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Abstract. In this paper we shall give LP (R2)-boundedness of the Bochner-Riesz operator Ss for2 < p < 00
and § > 0, restricting it to functions of product type. In this range, 2 < p < oo and § > 0, the strong L?-estimate is
valid for functions of product type but not for general functions.

1. Introduction and main theorem.

In this paper we shall prove a certain estimate for the Bochner-Riesz summing operator
Ss, 8 > 0, for functions of product type. We first recall definitions and state the main theorem.

For a function f on the d-dimensional Euclidean space R?, d > 2, the Bochner-Riesz
operator Ss f is defined by

(Ss)(x) = /R Lm0~ gD f @) .
Here, 1§ = ® fort > 0 and zero otherwise, and f is the Fourier transform of f:

7@ = / =X £ (x)dx |
Rd

S (Rd), d > 1, will denote the set of all Schwartz-class functions on R¥.

THEOREM 1. Letd =2.If§ > 0and2 < p < o0, then the inequality

I1Ss fllLrrzy < Cpsll fllLrr2) (D
holds for all f in S(R?) of the form f(x) = f1(x1) f2(x2) with a constant Cps.

REMARK 2. By astandard approximation argument based on (1) we see that Ss f can
be defined for f(x) = f1(x1) f>(x2) with fj € LP(R) and (1) holds for such f.

Before proceeding we shall make some remarks on the relation between known results
and the above theorem. Early history of the boundedness problem for the Bochner-Riesz
operator is summarized in [Fe]. In [Fe] C. Fefferman suggested a possible connection with
the Kakeya maximal operator. For the dimension two A. Cérdoba [Col], [Co2] gave a proof
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of L*(R?)-boundedness of Ss using a boundedness estimate for the Kakeya maximal operator.
The method of the proof in the present paper is based on the idea of [Ta2] combined with an
idea of Cérdoba developed in [Col], [Co2]. However, the Kakeya maximal operator itself
does not appear explicitly in this work.

We shall now review some more recent results which are relevant to our work. (See [So]
and [St].)

The critical index 8(p) for LP (R?) is defined by
sy =maxfalL - 1| =L o} 12z

2 p 2

Note that 8(p) > 0 < p ¢ [2d/(d +1),2d/(d — D]. It is known that a necesSary condition
in order that f — S5 f is bounded in LP(RY), p # 2,isthat § > 8(p). When 8(p) =0 this
is a theorem of C. Fefferman. In other cases it follows from the fact that the kernel of S5 is
in LP(RY) only when § > 8(p) for1 < p < 2d/ (d + 1). Indeed, the kernel of S; has the
asymptotic form

Ks(x) = |x|"@HD23q(x) + 0(x|7@H/27%)
with
a(x) = Cscosm|x| — (w/2)(d/2 + 8) — 7 /4).
Choose f in Cg° (R?) as an approximation of Dirac function. Then for 1 < p <2d/(d + 1)

Ssf € LP(RY) = d<p(d—+—l+8> = 6>d(—1——l)——l=3(p). 2)
2 p 2 2

REMARK 3. We note that f in (2) can be choosen in the form f(x) = H}i:l Ji(xp).
This shows that Theorem 1 cannot be extended to the range p € [1, 4/3).

As for sufficient conditions we quote the following theorem which is due to Carleson
and Sjolin [CS] in the two-dimensional case and Tomas [To] in the higher-dimensional case.

THEOREM 4 ([So, Theorem 2.3.1]). If
@ d=3andpell,d+1)/d+3)JU[2(d+1)/d-1D), oo] or
(il) d=2andl < p < o0,
it follows that
”SBf“LP(Rd) =< Cp,8“f"LP(Rd)
when § > 8(p).

J. Bourgain and T. Wolff improved the range of (i) (see [Bo] and [Wo]).
For functions of product type the following theorem is known.

THEOREM 5 ([Ig, Theorem 6]). Ifé > 0and p € [2d/(d + 1), 2], then the inequality
WSs fllLerey < Cp.sll fllLrre)
holds for all f in LP(Rd) of the form f(x) = ]_[}1___1 fi(xp).

