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1. Introduction.

Denote by K a real Banach space, and by 2 (X a non-empty set) the set of all non-
empty subsets of X.

A version of the classical fixed point theorem of Kakutani [13] and Fan [6] states that, if
D is a non-empty convex bounded closed subset of K, and F : D — 2K is a multifunction
with non-empty convex compact values F(x) C D, which is h-upper semicontinuous ("A"
stands for “in the sense of Pompeiu-Hausdorff”) and K-compact, then there exists an xo € D
such that xg € F(xg).

This theorem has been generalized in several directions. The interested reader can con-
sult Hu and Papageorgiou [9], Istritescu {11], Joshi and Bose [12], Ma [16], Sehgal, Singh
and Watson [23], and the references therein.

In the present paper we consider some variants of Kakutani-Fan’s fixed point theorem in
hyperspaces. Denote by K the hyperspace of all non-empty convex bounded closed subsets
of K endowed with the Pompeiu-Hausdorff metric 4. Let D be a non-empty convex bounded
closed subset of K. If F : D — 2K is a h-upper semicontinuous and X-compact multifunc-
tion, with non-empty convex bounded closed values F(X) C D, then we show that there
exists an Xo € D such that Xo € F(Xo). As a corollary we obtain a hyperspace version of
the fixed point theorem of Brouwer and Schauder (see [12]) for A-continuous and X-compact
maps F : D — D. Actually we shall prove a Kakutani-Fan’s type result (see Theorem 1)
in a slightly more general setting, which seems more convenient for applications. One of its
corollaries is used to establish the existence of solutions to a Cauchy problem, for differential
equations with set-valued solutions, under Peano type assumptions.

2. Notation and preliminaries.

Let (X, d) be a non-empty complete metric space. If X C X, the closure of X is denoted
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by X or clx X. Further, Ux (x, r) stands for an open ball in A with center x and radius r. If
X, Y are non-empty bounded subsets of X', we put e(X,Y) = sup,x infyey d(x, y). Now
set

B(X)={X € 2% . X is bounded and closed in X’ }.
The space B(X) is endowed with the Pompeiu-Hausdorff metric 4, given by

h(X,Y) = max{e(X, Y), e(Y, X)}, X,Y € B(X).

As X is complete, (B(X), h) is a complete metric space; for instance see [15].

Let M be an arbitrary metric space. In the sequel when a subset, say Z, of M is consid-
ered as a metric space it is assumed that Z is given the induced metric.

Let A(X) be a non-empty closed subset of B(X), thus (A(X), k) is a complete metric
space. To emphasize, when necessary, the metric space A(X’) we are dealing with, we shall
write e4(x), ha(x) in place of e, h, respectively.

Let F be a map which associates to each x € M a non-empty subset F(x) of X. When,
for each x € M, F(x) is a member of a set, say A(X), we write (by abuse of notation)
F: M — A(X) and we call F an A(X)-valued multifunction or, simply, a multifunction.

For an A (&X’)-valued multifunction there are two different notions of range, according to
whether F(x) is considered as a subset of the underlying space X’ or as an element of the
space A(X).

DEFINITION 1. Let F : M — A(X) be a multifunction. The X-range R y(F) of F
and the A(X)-range R 4(x)(F) of F, are given by:

Rx(F)={y € X : thereexists x € M such that y € F(x)},

Rax)(F) ={Y € A(X) : there exists x € M such that Y = F(x)}.
The X-range of a single valued map F : M — X is denoted also by F(M).

DEFINITION 2. A multifunction F : M — A(X) is said to be Pompeiu-Hausdorff
upper semicontinuous (resp. lower semicontinuous, continuous) if for every xo € M and
e > 0, there exists § > O such that x € Up(xo, §) implies e(F(x), F(xp)) < & (resp.
e(F(xp), F(x)) <¢&, h(F(x), F(xg)) < &).

Instead of Pompeiu-Hausdorff upper semicontinuous, lower semicontinuous, continu-
ous, we write, respectively, 4 4 x)-upper semicontinuous, s 4 x)-lower semicontinuous, z 4(x)-
continuous or, for brevity, h 4(x)-u.s.c., ha(x)-1.s.c., h 4 (x)-continuous.

