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Abstract. Let $U$ be a finite set of points in general position in the plane. We consider the following graph $\mathcal{G}$

determined by $U$ . A vertex of $\mathcal{G}$ is a spanning tree of $U$ whose edges are straight line segments and do not cross.
Two such trees $t$ and $t^{\prime}$ are adjacent if for some vertex $u\in U,$ $t-u$ is connected and coincides with $t^{\prime}-u$ . We show
that $\mathcal{G}$ is 2-connected, which is the best possible result.

1. Introduction.

Let $G$ be a connected graph and $\mathcal{V}_{G}$ the set of all the spanning trees of $G$ . We define an
adjacency relation $m\mathcal{V}_{G}$ so that two spanning trees $t_{1}$ and $t_{2}\in \mathcal{V}_{G}$ are adjacent if and only if
there exist edges $e_{i}\in E(t_{i})$ such that

$t_{1}-e_{1}=t_{2}-e_{2}$ . (1)

The graph thus obtained is called a tree graph. The lower bound of the connectivities of a tree
graph was shown by Liu.

THEOREM 1 (Liu [8]). The tree graph of a connected graph $G=(V, E)$ is $2(|E|-$

$|V|+1)$ -connected.
We can consider two subgraphs of a tree graph as follows. If an edge is incident to

endvertices in a spanning tree $t$ , then we call it an outer edge. An edge is not outer is called
inner. In the equation (1), the edge $e_{1}$ is an outer edge in $t_{1}$ if and only if $e_{2}$ is also outer in
$t_{2}$ . A leaf graph is defined on $\mathcal{V}_{G}$ as follows; $t_{1}$ and $t_{2}\in \mathcal{V}_{G}$ are said to be adjacent if there
exist outer edges $e_{i}\in E(t_{i})$ which satisfy the equation (1). The authors showed the following
theorem.

THEOREM 2 (Kaneko and Yoshimoto [7]). Let $G$ be a 2-connected graph ofminimum
degree $\delta$ . Then the leafgraph of $G$ is $(2\delta-2)$ -connected.

We can define adjacency relation of aleaf graph as follows; $t_{1}$ and $t_{2}$ are adjacent if there
exists a vertex $u\in V(G)$ such that $t_{1}-u$ is connected and coincides with $t_{2}-u$ . On the other
hand, a trunk graph is defined on the set $\mathcal{V}_{G}^{*}$ of all the spanning trees except stars as follows;
$t_{1}$ and $t_{2}\in \mathcal{V}_{G}^{*}$ are said to be adjacent if there exist inner edges $e_{i}\in E(t_{i})$ which satisfy the
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FIGURE 1.

equation (1). Yoshimoto [9] showed that if $G$ is a 2-connected graph with at least five vertices
and if $G$ is k-edge connected, then the trunk graph of $G$ is $(k-1)$ -connected.

In this paper, we consider a geometric version of a leaf graph. Let $U$ be a set of $n$ points
in the plane which is in general position, i.e., no three points in $U$ are collinear. A graph OI1
$U$ whose edges are straight line segments joining two vertices in $U$ and do not cross is callee
a non-crossing graph on $U$ . Let $\mathcal{V}_{U}$ be the set of all the non-crossing spanning trees on $U$

Ikebe et al. [6] showed that any rooted tree with $n$ vertices can be embedded as a non-crossing
spanning tree on a given set $U$ , the root being mapped to an arbitrary specified point of $U$ .

A geometric tree graph on $U$ is defined on the set $\mathcal{V}_{U}$ as follows; $t_{1}$ and $t_{2}\in \mathcal{V}_{U}$ are said
to be adjacent if there exist edges $e_{i}\in E(t_{i})$ which satisfy the equation (1). Avis and Fukuda
[1] showed that the geometric tree graph on $U$ is connected. In [4], Hemando et al. showed
haImiltonicity and connectivity of a geometric tree graph on $U$ whose points are in convex
position. A geometric leafgraph on $U$ is defined by $\mathcal{V}_{U}$ as follows; $t_{1}$ and $\iota_{2}\in \mathcal{V}_{U}$ are said tc
be adjacent if there exists $u\in U$ such that $t_{1}-u$ is connected and coincides with $t_{2}-u$ . We
shall prove the following theorem in this paper.