Thus, the really new part of Theorem 1 is the case of d = 2,4 < p < 00, and 0 <
8 < 8(p) with f being of product type. We might emphasize, however, that this range of p,
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d is outside the range of necessary condition for the L?-boundedness of Ss. In this range the
strong L?-estimate is valid for functions of product type but not for general functions.

This paper is a part of the thesis of the doctor of science [Tal] Chapter 6 submitted to
Gakushuin university.

2. Reduction of the proof of Theorem 1.

In this section we shall reduce the proof of Theorem 1 to Theorem 6 below. This type
of argument is essentially known and we basically follow [Mi].

In the following f will denote the inverse Fourier transform of f.
Consider ¢ (£) in C%° (R?) such that ¢ (§) equals 0 in some neighborhood of 0 and equals
1 in some neighborhood of |£| = 1. If we can prove that for one such ¢ the inequality

1€ EA = 1EDS FENVIp < Cpsll £lIp 3

holds for all f in S(R?) of product type with a constant C, s which is independent of f, then
we will obtain the boundedness of S5 in L? (R?) for such f by decomposing the multiplier as

A~ 1EP% = — @A = EPS + A +18D° - ¢ &) — £
Leta(?) in C*°(R) be
{1, t<1,
a(t) =

0, t>2.
Put () = a(t) — a(2¢). Note that suppB C [1/2, 2] and
&k % 1, 0<t<2h,
Z B(2%t) = a(2%0r) =

—ko+1
P 0, t>2 .

It follows from this equality that

a2 — 1EDI — ED] = Y BEF — £ — €]

k=kg
= Y 27MBk — g kA — I£])° .
k=kqg

Put o(t) = B(t)t%. If we can’prove that for every ¢ > O there exist kg > 2 and a constant
C = C¢,y,p such that

I A = IENFENYIp < C2*Nfll,, VE=ko, 4
holds for all f in S(R?) of product type, then we obtain

@@ —1ENA - EDLFENVI, < C Y 26K £, < Cpslifll,. ()

k=ko
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by choosing ¢ < 8. Thus, by (3) and (5) the proof of Theorem 1 is reduced to proving (4)
(choose £ (&) = a2k (1 — 1£1))).

We introduce the operator T,, 0 < a < 1/4, as follows. Let ¢ be a function in C§°(R)
with support in [1/2, 2]. For a function f in S(R?) define T, f by

(Taf)(x) = fR 2 ez’”'""f’w( 'g') f@de.

Then (4) follows from the next theorem. In fact, take a = 2~* in (6) and choose ko so thaf

2koe > Jko.

THEOREM 6. Letd = 2. For every2 < p < oo there exists a constant Cp indepen-
dent of f and a such that

1\ 12
||qu||Lp(R2) <Cp (log (2)) | fllLr 2y (6)

holds for all f in S(R?) of the form f(x) = f1(x1) f2(x2)-

In the following C’s will denote constants independent of f and a. It will be different in
each occasion.

3. Proof of Theorem 6.

3.1. Decomposition of 7, by an angular partition of unity. Hereafter, we denote
by [x] the largest integer not greater than x.
Fix a, 0 < a < 1/4. We shall consider a decomposition of 7.

For the integers
/4
kell,|[—=|—-1].,
[ [Zﬁ] ]

and m = 0, 1, 2, 3 let the sequence { pk,»} on the unit circle S! be

Pkm = (cos (% + «/Ek), sin (Zg + ﬁk)) .

Choose ¥ > 0 in C°(R) which equals 1 for 0 < ¢ < 4. Define the function Yim(w)on S 1

as
_ 2
ka,m(a)) — 7/’ (Iw Pk,m| ) .

a

If o € S!, then ¥ m(w) # O for some k, m and the number of such k, m is uniformly
bounded. If we put ¥ m(w) = Yim(®)/ (Zk,’ml Y .m'(®)) Where denominator does not
vanish, then {¥ ,} is a partition of unity on S'.

