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Abstract. To solve non-symmetric linear equations, we have proposed a generalized SOR method, named the
improved SOR method with orderings, and for an n x n tridiagonal matrix, we have given n selections of the multiple
relaxation parameters which satisfy p(Lg) = 0 and correspond to the reciprocal numbers of the pivots of Gaussian
elimination, where L is the n x n iterative matrix of this method.

In this paper, using the “essential dimensions-reductions for error vectors”, we investigate the numbers of all
conditions for the multiple relaxation parameters which satisfy p(Lg) = 0. As aresult, adding to n known selections
of the multiple relaxation parameters, we find another type of selections of the multiple relaxation parameters and we
conclude that such numbers of conditions are totally 271 cases for ann x n tridiagonal matrix. Examples of such
selections of multiple relaxation parameters are also contained. For an n x n Hessenberg matrix, we also obtain the
similar results.

1. Introduction.

Recently, Ehrlich [1] has proposed special selections of the local relaxation parameters in
SOR-like methods for two-dimensional problems of a discrete convection-diffusion equation
and Elman and Chernesky [2] studied the effect of partitioning and orderings of the unknowns
on the convergence of the Gauss-Seidel iterations, for one-dimensional problems.

In previous papers [3—6], the improved SOR method with orderings has been proposed
as a generalization of the SOR method for practical use, and clarified some fundamental prop-
erties of this method. In particular, in [5], it was given n selections of the multiple relaxation
parameters such that the spectral radii of the corresponding improved SOR matrices for a
tridiagonal matrix are 0, and also given practical algorithms for the improved SOR method
with orderings which require in practice, about 18% fewer operation counts than the itera-
tive refinement method for the special class of tridiagonal H-matrices. In [6], for tridiagonal
matrices, error estimates for special n selections of the multiple relaxation parameters and
two kinds of orderings were given, and for block tridiagonal matrices, the adaptive improved
block SOR method with orderings were proposed.
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In this paper, using the “essential dimensions-reductions of types I, II and III for error
vectors”, we investigate all conditions for multiple relaxation parameters such that the spectral
radii of the corresponding improved SOR matrices for an n x n tridiagonal matrix are 0.
As a result, adding to n selections of multiple relaxation parameters proposed in [5], we
find another type of selections of the multiple relaxation parameters and totally we count
2"~ conditions of such selections of the multiple relaxation parameters (see Theorem 2.1).
Some examples of such selections for the multiple relaxation parameters are presented (see
Examples 2.3-2.5). For n x n Hessenberg matrices, we also obtain the similar results (see
Section 3).

2. Dimensions-reductions for error vectors.

Let us consider Ax = b, where A is an n x n nonsingular tridiagonal matrix A =
(=, pi, —uil, liqiu; #0,i=1,2,--- ,n—1,p; #0,i =1,2,---,n.

For a proper starting vector x(©) = [xl.(o)], the improved SOR method with natural order-
ing is expressed as follows (see [4]).

{x,-(m“) = wilix" "V + (1 = 0 p)x™ + wjuix{) +wibi, i=12,--.n

" =0, =0, m=01.2-.

Let ¥ = [£;] be the exact solution of Ax = b and ™ = x™ — % = [el.(m)] be the error
vectors of x™) = [xl.('")], m=0,1,2,---. Then etV = Lpe™ where Lo is the improved
SOR matrix for A, that is,

{e;mﬂ) —wilie!" = (1 —wipef™ + wuiel}) . i=1.2,-.n

i+1°
(m+1) _ (m) __ _
e, =0, en+]—(), m=20,1,2,---.

The error vector e+ = [eme)] at the (m + 1)-th iteration is expressed as follows.

"D = (1 — wipel™ + wiurel™
1
€§m+ )= wala (1 — wlm)eﬁ"” +{wbhwiu; + (1 - wzpz)}egn) + wzuzegm)
1
€§m+ ) = w3lsnla(1 — wlm)eﬁ’") + wslz{whhoruy + (1 — wzpz)}egm)
Hawslzwauy + (1 — w3p3)}€§m) + wiuzey”
(m+1) _ . (m) . (m)
e; = wili - anh(1 —w1p1e)” + wil; - - w3lz{whouy + (1 — wap2)le,
+-Hoilivi—ui-1 + (1 — w,-pi)}e}’”’ + wiuiflgﬁ%
.
eflm-i- ) — wply - wnla(1 — a)lpl)egm) + wply - - w3lz{wrlowiu; + (1 — a)zpz)}egm)
+ -+ {oplhop—up—1 + (1 — wnpn)}er(zm) .
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Leta; = wipi—1,i =1,2,---,nand B; = wilijwi_1ui_1,i = 2,3,---,n, f1 =
Bat1 = 0. Also let us consider &™), i = 1,2,---,n such that & = ¢, ™ =
wiliwi—1li—1 -- -a)zlzéfm), i=2,3,---,n