DEFINITION 3. A multifunction F : M — A(X) is called X'-compact, if the set
Rx(F) is precompact in X'. Whenever R 4(x)(F) is precompact in A(X), then F is called
A(X)-compact. ‘

REMARK 1. Let F : M — A(X) be given. Then F is X-compact if and only if F
is A(X)-compact and, for every x € M, F(x) is a compact subset of X’. Furthermore, an
A(X)-compact F is not necessarily X'-compact.
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Throughout K will denote a real Banach space. Set
K={Xe 2K . X is convex bounded and closed in K} .

We equip K with the Pompeiu-Hausdorff distance k. Clearly, (K, h) is a complete metric
space.

To avoid possible ambiguities we point out that in the sequel when we say that a mul-
tifunction F : M — K is K-compact (resp. K-compact), we mean that the K-range (resp.
K-range) of F is a precompact subset of K (resp. ). If X,Y e K and A > Othe sum X + Y
and the product A X are the elements of KC given by:

.1 X+Y={x+y:xeX,yeY}, rAX={ix:xe€X}.

For arbitrary X, Y, Z € K and A, u > 0, denoting by O the zero of K, we have:
2.2) X+{0=X, X+Y=Y+X, X4+T+2)=X+Y)+2Z;
23) 1X=X, \(uX)=0QwX, A\X+Y)=2AX+AY, A+uw)X=A2X+uY.
DEFINITION 4. A subset A of K is called convex if forevery X, Y € Aand A € [0, 1]
we have (1 — )X +AY € A.
If A C K, by coA, we mean the closed convex hull of A.
DEFINITION 5. If Ais a subset of IC, define

convi(A) = {X ek: X = ZMY,-, forsomem € N, Y; € A,

i=1
m
and A; > 0 with Zx,- = 1}.
i=1

The sets convi(A) and cliconvi(A) are called, respectively, K-convex hull and K-
closed convex hull of A.

REMARK 2. The sets convx(A) and cljc(A) are convex.

In the sequel we shall use the Radstrom-Hoérmander embedding of the space X, endowed
with the Pompeiu-Hausdorff metric 2 and the above defined operations of sum and product,
on a positive and closed cone of a real Banach space. Further details can be found in Radstrém
[20], Hormander [8], and Schmidt {21].

Let K* be the topological dual of K. Following Hormander [8], define

H = {g : K* —> R g is positively homogeneous and continuous} .

Here continuity is understood in the norm topology of K*. H is equipped with the norm

lglla = sup llgx®Il, ¢q€H,

Ix*l<1

under which H becomes a real Banach space.
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For X € K, let gx : K* — R be the support function of X, that is the function given by
gx(x*) = sup{x,x*), x*eK*.
xeX

Here (-, -) stands for the pairing between K and K*. By Hérmander [8], gx is positively homo-
geneous, convex, and continuous in the norm topology of K*, whence gx € H; furthermore,
if X,Y € Kand A, u > 0 we have:

(i) gx =qyifandonlyif X =Y,

(il) gax+uy = Agx + ugy.
Thus, the function j :  — H defined by

(2.4) JX)=qx, Xek,

establishes an isomorphism between K and the positive convex cone V= {gx €e H: X € K}.
More precisely we have the following:

HORMANDER’S THEOREM [8]. The function j : K — H is an isometric isomor-
phism of K on the positive convex cone V = j(K) contained in the real Banach space H,
namely, for every X, Y € K and A, u > 0 we have:

@) JAX +puY) =Aj(X) + uj¥),

i 1jX) —jMla =h(X,7Y).

REMARK 3. Since (K, h) is complete, the set V is closed in H. Thus the positive

convex closed cone V, equipped with the metric induced by the norm of H, is a complete
metric space.

3. Kakutani-Fan’s type fixed point theorems.

In this section we prove a fixed point theorem of Kakutani-Fan’s type in spaces of multi-
functions. A corollary of it will be used later, in section 5, to show the existence of solutions
for differential equations with set-valued solutions.

Let M be a non-empty metric space. Given two multifunctions X,Y : M — K and
A>0thesum X + Y : M — K and the product AX : M — K are defined by

X+ =X@®)+Y@®), QX)) =2X@E#), teM.
Observe, that in view of (2.1), both sets X (¢) + Y (¢) and AX (¢) are in K.