Let @k, m (&) be
1—|&| §
m — —_— w m _ .
Or,m(§) fP( p ) k, (IEI)
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Let T, be
(Tem )X = (@rmE) FENY ().

Thus, we have reduced the problem to the estimate

1 1/2
> tmf < Cp(log (—)) 1l g2y - 7)
km LP(R2) a

Let Ng be N9 = [ /44/a]. Then without loss of generality we may restrict k and m to
1 < k < Ng and m = 0. For simplicity we will write tx,0, ¢x,0 and pgo as t, ¢k and pg,
respectively.

3.2. What product type implies, 1. Let I = x(-11,11). For every ¢ > 0 and an
integer j € Z the partial sum operator P, ; is defined by

(P, f)(x) = fR ez’”"fl(é —j)f(&)ds, feSR). )

Then we have the following lemma, where our assumption 2 < p < o0 is essential.

LEMMA 7. Suppose that2 < p < oo. There exists a constant C,, depending only on

p such that
1/2
} (Z |Pe,jf|2)

JjE€Z
PROOF. By a dilation argument it suffices to consider only the case ¢ = 1. Then this
lemma is a special case of Theorem 2.16 in Chapter V of [GR] (p489). [
Let N; = [log No/log2]. For every k with 2! < k < 2!*1,1 =0,1,---,N;, and

k < Np let the integer ylk be
& [cos ﬁk]
1 === |-

2l+1a

<CullfilLrwy -
LP(R)

Y

For 1 < k < Np let the integer yzk be

1= [25).

Then the following proposition holds.

PROPOSITION 8. Fix0 <1 < Nj. For every k with2! < k < 2'*! and k < Ny the
operator Plk is defined by

(PEN@) = (Pyrrig p ), f ESM),
where P, j is defined in (8). For every k with 1 < k < Ny the operator P is defined by
(Py X)) = (P /)X, feSR).
Then, if f in S(R?) is of the form fi(x1) f2(x2), we have
(e f)(x) = (w(P{ f1P§ f2))(x) .
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PROOF. It suffices to show that

§1 k &2 k
I(m—yl I ﬁ—yz =1, VSGSUpp(pk.
Fix & € suppyy. It suffices to show that

ZIilla - ylk <11, (9)
'§2 k
_— - <11.

We prove only (9). (10) can be proved similarly.

PROOF OF (9). It follows that

1 1
& — 2 layk) < | — |§§_| + |£§_| — cos +/ak| + | cos /ak — 2" ayf|. (11)
We have
&1 1§11
§1 — | = —=l§] — 1| = 2a, (12)
YTl e
because a/2 < 1 — |&| < 2a for & € suppyi, and
|cos vak — 2+ ayk| = 2+1a[°SVEK _ k| e, (13)
2i+1,

by the definition of yl". Define 9 as & /]| = cos@. Then we have |§ — /ak| < 3./a for
& € supp k. It follows from this inequality that

él—l — cos v/ak| < cos «/ak — cos /a(k + 3) (14)
Jak+3)
= sintdt < 3 /asinvak +3) <3k +3)a<9-2*q.
Jak

Here, the last inequality follows from k < 2!*1. From (11)—(14) we have proved (9). [

3.3. Analysis in the x-space. Let Uy be the orthogonal transformation in R? defined
by
Uy = (cos Jak —sin ﬁk)
sin /ak cos./ak ] -

Then U, ! px = (1, 0). Let the rectangle R, be

1

1
Ra=[(x1,x2) . Ilesﬁ}.

[x1] <

Let R, x be Ry x = UrR,. Then we have the following basically known lemma (cf. [Co2]).
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LEMMA 9. In the situation above we have

o ()| <C )Y 27" Xom Ry (%) = Ki(x) . (15)
m=1

12" R, k|

The proof of this lemma can be found in [Mi] and is reproduced in Section 4.
Let Fix(x) and G¢(x) be

Fi(x) = (P f)(x), Gr(x) = (P f)).
Then it follows from Proposition 8, Lemma 9 and K; € L! that

(T f) (@) = (@ (Fe G ()| = |(@r *(FrG)x)| < (Ki * (Fiel|GkD)(x) . (16)