THEOREM 3. Let $U$ be the set ofpoints in the plane in general position. Then the
geometric leafgraph on $U$ is 2-connected.

Let $t$ be the non-crossing spanning tree in Figure 1. Let $t^{\prime}=(t-uu_{1})\cup uu_{2}$ and
$t^{\prime\prime}=(t-vv_{1})\cup vv_{2}$ . Then since $t^{\prime}-u=t-u$ and this graph is connected, the non-crossing
spanning tree $t^{\prime}$ is adjacent to $t$ in the geometric leaf graph on $U$ . Similarly, $t^{\prime\prime}$ is adjacent tc
$t$ . Because any other non-crossing spanning tree on $U$ is not adjacent to $t$ , the degree of $tiI1$

the geometric leaf graph is two. Thus the lower bound of the theorem is the best possible.
Finally, we introduce concepts and notations used in the subsequent arguments. Let $G$

be a non-crossing graph on $U$ and $u\in U$ . Let $\tilde{G}$ be a maximal non-crossing graph (i.e. any
edge except edges in $E(\tilde{G})$ intersects this graph) on $U\backslash u$ which includes $G-u$ as a subgraph
The vertex $u$ is included in some triangulate region or the inPnite region of $\tilde{G}$ . In either case.
$u$ can be adjacent to at least two vertices in $\tilde{G}$ . Since $\tilde{G}$ includes $G-u$ , it holds for $G-u$ . $W\epsilon$

denote by $S_{G}(u)$ the set of all the vertices which can be adjacent to $u$ in $G-u$ . It is a plain
fact that if $S_{G}(u)$ includes only two vertices, then these are adjacent in $G$ . We call the edge
the shield of the vertex $u$ . Since a non-crossing spanning treet $t$ does not include a cycle, $ther\epsilon$
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exists exactly one path between any vertices $u$ and $v\in U$ , denoted by $P_{t}(u, v)$ . A simple path
$P=(u_{1}, u_{2}, \cdots u_{l})$ is a path in a non-crossing spanning tree $t$ such that $u_{1}$ is an endpoint of
$t$ and the degree of any vertex $u$ ; is two in $t$ for2 $\leq i<l$ . Let $x\in S_{t}(u_{1})\backslash \{u_{2}, u_{3}, \cdots , u_{l-1}\}$ .
Then there exists a natural path from $t$ to $t^{\prime}=(t-u_{l-1}u_{l})\cup u_{1}x$ . See Figure 2.

In fact, let $r_{1}=(t-u_{1}u_{2})\cup u_{1}x$ and

$r_{i}=(r_{i-1}-u_{i}u_{i+1})\cup u_{i}u_{i-1}$

for any $i\leq l$ . Then $r_{i}$ is a non-crossing spanning tree and $r_{j}$ is adjacent to $r_{i-1}$ in the
geometric leaf graph for any $i\leq 1$ . If $i\neq j$ , then $r;\neq r_{j}$ . Thus

$(t, r_{1}, r_{2}, \cdots r_{l-1}=t^{\prime})$

is a path between $t$ and $t^{\prime}$ in the leaf graph. We call the path a short-cut passage determined
by the edge $u_{1}x$ and the simple path $P$ .

2. The proof of Theorem 3.

In the following, we call a geometric leaf graph simply a leaf graph. At first, we shall
show that the leaf graph $\mathcal{G}$ of $U$ is connected. Let $t_{1}$ and $t_{n}$ be any non-crossing spanning
trees on $U$ . We find out a path between the graphs by an induction on the number of vertices
in $U$ .

Suppose that there exists $u\in U$ such that $u$ is an endpoint of $t_{1}$ and $t_{n}$ . Then there is a
path

$(t_{1}-u=s_{1}, s_{2}, \cdots s_{n}=t_{n}-u)$
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in the leaf graph of $U\backslash u$ by the hypothesis. Let us assume that $s_{i+1}=(s_{i}-v_{1}v_{i}^{\prime})\cup v_{i}v_{i}^{\prime\prime}$ fo
any $i$ .