Now put :
(3.1 X ={X:M — K:Xis h-continuous and bounded },
and equip & with the metric
3.2) px(X,Y) = tsu}gh(X(t), Y@), X, YeX.
€

As (K, h) is complete, (X, py) is a complete metric space.
Forevery X,Y € XYXand A > Owe have X +Y € XA and A X € X. Moreover, if
X,Y,Z € Xand A, u > 0, then (2.2) (where O stands for the map identically zero on M) and
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(2.3) are satisfied. In X the notions of convex set, X'-convex hull and X'-closed convex hull
are given by Definitions 4 and 5, with X" in place of K.
Next put

B = {§ : M — H : £ is continuous and bounded} ,
and equip B with the norm

1§18 = sup [|E®)||n -
teM

Clearly (B, |.||) is a real Banach space.
Now denote by J : X — B the map which associates to each X € X the element J(X)
of B defined by

(3.3) X))@ =jX@®), teM,
where j is given by (2.4). Observe that J X € B, by Hormander’s theorem. Set
W = {£ € B : there exists X € & such that J(X) = &}.

W is a convex cone contained in B. More precisely, by Hérmander’s theorem and Remark 3
we have:

PROPOSITION 1. The map J : X — B given by (3.3) is a isometric isomorphism of
X on the positive convex cone W contained in the real Banach space B, namely, for every
X,Y e Xand ), n = 0 we have:

G JAX+uY)=AaJ(X)+unJ(Y),

(i@ |IJX—-JY|B=px(X,Y).

REMARK 4. W endowed with the metric induced by the norm of B is a complete
metric space. Further, if A is a convex (resp. bounded, closed) subset of X" then also J (A) is
a convex (resp. bounded, closed) subset of W.

Now define

C(X)={Ae 2% . A is convex, bounded and closed in X'},

CB)={A€ 2B . A is convex, bounded and closed in B},

C(X), C(B) are equipped with the Pompeiu-Hausdorff metrics kc(x), hc@®) respectively.
Observe that (C(X), h¢(x)) and (C(B), hc(B)) are complete metric spaces, because the
underlying spaces (X, px) and (B, ||.||B) are so.
The following proposition is due to De Blasi and Georgiev [3], Theorem 3. A variant of
it has previously been established, by a different approach, by Dawidowicz [2].

PROPOSITION 2. Let D be a non-empty convex bounded closed subset of K. Let ¢ :
D — K be h-u.s.c. and K-compact. Then for every ¢ > O there exist x; € D and y; € F(x¢)
such that ||y, — x| < infyep ||ye — x|| + &. If, in addition, F(x) C D for every x € D, then
there exists xo € D such that xg € F (xg).
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THEOREM 1. Let D be a non-empty convex bounded closed subset of X. Let F :
D — C(X) be a h-u.s.c. and C(X)-compact multifunction with values F(X) C D, for every
X € D. Then there exists Xo € D such that Xg € F(Xg).

PROOF. Set & = J(D). By Proposition 1 and Remark 4, Z is non-empty convex
bounded closed subset of B and & C W; moreover & is isometric to D. For £ € Z, set

(3.4) @) ={n € B: thereexists Y € F(J_I(S)), such that J(Y) = n}.
Moreover ¢(£§) C & and, by Remark 4, ¢(§) € C(B). Thus (3.4) defines a multifunction
p: & —> C@B),

with values p(§) C &. |
@ is hc®)-u.s.c. To show this, let § € & and € > O be given. Let Xo € D be such that
J(Xo) = &o. Since F is hc(xy-u.s.c., there exists § > O such that

3.5) X € Up(Xop, 8) implies ecx)(F(X), F(Xo)) <¢€.

Let £ € Uz (&p, 8) be arbitrary. Hence X € Up(Xo, §), where X = J‘l(éj). In view of
Proposition 1 (ii), we have:
ec®) (@), ¢(€0)) = sup inf |[n—nollB
nep(€) M0€P o)

= sup inf 1J(Y)— J(Yo)llB
YeF (1)) YoeF(J~1(&0))

= Ssu inf px(Y, Y())
YGFI()X) YoeF(Xo)

= ecx)(F(X), F(Xo)) <e¢,

where the latter inequality holds by (3.5). Therefore ¢ is k¢ B)-u.s.c.

Similarly, for arbitrary ¢/,£” € =, if X', X” € D are given by X’ = J~1(¢'), X" =
J=1(&"), we have he@) (9, (")) = hcx)(F(X'), F(X")). Since, by hypothesis, F is
C(X)-compact, it follows that also ¢ is C(B)-compact.