Then we obtain

~(m+1) = (B — ozl)e( )+:3 ~(m)
~£m+l) = (B1 — e + (B2 — @)y + B3y
& = (B — anE™ + (B — )" + o+ (B — e + i) (M)
*’"*” = (Br =& + (B2 = 02)&" + -+ (Bumt — a—)E") + "
2+ = (1 —and" + (P2 - e + -
(Bt — an- 1), + (Bn — )™

Now, let us consider the other deriviations to the conditions of the multiple relaxation

parameters which satisfy p(Lgp) = 0 (cf. [5]).

LEMMA 2.1. In (1), forn > 1, ifa; = B1 (= 0), then we obtain
~(m+l) = i ~(m)
~(m+l) (,32 Olz)e(m) +ﬁ ~(m)
& = (Br =& + o+ (B — e + Pl @)
*’"*” = (B2 — )& 4+ (Baot — an—)E™, + B
32’"*“ = (Br— )& 44 (Bt — an)E™, 4 By — )™
LEMMA 2.2. In (1), forn =2, ifa, = By+1 (= 0), then we obtain
&t = (B —ael™ + pred”
~§m+]) = (B —ae"™ + (B2 — )™ + paey"
& = (b1 — e + (B2 — )& + -+ (B — )™ + B 3)
et — (B —ae™ + (B — a2)e™ + - 4 (Buot — (@t — B},
~(m+]) _ ~(m+1)
n =1 -

Both proofs are apparent from (1).
We can see that both of (2) and (3) imply that the essential dimensions for error vectors

is reduced from n to n — 1. In this paper, we assume that every denominator does not zero
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(see [5, Theorem 3.2]). Thus, using these techniques, we can reduce the essential dimensions
for the error vectors fromn ton — 1, n — 2, ---, 1, sequentially. We call these process as
“essential dimensions-reductions for error vectors”.

In particular, we refer that (2) is the essential dimensions-reduction of type I from

(égm), égm), g™ o (égm), égm), -+, 8T and (3) is the essential dimensions-reduction
of type II from (Egm), é(zm), e éflm))T to (é(lm), Egm) e ~flm)1)T

EXAMPLE 2.1. For 1 < k < n, first, using the essential dimensions-reduction of

type I, we reduce the error vectors from (égm), éém), 8T o (~(m), ~,(:i)l, o 8T and
next, using the essential dimensions-reduction of type II, we reduce from (e(m), ~]£"fr)l S ~,(1m))T

to e,(cm) Finally, we apply the essential dimensions-reduction of type I to e,E and we reach

the “final essential dimensions-reduction” for the error vectors. Then we obtain n conditions
for the multiple relaxation parameters which satisfy p (L) = 0:

ap = B
ar = f 1 .
p wj=—————““—#—, [i=12--- k-1
: pi — liwj—jui—)
— 1
ap—1 = Pr—1 wp=—— i=pn—1,-k+1
o = Bnti = Pi — uiwitilit
apn—1 = P 1
W = )
: Pi — lkor—1up—1 — ugwit 1l
Ag+1 = Brt2 where [liwouo = upwpt1lpy1 =0.
ok = Pr + Br+1

Note that these n conditions considered in [5] of the multiple relaxation parameters which
satisfy p(Lp) = 0, and correspond to the reciprocal numbers of the pivots of Gaussian elim-
ination (see [5, Theorem 2.2 and 3.1]).

On the other hand, we offer another type of the essential dimensions-reduction for error
vectors.

