prime}}\psi_{k^{\prime},m^{\prime}}(\omega))$ where denominator does not

vanish, then $\{\Psi_{k,m}\}$ is a partition of unity on $S^{1}$ .
Let $\varphi_{k,m}(\xi)$ be

$\varphi_{k,m}(\xi)=\varphi(\frac{1-|\xi|}{a})\Psi_{k,m}(\frac{\xi}{|\xi|})$ .
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Let $\tau_{k,m}$ be
$(\tau_{k,m}f)(x)=(\varphi_{k,m}(\xi)f(\xi))^{\vee}(x)$ .

Thus, we have reduced the problem to the estimate

$\Vert\sum_{k,m}\tau_{k,m}f\Vert_{L^{p}(R^{2})}\leq c_{p}(\log(\frac{1}{a}))^{1/2}\Vert f\Vert_{L^{p}(R^{2})}$ . (7)

Let $N_{0}$ be $N_{0}=[\pi/4\sqrt{a}]$ . Then without loss of generality we may restrict $k$ and $m$ to
$1\leq k\leq N_{0}$ and $m=0$ . For simplicity we will write $\tau_{k,0},$ $\varphi_{k,0}$ and $p_{k,0}$ as $\tau_{k},$ $\varphi_{k}$ and $p_{k}$ ,

respectively.

3.2. What product type implies, 1. Let $I=X(-11,11)$ . For every $\epsilon>0$ and an
integer $j\in Z$ the partial sum operator $P_{\epsilon,j}$ is defined by

$(P_{\epsilon,j}f)(x)=\int_{R}e^{2\pi ix\xi}I(\frac{\xi}{\epsilon}-1)f(\xi)d\xi$ , $f\in S(R)$ . (8)

Then we have the following lemma, where our assumption $ 2<p<\infty$ is essential.

LEMMA 7. Suppose that $ 2<p<\infty$ . There exists a constant $C_{p}$ depending only on
$p$ such that

$\Vert(\sum_{j\in Z}|P_{\epsilon,j}f|^{2})^{1/2}\Vert_{L^{p}(R)}\leq C_{p}||f\Vert_{L^{p}(R)}$ .

PROOF. By a dilation argument it suffices to consider only the case $\epsilon=1$ . Then this
lemma is a special case of Theorem 2.16 in Chapter V of [GR] (p489). $\square $

Let $N_{1}=[\log N_{0}/\log 2]$ . For every $k$ with $2^{l}\leq k<2^{l+1},$ $l=0,1,$ $\cdots$ , $N_{1}$ , and
$k\leq N_{0}$ let the integer $\gamma_{1}^{k}$ be

$\gamma_{1}^{k}=[\frac{\cos\sqrt{a}k}{2^{l+1}a}]$ .

For $1\leq k\leq N_{0}$ let the integer $\gamma_{2}^{k}$ be

$\gamma_{2}^{k}=[\frac{\sin\sqrt{a}k}{\sqrt{a}}]$ .

Then the following proposition holds.

PROPOSITION 8. Fix $0\leq l\leq N_{1}$ . For every $k$ with $2^{l}\leq k<2^{l+1}$ and $k\leq N_{0}$ the
operator $P_{1}^{k}$ is defined by

$(P_{1}^{k}f)(x)=(P_{2^{l+1}a,\gamma_{1}^{k}}f)(x)$ , $f\in S(R)$ ,

where $P_{\epsilon,j}$ is defined in (8). For every $k$ with $1\leq k\leq N_{0}$ the operator $P_{2}^{k}$ is defined by

$(P_{2}^{k}f)(x)=(P_{\sqrt{a},\gamma_{2}^{k}}f)(x)$ , $f\in S(R)$ .

Then, if $f$ in $S(R^{2})$ is of the form $f_{1}(x_{1})f_{2}(x_{2})$ , we have

$(\tau_{k}f)(x)=(\tau_{k}(P_{1}^{k}f_{1}P_{2}^{k}f_{2}))(x)$ .
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PROOF. It suffices to show that

$I(\frac{\xi_{1}}{2^{l+1}a}-\gamma_{1}^{k})I(\frac{\xi_{2}}{\sqrt{a}}-\gamma_{2}^{k})=1$ , $\forall\xi\in supp\varphi_{k}$ .