Since the interior of the edge $v_{i}v_{i}^{\prime\prime}$ does not intersect $s_{i}$ , we have that $s_{i}\cup v_{i}v_{i}^{\prime\prime}$ is non
crossing. Thus there exists a vertex $u_{i}\in S_{s_{i}\cup v_{i}v_{i}^{\prime\prime}}(u)$ which is not $v_{j}$ . Then the graph $s_{i}$

$($

$v_{i}v_{i}^{\prime\prime}\cup uu_{i}$ is non-crossing. Let $r_{i}=s;\cup uu$ ; and $t_{i+1}=s_{i+1}\cup uu;$ . These are $non- cros\sin_{i}($

because $r$; and $t_{i+1}$ are subgraphs of $s_{i}\cup v_{i}v_{i}^{\prime\prime}\cup uu;$ . Furthermore $r_{j}$ is adjacent to $t_{i}$ and $t_{i+}$

since $t_{i}-u=s_{j}=r_{i}-u$ and $r;-v_{i}=t_{i+1}-v_{i}$ . Especially we denote the non-crossing
spanning tree $s_{n}\cup uu_{n-1}$ by $t_{n}^{\prime}$ . Then we have found out the path

$(t_{1}, r_{1}, t_{2}, r_{2}, \cdots , t_{n-1}, r_{n-1}, t_{n}^{\prime}, t_{n})$ .

Assume that $t_{1}$ and $t_{n}$ does not have a common endpoint. Let $u$ and $v$ be endpoints of $t_{1}tI$

$t_{n}$ respectively. Let $s$ be an non-crossing spanning tree on $U\backslash \{u, v\}$ . Let $u^{\prime}\in S_{s}(u)t($

$s^{\prime}=s\cup uu^{\prime}$ . Since $s^{\prime}$ is non-crossing, there exists a vertex $v^{\prime}\in S_{s^{\prime}}(v)$ which is not $u$ . $Th($

non-crossing spanning tree $s^{\prime\prime}=s^{\prime}\cup vv^{\prime}$ on $U$ has $u$ and $v$ as endpoints. Since $t_{1}$ and $s^{\prime}$

include the common endpoint $u$ , there exists a path between the non-crossing spanning tree
by the previous argument. Similarly there is a path from $s^{\prime\prime}$ to $t_{n}$ , showing the connectivity $0$

the leaf graph $\mathcal{G}$ .
Next, we shall show the 2-connectivity of the leaf graph by a contradiction. Suppos $($

that $t$ is a cut vertex of $\mathcal{G}$ , with $C_{1}$ and $C_{2}$ the connected components of $\mathcal{G}-t$ . Let $t_{i}\in C_{i}b|$

adjacent to $t$ in such a way that $t_{1}=(t-uu_{1})\cup uu_{2}$ and $t_{2}=(t-vv_{1})\cup vv_{2}$ . If $u=v,$ the]

$t_{1}$ is adjacent to $t_{2}$ . Therefore we have $u\neq v$ . Let us find out a pathjoining $t_{1}$ and $t_{2}$ which $i$

intemally disjoint from $\mathcal{P}=(t_{1}, t, t_{2})$ . (i.e., does not pass through $t.$ ) Notice that the interior
of the edges $uu_{i}$ and $vv_{i}$ do not intersect $t-\{u, v\}$ . Furthermore the interior of the edge $uu$

does not intersect $vv_{1}$ and $vv_{2}$ and the interior of the edge $uu_{2}$ does not intersect $vv_{1}$ .
We divide th$e$ arguments into three cases.
Case 1. $u_{2}\neq v$ and $v_{2}\neq u$

Suppose that the interior of the edge $uu_{2}$ does not intersect $vv_{2}$ . Then, since the interio
of $uu_{2}$ does not intersect $uu_{1},$ $t_{1}\cup uul\cup vv_{2}$ is non-crossing. Thus $s=(t_{1}-vv_{1})\cup vv_{2}C$