3.4. What product type implies, 2. Using the same idea as in [Ta2], we shall prove
the following proposition.

PROPOSITION 10. Put R = 2™Ra, N = 1//a, a = 2"/\/a and (w1, w2) =
(coss/ak, siny/ak). If h(x) > 0 is a locally integrable function of the form h(x) =hi(x1)h2(x2),
then we have

1
— h(y)d
IRI/R (y)dy
1 3wiNa ) 1/2
SC{ f h1(y1) d)’1} {

6w No —3wiNa

3wy Na ) 1/2
h2(y2)“d 2} .
6wy Na .[—3w21va Y

PROOF. By Fubini’s theorem we can select s, 0 < |s| < «, such that

Na
f h(y)dy < 2a f h(s (@, 1) + £ (@1, @2))dt
R —N«a

By the Schwarz inequality we have

Na

RHS = Zaf hi(swy + twy)hy(—swy + twn)dt
—Nao

No 1/2 Na 1/2
20 (/ hi(swy + ta)l)zdt) (/ hy(—swi + tw2)2dt)

—Na —Na

1 o1Na 172 1 warNa 1/2
20 (— / hl(sw2+t)2dt> (-— f ho(—swy +t)2dt) )

W1 J—wyNa @2 J-wyNa

IA

I

Note that for 1 < k < Ng we have 1/2N < w, < w;. Hence we have
lsws| + |wiNa| < 2wiNa and |swp| + |[ooNa| < 3wrNa.

Thus, we obtain

1 1 3w Na ) 1/2 1 3w Na 5 1/2
L | heyay < C{ f hi(yn2d 1} { f ha(y2) dyz] .
|R| /1; 6wiNa J_ 30, Na Ty 6w, N J _30,Na

O
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It follows that

(X2m Ry s * (I Fi||Gk D) (x) = |Fr(x1 — yOlGr(x1 — y)ldy .

1
12 Ra k| 12" Ra k| Jom R, s

By putting 2(y) = |Fx(x1 — y1)||G«(x1 — y1)| in Proposition 10, we obtain

1
— () Fi |G
7 Ra,k|("2 Rax * (FclIGE))(x)
1 1/2
< c[——(x m o * |Fk|2)<x1)}
2m [-3%- k3%~ k)
6=~ cos \/ak a cos/a cos /a

172
1 2
—i——— (X[_327 m * |Gl )(xz)]
{6—‘2— smﬁk sin \/a sin \/a.
= CXiym(x) 2 Y m(x2) /2. (17)

Using Holder’s inequality and the Schwarz inequality, we have from (16), (15) and (17)
that

p

No 14
douf®| < (Z |(rk(Fka))(x)|)
k=1 k
C(Z
k

o0

IA

P
2-'"Xk,m(x1)”2Yk,m(xz)‘/z)

m=1

p
"’(Z Xk,m(xl)”zYk,m(xz)‘ﬂ)
k
p/2
'"[(Zxk,m(xl)) : (Z Yk,m(xz))] :
k k

IA

IA

CI Z 2_
m
'y 2"
m

Hence we obtain

Je

P

No
Y ufx)| dx
k=1

oo

p/2 p/2
<c'y 2" / (Zxk,m(xl)) dx - f (Z Yk,m(xz)) dxz.  (18)
R A% RN %

m=1
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Fix w > 0in LP/(P=2(R) (conjugate exponent of p/2). Let M be the Hardy-Littlewood
maximal operator. Then we have

No
f ( > Xk,m(x)) w(x)dx
R\ =1
1
B /l; ; |Fk(y)|2[ 6'2-;— coS ﬁk (X[_3¥ Cosﬁk,3_2aﬂ cos \/ak] * W)(y) }dy

p/2 2/p (p—2)/p
< { fR (Z|Fk(y)|2) dy] { /R ((Mw)(y))f’/“"”dy]
k

p/2 2/p
< c[ fR (Zle(y)P) dy} Nl oo R, -
k

Here, the last inequality follows from LP/(P~2) boundedness of M. Allowing w > O to vary
in LP/(P=2)(R) freely, we obtain