Fix $\xi\in supp\varphi_{k}$ . It suffices to show that

$|\frac{\xi_{1}}{2^{l+1_{O}}}-\gamma_{1}^{k}|\leq 11$ , (9)

$|\frac{\xi_{2}}{\sqrt{a}}-\gamma_{2}^{k}|\leq 11$ . (10)

We prove only (9). (10) can be proved similarly.

PROOF OF (9). It follows that

$|\xi_{1}-2^{l+1}a\gamma_{1}^{k}|\leq|\xi_{1}-\frac{\xi_{1}}{|\xi|}|+|\frac{\xi_{1}}{|\xi|}-\cos\sqrt{a}k|+|\cos\sqrt{a}k-2^{l+1}a\gamma_{1}^{k}|$ . (11)

We have

$|\xi_{1}-\frac{\xi_{1}}{|\xi|}|=\frac{|\xi_{1}|}{|\xi|}||\xi|-1|\leq 2a$ , (12)

because $a/2\leq 1-|\xi|\leq 2a$ for $\xi\in supp\varphi_{k}$ , and

$|\cos\sqrt{a}k-2^{l+1}a\gamma_{1}^{k}|=2^{l+1}a|\frac{\cos\sqrt{a}k}{2^{l+1}a}-\gamma_{1}^{k}|\leq 2^{l+1}a$ (13)

by the definition of $\gamma_{1}^{k}$ . Define $\theta$ as $\xi_{1}/|\xi|=\cos\theta$ . Then we have $|\theta-\sqrt{a}k|<3\sqrt{a}$ for
$\xi\in supp\varphi_{k}$ . It follows from this inequality that

$|\frac{\xi_{1}}{|\xi|}-\cos\sqrt{a}k|\leq\cos\sqrt{a}k-\cos\sqrt{a}(k+3)$ (14)

$=\int_{\sqrt{a}k}^{\sqrt{a}(k+3)}\sin tdt\leq 3\sqrt{a}\sin\sqrt{a}(k+3)\leq 3(k+3)a\leq 9\cdot 2^{l+1}a$ .

Here, the last inequality follows from $k<2^{l+1}$ . From (11)$-(14)$ we have proved (9). $\square $

3.3. Analysis in the x-space. Let $U_{k}$ be the orthogonal transformation in $R^{2}$ defined
by

$U_{k}=$ ( $-\sin\sqrt{a}k\cos\sqrt{a}k$).
Then $U_{k}^{-1}p_{k}=(1,0)$ . Let the rectangle $R_{a}$ be

$R_{a}=\{(x_{1}, x_{2})||x_{1}|\leq\frac{1}{a}$ $|x_{2}|\leq\frac{1}{\sqrt{a}}\}$ .

Let $R_{a,k}$ be $R_{a,k}=U_{k}R_{a}$ . Then we have the following basically known lemma (cf. [Co2]).
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LEMMA 9. In the situation above we have

$|\varphi_{k}^{v}(x)|\leq C\sum_{m=1}^{\infty}2^{-m}\frac{1}{|2^{m}R_{a,k}|}\chi_{2^{m}R_{a,k}}(x)\equiv K_{k}(x)$ . (15)

The proof of this lemma can be found in [Mi] and is reproduced in Section 4.
Let $F_{k}(x)$ and $G_{k}(x)$ be

$F_{k}(x)=(P_{1}^{k}f_{1})(x)$ , $G_{k}(x)=(P_{2}^{k}f_{2})(x)$ .