$t_{1}\cup uu_{1}\cup vv_{2}$ is non-crossing and is adjacent to $t_{1}$ . Since $v_{2}$ is not $u$ , the vertex $u$ is an endpoin
in $s$ . Therefore $s$ is adjacent to $t_{2}$ in the leaf graph. Because $s\neq t$ , the path $\mathcal{Q}=(t_{1}, s, t_{2})i$

intemally disjoint from $\mathcal{P}$ .
Assume that $uu_{2}$ intersects $vv_{2}$ . Let $r=(t_{1}-uu_{2})\cup vv_{2}$ . If there exists a verte:

$x\in S_{r}(u)$ which is not $v$ and $u_{1}$ , then there is a path

$\mathcal{Q}=(t_{1}, s, s^{\prime}, t_{2})$ ,

where $s=(t_{1}-uu_{2})\cup ux$ and $s^{\prime}=(s-vv_{1})\cup vv_{2}$ . Because $s$ and $s^{\prime}$ include the edge $ux$

the path does not pass through $t$ . If $S_{r}(u)=\{v, u_{1}\}$ , then vu 1 is a shield of $u$ in $r$ . Because 1

is adjacent to exactly two vertices in $r$, the vertex $ul$ is $v_{1}$ or $v_{2}$ . If $u_{1}=v_{1}$ , then the interio
of the shield $vv_{1}=vu_{1}$ intersect $uu_{2}$ . A contradiction. Thus the vertex $u_{1}$ is $v_{2}$ .

Let $r^{\prime}=t_{1}\cup uu_{1}$ . If $ S_{r^{\prime}}(v)\backslash \{u, v_{1}\}\neq\emptyset$ , then there exists a path between $t_{1}$ and $t_{2}$ whicl
is intemally disjoint from $\mathcal{P}$ as before. If such a vertex does not exist, then $uv_{1}$ is a shield $0$
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$v$ in $r^{\prime}$ . Then vertex $u$ is adjacent to exactly $u_{1}$ and $u_{2}$ in $r^{\prime}$ . If $v_{1}=u_{1}$ , then the interior of
the shield $uv_{1}=uu_{1}$ intersects $vv_{2}$ . Thus we have $v_{1}=u_{2}$ . Because the edge $vv_{2}$ is a shield
of $u$ in $r$ and the edge $uu_{2}$ is a shield of $v$ in $r^{\prime}$ , any points in $U\backslash \{u, v, u_{1}=v_{2}, u_{2}=v_{1}\}$ are
contains in the region $R$ in Figure 3.

If there is not an endpoint except $u$ and $v$ and $u1=v_{2}$ in $t_{1}$ , then $s_{1}=(t_{1}-uu_{2})\cup uv$

is a Hamiltonian path. Therefore there exists a short-cut passage determined by $uu_{1}$ and
$P_{s_{1}}(v, v_{2}=u_{1})$ , denoted by $(s_{1}, s_{2}, \cdots , s_{l})$ . The non-crossing spanning tree $s_{l}$ is $(s_{1}-$

$vv_{1})\cup uu_{1}=(t_{2}-vv_{2})\cup vu.$ Because $v$ is an endpoint of $s_{l}$ , the non-crossing spanning tree
is adjacent to $t_{2}$ . Thus we obtained a path

$\mathcal{Q}=(t_{1}, s_{1}, s_{2}, \cdots s_{l}, t_{2})$

which does not pass through $t$ .
Suppose that there is an endpoint $w$ other than $u$ and $v$ and $u_{1}=v_{2}$ in $t_{1}$ . Since $u_{2}=v_{1}$

is not an endpoint in $t_{1},$ $U$ includes at least five points. Two different vertices do not have a
common shield if the number of vertices in a graph is greater than four. Thus $uu_{2}=uv_{1}$ is not
a shield of $w$ . Furthermore because $w\in R,$ $S_{t_{1}}(w)$ contains at least two vertices which are not
$u$ and $v$ . Assume that $ww_{1}\in E(t_{1})$ and let $w_{2}\in S_{t_{1}}(w)\backslash \{u, v, w_{1}\}$ . Then the interior of the
edge $ww_{2}\subset R$ does not intersect $uu_{j}$ and $vv_{j}$ . Therefore, after transferring the edge $ww_{1}$ to
$ww_{2}$ , we move the edges $uu_{2}$ and $vv_{1}$ to the desired place. It is clear that the transformations
induces a path from $t_{1}$ to $t_{2}$ which does not pass through $t$ .