No p/2 p/2
f (Zxk,m(x)) dx<C / (Zle(xW) dx. (19)
R k=1 ) R k

Obviously, the same inequality holds for Y p,.
In the process of estimating the RHS of (19) and similar one for G we need a property
of yl‘.
J

3.5. A property of yJ’.‘ .

PROPOSITION 11. (i) Fix0 <! < Njy. Foreverym, 2! <m < 2'*1, the number of
n such that
=, 2l <p <2
is at most 7.
(ii) Foreverym, 1 < m < Ng the number of n such that

Y9 =¥y, 1<n=<~Ng
is at most 3.

PROOF OF (i). Note that V1k is a non-increasing sequence. We first assume that m < n.
Then we have

yr2!*la < cos/am < (y" + )2/ a,
| yr2!*tla < cosv/an < (" + 1)2a
and hence

0 < cos/am — cos/an < 2t1qg.
We see that

Jan
cos /am — cos «/an = f sintdt > (n — m)/asin(v/a2').

am
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Note that sin(,/a2!) > /a2'~! because /a2! < m/2. Therefore, we have
(n — m)2l_1a <2+,

and hence n must satisfy m < n < m+-3. Exchanging therole of m,n, wehavem—3 <n <m
ifn <m.

PROOF OF (ii). Note that Vzk is a non-decreasing sequence. We first assume thatm < n.
Proceeding as above we have

0 < sin+/an — sins/am < +/a.
We see that

Jan
sin an—sinﬁm:f costdt > (n—m)i—a.
Jam ﬁ

Therefore, we have

Ja
(n—m)—= < /a

and hence n must satisfy m < n < m+1. Exchanging the role of m, n, wehavem—1 <n <m
ifn<m. 0O

3.6. Completion of the proof. Now, using Propositions 11 and Lemma 7, the RHS
of (19) is estimated as

No p/2
f (Zle(x)P) dx (20)
R \ =1

Ny 2+ p/2
<[ (X X iawr) ds
R\ =0 4=
M p/2
_<_C(N1+1)P/2'12/ (Z|P21+1a,jf1(x)|2) dx
1=0 "R \ jez

1 p/2
_<_C(N1+1)”/2||f1||,’;_<_C(10g (;)) IAl5.

The same inequality, but not including the logarithm factor, holds for G.
Thus, combining estimates (18), (19) and (20) we have finally proved (7) and proved
Theorem 6.

4. Proof of Lemma 9.

The argument basically follows [Mi, p. 109-110].



ESTIMATE FOR THE BOCHNER-RIESZ OPERATOR 577

_1ED2 4 g2 _
Put «(§) = x/f((sl E)” + 5 ><ﬂ (l—|$—|> foré e{l—2a<§|<1-%,|&l =<
| |%a a
V/5a}. If we can prove
v ad 1
| & (x)] < cgz—mmxm,,(x), (21)

then by the rotation argument everything reduces to this inequality.
Now, for every N € N we shall prove

| € ()] < Cna®2(1 + alx | + Valx )™V (22)
If this can be done, (21) follows from the following observation.

a®?(1 + alx| + Valx2) ™V < a¥?(1 + max(alxi|, Valx)™

o0 o0
3/2 —mN _ 32 —mN
<a " Ximaxtainl, valyh<am 027N = a2y " 27N xong, (x)

m=0 m=0

> 1
=D 27N 5omp, (x) .
— |2m R, | "5

Putting N = 3, we have (21).

PROOF OF (22). By the elementary computations for every multi-indices o = (a1, o2)

we see that . "
3\ / 8\
(&) (&) =©

It follows from this inequality and |suppx| < Ca®/? that

< Cpa™™ —(1/2)ez

l(ax1)® (Vax2)*? & (x)| < Coqa’/?.
Therefore, we obtain

| & (x)] < Cna¥* (A +alx1 DA + Valx )™V < Cya®?( + alxi| + Valx )™V .
Thus, we have proved (22). |
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