Then it follows from Proposition 8, Lemma 9 and $K_{k}\in L^{1}$ that

$|(\tau_{k}f)(x)|=|(\tau_{k}(F_{k}G_{k}))(x)|=|(\varphi_{k}^{\vee}*(F_{k}G_{k}))(x)|\leq(K_{k}*(|F_{k}||G_{k}|))(x)$ . (16)

3.4. What product type implies, 2. Using the same idea as in [Ta2], we shall prove
the following proposition.

PROPOSITION 10. Put $R=2^{m}R_{a,k},$ $N=1/\sqrt{a},$ $\alpha=2^{m}/\sqrt{a}$ and $(\omega_{1}, \omega_{2})=$

$(\cos\sqrt{a}k, \sin\sqrt{a}k).Ifh(x)\geq 0$ is a locally integrablefunction ofthe$fomh(x)=h_{1}(x_{1})h_{2}(x2)$ ,

then we have

$\frac{1}{|R|}\int_{R}h(y)dy$

$\leq C\{\frac{1}{6\omega_{1}N\alpha}\int_{-3\omega_{1}N\alpha}^{3\omega_{1}N\alpha}h_{1}(y_{1})^{2}dy_{1}\}^{1/2}\{\frac{1}{6\omega_{2}N\alpha}\int_{-3\omega_{2}N\alpha}^{3\omega_{2}N\alpha_{h_{2}(y_{2})^{2}dy_{2}}}\}^{1/2}$

PROOF. By Fubini’s theorem we can select $s,$ $ 0\leq|s|\leq\alpha$ , such that

$\int_{R}h(y)dy\leq 2\alpha\int_{-N\alpha}^{N\alpha}h(s(\omega_{2}, -\omega_{1})+t(\omega_{1}, \omega_{2}))dt$ .

By the Schwarz inequality we have

RHS $=2\alpha\int_{-N\alpha}^{N\alpha}h_{1}(s\omega_{2}+t\omega_{1})h_{2}(-s\omega_{1}+t\omega_{2})dt$

$\leq 2\alpha(\int_{-N\alpha}^{N\alpha}h_{1}(s\omega_{2}+t\omega_{1})^{2}dt)^{1/2}(\int_{-N\alpha}^{N\alpha_{h_{2}(-s\omega_{1}+t\omega_{2})^{2}dt}})^{1/2}$

$=2\alpha(\frac{1}{\omega_{1}}\int_{-\omega_{1}N\alpha}^{\omega_{1}N\alpha_{h_{1}(s\omega_{2}+t)^{2}dt}})^{1/2}(\frac{1}{\omega_{2}}\int_{-\omega_{2}N\alpha}^{\omega_{2}N\alpha}h_{2}(-s\omega_{1}+t)^{2}dt)^{1/2}$

Note that for $1\leq k\leq N_{0}$ we have $1/2N\leq\omega_{2}\leq\omega_{1}$ . Hence we have

$|s\omega_{2}|+|\omega_{1}N\alpha|\leq 2\omega_{1}N\alpha$ and $|s\omega_{1}|+|\omega_{2}N\alpha|\leq 3\omega_{2}N\alpha$ .

Thus, we obtain

$\frac{1}{|R|}\int_{R}h(y)dy\leq c\{\frac{1}{6\omega_{1}N\alpha}\int_{-3\omega_{1}N\alpha}^{3\omega_{1}N\alpha}h_{1}(y_{1})^{2}dy_{1}I^{\iota/2}\{\frac{1}{6\omega_{2}N\alpha}\int_{-3wN\alpha}^{3\omega_{2}N\alpha_{h_{2}(y_{2})^{2}dy_{2}}}\}^{1/2}$ $\square $
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It follows that

$\frac{1}{|2^{m}R_{a,k}|}(\chi_{2^{m}R_{a.k}}*(|F_{k}||G_{k}|))(x)=\frac{1}{|2^{m}R_{a,k}|}\int_{2^{m}R_{a,k}}|F_{k}(x\iota-y_{1})||G_{k}(x_{1}-y_{1})|dy$ .

By putting $h(y)=|F_{k}(x_{1}-y_{1})||G_{k}(x_{1}-y_{1})|$ in Proposition 10, we obtain

$\frac{1}{|2^{m}R_{a,k}|}(\chi_{2^{m}R_{a.k}}*(|F_{k}||G_{k}|))(x)$

$\leq c\{\frac{1}{6\frac{2^{m}}{a}\cos\sqrt{a}k}(x_{[-3\frac{2^{m}}{a}\cos\sqrt{a}k,3\frac{2^{m}}{a}\cos\sqrt{a}k]}*|F_{k}|^{2})(x_{1})\}^{1/2}$