Case 2. $u2=v$ and $v_{2}\neq u$

The interior of the edge $uu2$ does not intersect $vv_{2}$ in the present case. Thus $r=t_{1}\cup$

$uu_{1}\cup vv_{2}$ is non-crossing. If $ S_{r}(u)\backslash \{v=u_{2}, u_{1}\}\neq\emptyset$ , then there exists a path from $t_{1}$ to $t_{2}$

which does not pass through $t$ as before. If such a vertex does not exist, then the edge $vu_{1}$ is
a shield of $u$ in $r$ . Thus we have that the vertex $u_{1}$ is $v_{1}$ or $v_{2}$ .

If there is not an endpoint in $r$ , then $t_{1}$ is a Hamiltonian path. See Figure 4. Thus it is
easy to find out a path between $t_{1}$ and $t_{2}$ which is intemally disjoint from $\mathcal{P}$ .

Therefore we suppose that there exists an endpoint $w$ in $r$ . If $ S_{r}(w)\backslash \{v, v_{i}\neq u_{1}\}\neq\emptyset$ ,

then we can find out a path between $t_{1}$ and $t_{2}$ as follow $s$ . Assume that $ww_{1}\in E(t_{1})$ and
let $w_{2}\in S_{r}(w)$ be neither $v$ nor $w_{1}$ and let $s=(t_{1}-ww_{1})\cup ww_{2}$ . Sinc$ew\not\in S_{r}(u)$ , the
$ve$rtex $w_{2}$ is not $u$ . Therefore $u$ is also an endpoint of $s$ . Thus the non-crossing spanning tree
$s^{\prime}=(s-uu_{2})\cup uu_{1}$ is adjacent to $s$ . Furthermore since $u_{1}$ is not $v=u_{2}$ , the non-crossing
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FIGURE 4.

FIGURE 5.

spanning tree $s^{\prime}$ is adjacent to $s^{\prime\prime}=(s^{\prime}-vv_{1})\cup vv_{2}$ . Then $s^{\prime\prime}=(t_{2}-ww_{1})\cup ww_{2}$ . Thu
there is a path

$\mathcal{Q}=(t_{1}, s, s^{\prime}, s^{\prime\prime}, t_{2})$

which does not pass through $t$ .
Let $v_{i}\in\{v_{1}, v_{2}\}$ be not $u_{1}$ . If $S_{r}(w)=\{v, v_{i}\}$ , then $vv_{i}$ is a shield of $w$ . It is clea

that $r$ contains at least five vertices. Thus the only endpoint in $r$ is $w$ because no two vertice
admit a common shield. Since $v$ is not adjacent to $w$ , we have $wv_{i}\in E(t_{1})$ . Let $s=$

$(t_{1}-wv_{i})\cup wv$ . Then $\mathcal{P}_{s}(v, v_{2})$ is a simple path. See Figure 5. Thus there exists a short-cu
passage determined by the edge $vv_{2}$ and the simple path. The short-cut passage is a path fror
$s$ to $s^{\prime}=(s-vv_{1})\cup vv_{2}$ . Since $u$ is also an endpoint of $s^{\prime}$ , it is adjacent to $t_{2}$ . Now we get

path between $t_{1}$ and $t_{2}$ which does not pass through $t$ .
Case 3. $u_{2}=v$ and $v_{2}=u$

If there is not an endpoint in $r=t_{1}\cup uu_{1}$ , then the non-crossing spanning tree $t_{1}$ is
Hamiltonian path. Therefore there exists a short-cut passage determined by the edge $uu_{1}$ an
the path $P_{t_{1}}(v, u_{1})$ . The short-cut passage is a path from $t_{1}$ to $t_{2}=(t_{1}-vv_{1})\cup uu_{1}$ which $i$

intemally disjoint from $\mathcal{P}$ .
Suppose that there exists an endpoint $w$ in $r$ such that $S_{r}(w)$ contains at least thre

vertices. Assume that $ww_{1}\in E(r)$ and let $w_{2}\in S_{r}(w)$ be neither $w_{1}$ nor $u$ . Then the nor
crossing spanning tree $s_{1}=(t_{1}-ww_{1})\cup ww_{2}$ is adjacent to $t_{1}$ . Since $u$ is also an endpoin
we transfer the edge $uu_{2}$ to $uu_{1}$ to obtain $s_{2}=(s_{1}-uu_{2})\cup uu_{1}$ . Let $w_{3}\in S_{r}(w)$ be neithe
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$w_{1}$ nor $v$ and let $s_{3}=(s_{2}-ww_{2})\cup ww_{3}$ . Because it is adjacent to $s_{4}=(s_{3}-vv_{1})\cup vv_{2}=$