LEMMA 23. In(l),for2 <k <n-1,if-aj_1+B; #0,j =2,3,---,k and
ar = 0, then for

~(m,k)
—a1&™ 4 Bl = (B — a1)é,

~(m,k
—apd™ 4 e = (B3 — any s

- =(m,k)
—ap_ 18 4 Brel" = (B — ar-Dép s
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we obtain

~ mJ,- ~(m,k
_(m k)

“('"“) = (B —a)&" 1 (B3 — )

- 1 ~(m,k) ~(m,k) ~(m,k)
"t = By —ané" 4+ (Bt — i z)eklz + (B — l)ek’"1

~ 1 =( k)
(m+) =(B—ane o (Br—1 — o 2)ek 2 +(,3k—01k 1)ek | +,3k+1€/E:1_)1
and
~ 1.k ~(m,k o) — o ~(m,k .
e§m+') IB_a)Em) (,33_,322 ,331>egm)’ if k>3
B2 —ay
~(m+1,k ~(m,k ~(m,k 303 — P40 ~(m,k
& = B —and™ (B — e+ (,34 _ B = Pue )eé’" g
Bz — a2

if k>4
~(m+1,k) =(m =(. =(m k)
EMO = (B —an) &Y (B — )& o (B — e

(—0tk—1)Br+1\ ~(m) 4)
+ - )6
(ﬁk+1 B — o k+1
~ 1 ~(m,k) _(1k) ~(m,k)
&gl = (B —ane)"" + (B3 —a)éy o (B — o) e
+(Brst — B + Brand
~ 1 -( k) =( k) =(m,k)
et = (B, — " (B — @) 21 +(,3k_01k 1)€kml
+(Bra1 — akmék’i] F o Baot — e+ By — )™

The proof is obtained by direct computations.

- ~(m,k) =(m,k
So we can reduce the error vectors from (e(m), (m), . ,(,m))T to (e, 5 ), e;m ), e
~(m,k) . - . .
e,(fi] ), elg'j_)l, ,(:i)z, e, e,(,m))T, and we refer this the essential dimensions-reduction of type
I11.

Because p(Lp) = 0 implies that one of o, k = 1,2, - - -, n must be zero (see the proof
of [5, Theorem 2.1]), we have no other essential dimensions-reductions for error vectors.

For the (n — 1) equations in (2), (3) and (4) which are obtained after the essential
dimensions-reductions of type I, IT and III, respectively, we find that they are the similar types
to n equations of (1) before the essential dimensions-reductions, and hence we can continue
those essential dimensions-reductions of types I, II, or III for error vectors until we reach the
“final essential dimensions-reduction” for the error vectors.
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For each essential dimensions-reduction of types I, II, or III, the conditions of the multi-
ple relaxation parameters are determined continuously and at the final essential dimensions-
reduction for error vectors, we can find @ = diag(wi, wy, - - -, wy,) such that p(Le) = 0 (see
for example, Example 2.4) which implies that the improved SOR method with orderings must
stop at most n iterations (cf. [6, Theorem 3.1]). If we stop the essential dimensions-reductions
for error vectors just before the final, then we can obtain the convergence theorems to the “one
parameter improved SOR method with orderings” (see, for example, Example 2.5 ii) and cf.
[71).

Note that after the essential dimensions-reduction of type III, we can’t apply the essential
dimensions-reduction of type I anymore by the reason of (—a1) + B2 # 0, but we can apply
the essential dimensions-reduction of type I at the final essential dimensions-reduction for
error vectors (see Example 2.5 1)).

As aresult of these essential dimensions-reductions for error vectors, we can easily count
the total numbers of conditions for the relaxation matrix @ which satisfies p(Lg) = 0. Then
we obtain the following theorem:

THEOREM 2.1. For an n X n tridiagonal matrix A = [—Il;, pi, —u;], there are to-
tally 271 conditions for aj = wip;i — 1 and B; = wiliwi—1u;—1 of the relaxation matrix
@ = diag(w1, wa, - - -, wy) which satisfies p(Lp) = 0, and they are obtained by the essential
dimensions-reductions of types 1, Il and 111.

PROOF. By inductions, we count the total number of conditions at essential dimensions-
reductions for errors, whether &y = 0 is used or not. Then we obtain the results. O

On the other hand, by [5, Theorem 2.1], we have the following theorem:
THEOREM 2.2. Let f,(A\) =det(M — Lp). Then

A+ —B2 O
—A At o —B3
fn() = - -
—A A+ a1 —Bn
0 - At

and we have the following recursion formula:

{fo(k)=1, i) =A+ar,
fih) = (A +ai) fi-s1(W) — BAfi2(V), 1=2,3,---,n.