$\{\frac{l}{6\frac{2^{m}}{a}\sin\sqrt{a}k}(\chi_{[-3\frac{2^{m}}{a}\sin\sqrt{a}k,3\frac{2^{m}}{a}\sin\sqrt{a}k]}*|G_{k}|^{2})(x_{2})\}^{1/2}$

$\equiv CX_{k,m}(x_{1})^{1/2}Y_{k,m}(x_{2})^{1/2}$ (17)

Using H\"older’s inequality and the Schwarz inequality, we have from (16), (15) and (17)

that

$|\sum_{k=1}^{N_{0}}\tau_{k}f(x)|^{p}\leq(\sum_{k}|(\tau_{k}(F_{k}G_{k}))(x)|)^{p}$

$\leq c(\sum_{km}\sum_{=1}^{\infty}2^{-m}X_{k,m}(x_{1})^{1/2}Y_{k,m}(x_{2})^{1/2})^{p}$

$\leq C^{\prime}\sum_{m}2^{-m}(\sum_{k}X_{k,m}(x_{1})^{1/2}Y_{k,m}(x_{2})^{1/2})^{p}$

$\leq C^{\prime}\sum_{m}2^{-m}\{(\sum_{k}X_{k,m}(x_{1}))\cdot(\sum_{k}Y_{k,m}(x_{2}))\}^{p/2}$

Hence we obtain

$\int_{R^{2}}|\sum_{k=1}^{N_{0}}\tau_{k}f(x)|^{p}dx$

$\leq C^{\prime}\sum_{m=1}^{\infty}2^{-m}\int_{R}(\sum_{k}X_{k,m}(x_{1}))^{p/2}dx_{1}\cdot\int_{R}(\sum_{k}Y_{k,m}(x_{2}))^{p/2}dx_{2}$ . (18)
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Fix $w\geq 0$ in $L^{p/(p-2)}(R)$ (conjugate exponent of $p/2$). Let $M$ be the Hardy-Littlewood
maximal operator. Then we have

$\int_{R}(\sum_{k=1}^{N_{0}}X_{k,m}(x))w(x)dx$

$=\int_{R}\sum_{k}|F_{k}(y)|^{2}\{\frac{1}{6\frac{2^{m}}{a}\cos\sqrt{a}k}(\chi_{[-3\frac{2^{m}}{a}\cos\sqrt{a}k,3\frac{2^{m}}{a}\cos\sqrt{a}k]}*w)(y)\}dy$

$\leq\{\int_{R}(\sum_{k}|F_{k}(y)|^{2})^{p/2}dy\}^{2/p}\cdot\{\int_{R}((Mw)(y))^{p/(p-2)}dy\}^{(p-2)/p}$

$\leq c\{\int_{R}(\sum_{k}|F_{k}(y)|^{2})^{p/2}dy\}^{2/p}\Vert w\Vert_{L^{p/(p-2)}}(R)$ .

Here, the last inequality follows from $L^{p/(p-2)}$ boundedness of $M$ . Allowing $w\geq 0$ to vary
in $L^{p/(p-2)}(R)$ freely, we obtain

$\int_{R}(\sum_{k=1}^{N_{0}}X_{k,m}(x))^{p/2}dx\leq C\int_{R}(\sum_{k}|F_{k}(x)|^{2})^{p/2}dx$ . (19)

Obviously, the same inequality holds for $Y_{k,m}$ .
In the process of estimating the RHS of (19) and similar one for $G_{k}$ we need a property

of $\gamma_{j}^{k}$ .

3.5. A property of $\gamma_{j}^{k}$ .
PROPOSITION 11. (i) $Fix0\leq l\leq N_{1}$ . For every $m,$ $2^{l}\leq m<2^{l+1}$ , the number of

$n$ such that
$\gamma_{1}^{m}=\gamma_{1}^{n}$ $2^{l}\leq n<2^{l+1}$

is at most 7.
(ii) For every $m,$ $1\leq m\leq N_{0}$ the number of $n$ such that

$\gamma_{2}^{m}=\gamma_{2}^{n}$ , $1\leq n\leq N_{0}$

is at most 3.