$(t_{2}-ww_{1})\cup ww_{3}$ , we have found out a path

$\mathcal{Q}=(t_{1}, s_{1}, s_{2}, s_{3}, s_{4}, t_{2})$

which does not pass through $t$ .
Assume that any endpoint of $r$ can be adjacent to exactly two vertices. If there exists an

endpoint in $r$ whose shield is not incident to $u$ and $v$ , then a desired path between $t_{1}$ and $t_{2}$ is
easy to find out.

Thus we suppose that such an endpoint does not exist in $r$ . Notice that there is not an
endpoint with shield $uv$ because $u$ and $v$ are not adjacent to an endpoint in $r$ . Therefore the
endpoints in $r$ whose shield is incident to $u$ or $v$ are at most two. See Figure 6. We transfer
the edge $ww_{1}\in E(t_{1})$ to $wu$ or $wv$ for any endpoint $w$ in $r$ . Then the path between $u_{1}$ and $v$

in the non-crossing spanning tree is simple. Thus there exists a short-cut passage determined
by the edge $uu_{1}$ and this simple path. At the endpoint of the short-cut passage, we transfer
the edge $wu$ or $wv$ back to the original place. Then we get the non-crossing spanning tree $t_{2}$ .
Therefore we have found out the desired path.

References

[1] D. AVIS and K. FUKUDA, Reverse search for enumeration, Discrete Appl. Math. 65 (1999), 21-46.
[2] H. J. BROERSMA and LI XUELIANG, The connectivity of the leaf-exchange spanning tree graph of a graph,

Ars Combin. 43 (1996), 225-231.
[3] R. CUMMINGS, Hamilton circuits in tree graphs, IEEE Trans. Circuit Theory, 13 (1966), 82-90.
[4] M. C. HERNANDO, F. HURTADO, A. M\’ARQUEZ, M. MORA and M. NOY, Geometric tree graphs of points

in convex position, Discrete Appl. Math. 93 (1999), 51-66.
[5] C. HOLZMANN and F. HARARY, On the tree graph of a matroid, SIAM J. Appl. Math. 22 (1972) 187-193.
[6] Y. IKEBE, M. PERLES, A. TAMURA and S. TOKUNAGA, The rooted tree embedding problem into points on

the plane, Discrete Comput. Geom. 11 (1994), 51-63.
[7] A. KANEKO and K. YOSHIMOTO, The connectivities of leaf graphs of 2-connected graphs, J. Combin. TheoIy

Ser. B76 (1999), 155-169.
[8] G. LIu, A lower bound on connectivities of matroid base graph, Discrete Math. 69 (1988), 55-60.
[9] K. YOSHIMOTO, The connectivities of trunk graphs of 2-connected graphs, Ars Combin. (to appear).



566 ATSUSHI KANEKO AND KIYOSHI YOSHIMOTO

Present Addresses:
ATSUSHI KANEKO
DEPARTMENT OF COMPUTER SCIENCE AND COMMUNICATION ENGINEERING,

KOGAKUIN UNIVERSITY,
NISHI-SHINJUKU, SHINJUKU-KU, TOKYO, 163-8677 JAPAN.
e-mail: kaneko@ee.kogakuin.acjp

KIYOSHI YOSHIMOTO
DEPARTMENT OF MATHEMATICS, COLLEGE OF SCIENCE AND TECHNOLOGY,

NIHON UNIVERSITY,
KANDA-SURUGADAI, CHIYODA-KU, TOKYO, 101-8308 JAPAN.
e-mail: yoshimoto@math.cst.nihon-u.ac.jp