By Proposition 2 (with K, D and K replaced by B, &, and C(B)), there exists §y € &
such that & € ¢(&p). Let Xo € D be such that J(Xp) = &p. Since & € ¢(£p), in view of (3.4)
there exists Yo € F(Xg) such that J(Yg) = &. As J is one-to-one, it follows that Yo = X,
thus Xo € F(Xp), completing the proof.

COROLLARY 1. Let D be a non-empty convex bounded closed subset of X. Let F :
D — D be a X-continuous and X-compact mapping. Then, there exists Xo € D such that
Xo = F(Xop).

PROOF. LetG : D — C(X) be given by G(X) = {F(X)}, for every X € D. The
multifunction G is hc(x)-continuous and C(X’)-compact and so, by Theorem 1, there exists
Xo € D such that Xg € G(Xo), whence Xo = F(Xp). [

Now set
CK)y={Ae 2K . A is convex, bounded and closed in K}.
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and equip C(K) with the Pompeiu-Hausdorff metric k¢ (k). Clearly (C(K), hc (k) is a com-
plete metric space, for (K, &) is so.

The following Corollary 2, and Corollary 3, are hyperspace versions of the fixed point
theorems of Kakutani-Fan, and of Brouwer-Schauder, respectively.

COROLLARY 2. Let D be a non-empty convex bounded closed subset of K. Let F :
D — C(K) be a h¢cy-u.s.c. and C(K)-compact multifunction with values F(X) C D, for
every X € D. Then there exists Xg € D such that Xo € F(Xp).

PROOF. In the definition of X" take M to be a set consisting of a single point. The
statement follows at once from Theorem 1, by the natural identification of X with X', and of

C(K)ywithC(X). O
A special case of Corollary 2 is the following:

COROLLARY 3. A h-continuous and K-compact mapping F : D — D, where D is as
in Corollary 2, has a fixed point, i.e. there exists Xo € D such that Xo = F(Xo).

From Corollary 2 one can derive the classical fixed point theorem of Kakutani-Fan. In
fact we have:

COROLLARY 4. Let D be a non-empty convex bounded closed subset of K. Let F :
D — K be a h-u.s.c. and K-compact multifunction, with non-empty convex compact values
F(x) C D, for every x € D. Then, there exists xo € D such that xo € F(xo).

PROOF. SetD = {{x} € K : x € D}, and define G : D — C(K) by G({x}) = {{y} €
K:ye Fx)}, {x} e D. By Remark 1, G is C(K)-compact. Moreover, G is hcc)-u.s.c.
with values G({x}) C D, for every {x} € D. Thus, by Corollary 2, there exists {xo} € D such
that {xg} € G({xo}), whence xo € F(xp). [

4. Further results.

In this section we use some of the previous results to establish further fixed point theo-
rems for mapping defined on hyperspaces.
The following is a hyperspace version of Mazur’s theorem.

PROPOSITION 3. Let A be a compact subset of K. Then the set C = clxconvi (A) is
a convex compact subset of K.

PROOF. By Remark 2, C is convex. To prove that C is compact, it suffices to show that
each sequence {X,} C convi(A) contains a subsequence which converges to some Xg € C.
From the definition of convx:(A), for each X, there exist p, € N, Y,’; € A, and Af, > 0 with
Y -Pm AL = 1such that

Pn
Xo =) MY
i=1
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Let j : K — H be the isometric isomorphism, given by Hormander’s theorem, of X on the
positive convex closed cone V = j (K) contained in the Banach space H. The set A = {j (X) :
X € A} is compact, hence by Mazur’s theorem [5, p. 416], also coA is so, and A C V.

For each n € N we have

DPn
JXn) =) ALjhy,
i=1

thus {j(X,)} C coA. Let {j(X,,)} be a subsequence converging to some point &y € coA.
As & € V, there is an Xo € K such that j(Xo) = &. Since hx(Xn,, Xo) = IIj(Xn,) —
J(Xo)llu, k € N, it follows that { X, } converges to X¢ and, clearly, Xo € C. This completes
the proof. [

THEOREM 2. LetD be a non-empty convex bounded closed subset of K. Let F : D —
D be a h-u.s.c. (resp. h-l.s.c.) and K-compact mapping. Then, there exists Xo € D such that

Xo C F(Xo) (resp. Xo D F(Xo)) .

In particular Xo = F(Xo), if F is h-continuous.

PROOF. Put A = clxRi(F) and C = clgconvi(A). The set A C K is compact,
since F is K-compact. Hence, by Proposition 3, C is a convex compact subset of X, and F
maps C into itself.