PROOF OF (i). Note that $\gamma_{1}^{k}$ is a non-increasing sequence. We first assume that $m\leq n$ .
Then we have

$\gamma_{1}^{m}2^{l+1}a\leq\cos\sqrt{a}m<(\gamma_{1}^{m}+1)2^{l+1}a$ ,

$\gamma_{1}^{m}2^{l+1}a\leq\cos\sqrt{a}n<(\gamma_{1}^{m}+1)2^{l+1}a$

and hence
$0\leq\cos\sqrt{a}m-\cos\sqrt{a}n<2^{l+1}a$ .

We see that

$\cos\sqrt{a}m-\cos\sqrt{a}n=\int_{\sqrt{a}m}^{\sqrt{a}n}\sin tdt\geq(n-m)\sqrt{a}\sin(\sqrt{a}2^{l})$ .
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Note that $\sin(\sqrt{a}2^{l})\geq\sqrt{a}2^{l-1}$ because $\sqrt{a}2^{l}<\pi/2$ . Therefore, we have

$(n-m)2^{l-1}a<2^{l+1}a$

and hence $n$ must satisfy $m\leq n\leq m+3$ . Exchanging the role of $m,$ $n$ , we have $m-3\leq n\leq m$

if $n\leq m$ .
PROOF OF (ii). Note that $\gamma_{2}^{k}$ is a non-decreasing sequence. We first assume that $m\leq n$ .

Proceeding as above we have

$0\leq\sin\sqrt{a}n-\sin\sqrt{a}m<\sqrt{a}$ .

We see that

$\sin\sqrt{a}n-\sin\sqrt{a}m=\int_{\sqrt{a}m}^{\sqrt{a}n}\cos tdt\geq(n-m)\frac{\sqrt{a}}{\sqrt{2}}$ .

Therefore, we have

$(n-m)\frac{\sqrt{a}}{\sqrt{2}}<\sqrt{a}$

and hence $n$ must satisfy $m\leq n\leq m+1$ . Exchanging the role of $m,$ $n$ , we have $m-1\leq n\leq m$

if $n\leq m$ . $\square $

3.6. Completion of the proof. Now, using Propositions 11 and Lemma 7, the RHS
of (19) is estimated as

$\int_{R}(\sum_{k=1}^{N_{0}}|F_{k}(x)|^{2})^{p/2}dx$ (20)

$\leq\int_{R}(\sum_{l=0}^{N_{1}2^{l}}\sum_{k=2^{l}}^{-1}|F_{k}(x)|^{2})^{p/2}dx+1$

$\leq C(N_{1}+1)^{p/2-1}\sum_{l=0}^{N_{1}}\int_{R}(\sum_{j\in Z}|P_{2^{l+1}a,j}fi(x)|^{2})^{p/2}dx$

$\leq C(N_{1}+1)^{p/2}||f_{1}\Vert_{p}^{p}\leq c(\log(\frac{1}{a}))^{p/2}||f_{1}\Vert_{p}^{p}$ .

The same inequality, but not including the logarithm factor, holds for $G_{k}$ .
Thus, combining estimates (18), (19) and (20) we have finally proved (7) and proved

Theorem 6.

4. Proof of Lemma 9.

The argument basically follows [Mi, p. 109-110].
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Put $\kappa(\xi)=\psi(\frac{(\xi_{1}-|\xi|)^{2}+\xi_{2}^{2}}{|\xi|^{2}a})\varphi(\frac{1-|\xi|}{a})$ for $\xi\in\{1-2a\leq|\xi|\leq 1-\frac{a}{2}|\xi_{2}|\leq$

$\sqrt{5a}\}$ . If we can prove

$|\kappa(x)|\vee\leq C\sum_{m=0}^{\infty}2^{-m}\frac{1}{|2^{m}R_{a}|}\chi_{2^{m}R_{a}}(x)$ , (21)

then by the rotation argument everything reduces to this inequality.
Now, for every $N\in N$ we shall prove

$|\kappa\vee(x)|\leq C_{N}a^{3/2}(1+a|x_{1}|+\sqrt{a}|x_{2}|)^{-N}$ (22)

If this can be done, (21) follows from the following observation.
$a^{3/2}(1+a|x_{1}|+\sqrt{a}|x_{2}|)^{-N}\leq a^{3/2}(1+\max(a|x_{1}|, \sqrt{a}|x_{2}|))^{-N}$

$\leq a^{3/2}\sum_{m=0}^{\infty}x_{\{\max(a|y_{1}|,\sqrt{a}|y_{2}|)\leq 2^{m}I^{(x)2^{-mN}=a^{3/2}\sum_{m=0}^{\infty}2^{-mN}\chi_{2^{m}R_{a}}(x)}}$

$=\sum_{m=0}^{\infty}2^{-m(N-2)}\frac{1}{|2^{m}R_{a}|}\chi_{2^{m}R_{a}}(x)$ .

Putting $N=3$ , we have (21).

PROOF OF (22). By the elementary computations for every multi-indices $\alpha=(\alpha_{1}, \alpha_{2})$

we see that
$|(\frac{\partial}{\partial\xi_{1}})^{\alpha_{1}}(\frac{\partial}{\partial\xi_{2}})^{\alpha_{2}}\kappa(\xi)|\leq C_{\alpha}a^{-\alpha_{1}-(1/2)\alpha_{2}}$ .

It follows from this inequality and $|supp\kappa|\leq Ca^{3/2}$ that

$|(ax_{1})^{\alpha_{1}}(\sqrt{a}x_{2})^{\alpha_{2}}\kappa\vee(x)|\leq C_{\alpha}a^{3/2}$

Therefore, we obtain
$|\kappa\vee(x)|\leq C_{N}a^{3/2}((1+a|x_{1} )(1+\sqrt{a}|x_{2}|))^{-N}\leq C_{N}a^{3/2}(1+a|x_{1}|+\sqrt{a}|x_{2}|)^{-N}$

Thus, we have proved (22).

References

[Bo] J. BOURGAIN, Besicovitch type maximal operators and applications to Fourier analysis, Geom. Funct. Anal.
1 (1990), 147-187.

[Col] A. C\’ORDOBA, The Kakeya maximal function and the spherical summation multiplier, Amer. J. Math. 99
(1977), 1-22.

[Co2] A. C\’ORDOBA, A note on Bochner-Riesz operators, Duke Math. J. 46 (1979), 505-511.
[CS] L. CARLESON and P. SJ\"OLIN, Oscillatory integrals and a multiplier problem for the disk, Studia Math. 44

(1972), 287-299.
[Fe] C. FEFFERMAN, A note on the spherical summation multiplier, Israel J. Math. 15 (1973), 44-52.
[GR] J. GARCIA-CUERVA and J. L. RUBIO DE FRANCIA, Weighted Norm Inequalities and Related Topics, North-

Holland Math. Stud. 116 (1985).



578 HITOSHI TANAKA

[Ig] S. IGARI, Interpolation of operators in Lebesgue spaces with mixed norm and its applications to Fourier
analysis, T\^ohoku Math. J. 38 (1986), 469-490.

[Mi] A. MIYACHI, Oscillatory Integral Operators (in Japanese), Gakushuin University Lecture Notes in Mathe-
matics 1.

[So] C. D. SOGGE, Fourier Integrals in Classical Analysis, Cambridge Tracts in Math. 105 (1993).

[St] E. M. STEIN, Hamonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Prince-
ton Univ. Press (1993).

[Ta1] H. TANAKA, The Kakeya maximal operator and the Riesz-Bochner operator on functions of special type,
Gakushuin university (1998).

[Ta2] H. TANAKA, Some weighted inequalities for the Kakeya maximal operator on functions of product type, J.
Math. Sci. Univ. Tokyo 6 (1999), 315-333.

[To] P. A. TOMAS, A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc. 81 (1978), 477-478.
[Wo] T. WOLFF, An improved bound for Kakeya type maximal functions, Rev. Mat. Iberoamericana 11 (1995),

451-473.

Present Address:
DEPARTMENT OF MATHEMATICS, GAKUSHUIN UNIVERSITY,
MEJIRO, TOSHIMA-KU, TOKYO, 171-8588 JAPAN.
e-mail: hitoshi.tanaka@gakushuin.ac.jp