Suppose F is h-u.s.c. (resp. h-l.s:c. ). For X € C, put

“4.1) GX)={YeC:YCF(X)}(esp. G(X)={Y eC:Y D F(X))}).

G(X) is a non-empty convex compact set contained in C. Hence, (4.1) defines a multifunction
G : C — C(K), with values G(X) C C for every X € C.

G is hc(xy-u.s.c. In the contrary case, there exist Xo € C,& > 0, and a sequence
{Xn} C C converging to Xo, such that ec)(G(X,), G(Xo)) > ¢ for every n € N. Take
Y, € G(Xp) satisfying

4.2) inf h(Y,,Z)>¢, neN.
ZeG(Xo)

Since {Y,} C C, there is a subsequence, say {Y,}, which converges to some Yy € C. From
(4.1) we have Y, C F(X,) (resp. Y, D F(X,)), for every n € N. As F is h-u.s.c. (resp.
h-l.s.c.), it follows that Yo C F(Xo) (resp. Yo D F(Xo)). Consequently Yo € G(Xo) and, by
(4.2), h(Yy,, Yo) > ¢ for every n € N, a contradiction. Hence G is hc(x)-u.s.c.

Clearly G is also C(K)-compact. Thus, by Corollary 2, there exists an X € C such that
X0 € G(Xp), and so Xo C F(Xp) (resp. Xo D F(Xo)). This completes the proof. []

THEOREM 3. Let D be a non-empty convex compact subset of K. Let f : D — K
be a continuous function satisfying f (D) C |Ux<p X. Then, there exists Xo € D such that
f(Xo) € Xo.

PROOF. For X € D, put
4.3) GX)={YreD: f(X)eY}.
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Clearly, the set G(X) C D is non-empty convex and compact. Thus (4.3) defines a multifunc-
tion G : D — C(K) with values G(X) C D, forevery X € D.

G is he(xy-u.s.c. In the contrary case, there exist Xo € D,& > 0 and a sequence
{X,} C D converging to Xo, such that ec(x)(G(X»), G(Xo)) > ¢ forevery n € N. Take
Y, € G(X,) satisfying (4.2). Now {Y,} C D, a compact set, whence there is a subsequence,
say {Y,}, which converges to some Yy € D. Since f(X,) € Yy, letting n — o0, one has
f(Xo) € Yo. Therefore Yo € G(Xp) and, by (4.2), it follows that h(Y,, Yo) > ¢ for every
n € N, a contradiction. Thus G is k¢ c)y-u.s.c.

Clearly G is also C(K)-compact. By Corollary 2, there exists Xo € D such that Xo €
G(Xo) and thus, by (4.3), f(Xo) € Xo, completing the proof. [J

Brouwer-Schauder’s fixed point theorem follows at once from Theorem 3, as it is shown
in the following:

COROLLARY 5. Let D be a non-empty convex bounded closed subset of K. Let f :
D — D be continuous and K-compact. Then, there exists xo € D such that xo = f (xo).

PROOF. Put C = ¢of(D). Clearly, C is a non-empty convex compact subset of D,
and f maps C into itself. Now set D = {{x} € K : x € C} and define g : D — K by
g({x}) = f(x). Since g is continuous and g(D) = f(C) C C = U{x}ep{x}, by Theorem 3
there exists {xg} € D such that g({xo}) € {x0}. Thus, xo € D and xo = f(x0), completing the
proof. [

The following is a hyperspace version of a theorem of Fan [7]. The proof runs as in
Sehgal [22], and so it is omitted.

THEOREM 4. Let D be a non-empty convex compact subset of IC, andlet F : D — K
be a h-continuous mapping. Then there exists Xo € D such that h(F(Xo), Xo) =
minzep h(F(Xo), Z).

5. An application to differential equations with set-valued solutions.

In this section we use one of the previous fixed point results in order to establish the
existence of solutions to a Cauchy problem, for differential equations of the form:

3.1 DX(t)=F@, X)), XWO0)=A.

Here, F is a K-valued mapping defined on I x K, I = [0, 1], DX (¢) denotes the Hukuhara
derivative at time ¢ of the multifunction X : I — K, and A € K.

The study of the above differential equations was started by De Blasi and Iervolino [4].
Developments and applications to some problems of control theory can be found in Artstein
[1], Kisielewicz [14], Plotnikov [18], [19], Tolstonogov [24].

DEFINITION 6. Let X : I — K and #p € (0, 1) be given. Suppose that there exist two
multifunctions AT, A~ : (0, §) — K, for some § > 0, and a set B € K, such that:
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(i) X@+h) =X@o)+AT(h), X@to)=X@to—h)+ A (h)
for every h € (0, 8),
(i) limp—o4+ AT(h)/h = B =limp_04 A (h)/h.
Then B is called Hukuhara’s derivative of X at tg, and denoted by DX ().

When ¢y = 0, 1, the modifications are obvious.
REMARK 5. X is h-continuous at each point ¢ € I, in which DX (¢) exists.

REMARK 6. IfU : I — K is h-continuous and A € K, then the multifunction X :
I - Kgivenby X(¢) = A+ f(; U(s)ds, t € I, where the integral is in the sense of Hukuhara
[10], has Hukuhara’s derivative DX () = U(¢), foreveryt € I.

For other elementary properties of the Hukuhara derivative see [10] and [4].

PROPOSITION 4. Let {X,} be an equi-h-continuous sequence of multifunctions X, :
I — K such that for everyt € I, the set {X,(t) : n € N} is precompact in K. Then there exists
a subsequence { X, } which converges uniformly to a continuous multifunction Xgo : I — K.

DEFINITION 7. A multifunction X : I — K, with X(0) = A, which has Hukuhara’s
derivative DX (t) satisfying DX (t) = F(t, X (t)), for every t € I, is called solution of the
Cauchy problem (5.1).

In the following proposition we prove the existence of solutions to the Cauchy problem
(5.1), under Peano type assumptions. In finite dimension a similar result was obtained in [4].

PROPOSITION 5. Let C be a non-empty closed convex cone contained in K. Let F :
I x C — C be h-continuous and K-compact. Then, for every A € C, the Cauchy problem
(5.1) has a solution X : I — C.

PROOF. Let X and py be given by (3.1) and (3.2), with M = I, and observe that
(X, px) is a complete metric space. (In (3.1) the boundedness of X is redundant, as I is
compact.)

From the hypothesis, F is bounded by a constant M, say. Define:

D={X:1I— C: X is h-continuous, and #(X (t), A) < M forevery t € I}.

D is a non-empty convex bounded closed subset of X'.
For X € D, set

t
5.2 (X)) =A +f F(s,X(s))ds, tel.
0

Forevery t € I, @(X)(¢) is in C, as the positive cone C is convex and closed in K. Moreover,
@ (X) is h-continuous, by Remarks 5, 6, and satisfies h(®(X)(¢), A) < M forevery t € I.
Whence @ (X) € D, thus (5.2) defines a mapping @ : D — D.

@ is X-compact. It suffices to show that each sequence {Y,} C D, where Y, = & (X,,)
for some X, € D, contains a subsequence which converges to an Xo € D. It is routine to
see that {Y,} is equi-A-continuous. From the hypothesis the set A = clx R (F) is compact,
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whence, by Proposition 3, also clxconvi (A) is so. Moreover, for each fixed ¢ € I we have
t

Y,@) =A+ f F(s, Xn(s))ds € A + tclgconvi(A), neN.
0

By Proposition 4, {Y,,} contains a subsequence {Yy, } which converges uniformly, therefore in
the metric py of X, to some Xg € D. Thus @ is A'-compact.
It is easy to see that @ is also X'-continuous.
By Corollary 1, there exists Xo € D such that Xo = ®(Xp), and so
t

Xot)=A +/ F(s, Xo(s))ds, tel.
0

In view of Remark 6 X is a solution of the Cauchy problem (5.1), completing the proof. [l

REMARK 7. IfF :IxC — C, whereC is as in Proposition 5, is k-continuous and Lip-
schitzean in X uniformly in ¢, i.e. there exists a constant L >0 such that h(F (¢, X), F(¢,Y)) <
Lh(X,Y) for every (¢, X), (¢, Y) € I x C, then one can prove that the Cauchy problem (5.1)
has a unique solution

REMARK 8. Suppose that K, the underlying space of K, is R". Define
J={XeK:X =|[a1,b1] x - x [an, bnl}

wherea; < b;,i =1, ..., n. J is a positive convex closed cone contained in K thus Proposition
5 holds (with J in place of C).

The cone J is useful in approximation theory and interval analysis. Further applications
and developments in other directions can be found in Nickel [17] and Schmidt [21].
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