Now, let us consider the conditions of p(L¢) = 0, thatis, f,(A) = A".

EXAMPLE 2.2. i) We first treat the case of n = 3. By Theorem 2.1, there are 23! =
4 conditions for the relaxation matrix @ of p(Lg) = 0. On the other hand, by [5, Theorem
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2.2], we have
Atar  —pB 0
)= -2 Ata =B
0 —A A+ a3

=A4+apr+a)A+a3) = {fo(h +a3) + B3(A +a)}r
=213+ {(1 + a2 +a3) — (B2 + B3)IA2
+ {(102 + aza3 + azay) — (Boaz + Baar) A + ajaas .

Thus, f3(A) = A3 if, and only if,

artoxt+oa3=pr+ B3
aja + o3 +azay = prasz + B3ag
ajoposy =0.

Then for 1 = B4 = 0, we have the following four cases:
A ar=p1+ B, a0 =PB3andaz = 4.

A2) oy =pr,a0=pr+p3andaz = f4.
A3) oy =pr,a0=prandaz =3+ P4.
B2) a=p1,a1+a3 =2+ B3and ajz = B3y + fros .

These case Aj)—A3) come from the essential dimensions-reductions of type I and I, and
are treated in Example 2.1 and correspond to the reciprocal numbers of the pivots of Gaussian
elimination (see [5]). On the other hand, if we use the essential dimensions-reductions of type
II1, then we obtain another case B) (see Lemma 2.4).

2 )
In case B»), if oy, @3 # 0 and o1 # a3, then B = a.a—la; and B3 = a]f;}. Hence
2 2 ’ ’
B _ (o s wihuy . (o1p—1 . :
B = (a3> , that is, by = (w,zprl) . For the real matrix A, if l3uzlhu; > 0 and wq

and w3 are real, then the signs of w; and w3 are different. That is, one of w; and w3 must be
negative.

ii) Next, we take up the case of n = 4.

By Theorem 2.1, there are 241 — 8 conditions for the relaxation matrix @ of p(Le) =
0. On the other hand, by Theorem 2.2 and f>(}) = 22— (a1 + a2 — B2)A + ajan, we have

fa@) = A+ aq) f3(0) — Barfo ()
=2+ {(a1 + o2+ a3+ ) — (Ba+ B3 + B + {o10 + azes + o301
+ (a1 + 2 + @3)ag — (Bra3 + Brar) — (B2 + B3)aa — Baer + oz — B2)}3°
+ [razas + {(@1a2 + a3 + azay) — (Boas + Bzar)}as — ajanfald + ajonasay .
Thus f1(A) = A4 if, and only if,

artart+aztas =P+ B3+ P
ajay + aza3 +oza) + (a1 + a2 + a3)ay
= poaz + Baar + (B2 + B3)ag + Ba(o + a2 — B2)
ajaras + {(ajon + ooz + azay) — (Baas + Bzan)}as — ajazfs =0
ajapozos = 0.
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Then for 1 = Bs = 0, we have the following eight cases:
A ar=p1+ B, a2 =p3,03=Psandag = f5.
Ag) ay =B, =0 +p3,a3=PFsandag = Ps.
A3) oy =B, a2=pa3 =P+ Psandoy = Ps.
Ag) a1 =P, a=pHr,a3=pPzandayg = B4+ Bs.

B>)
a =0, o4=ps,
(a1 — B1) + (a3 — Bs) = B+ B3 and
(a1 — B1) (a3 — Ba) = Ba(az — P4) + Ba(ar — P1) .
B3)
a;=p1, az=0,
(a2 — B2) + (g — Bs) = B3 + B4 and
(a1 — B2) (g — Bs) = B3(ag — Bs) + Palaz — P2) .
C)
ar =0, oas#Ps,
(a1 — Bo) +ag = (B3 —a3) + B4,
(a1 — Bo)ayg = Ba(ay — B2) + (B3 —a3)aq  and
aja3 = Biag + Broz .
C3)

ar #p1, a3=0,

a) + (s — Bg) = B+ (B3 —a2) s

(g — By = Bo(oa — Ba) + (B3 —a2)a;  and
ara4 = Baar + B3ay .

The cases A1)-A4) come from the essential dimensions-reductions of type I and II, and
treated in Example 2.1 and correspond to the reciprocal numbers of the pivots of Gaussian
elimination (see [5]). On the other hand, if we use the essential dimensions-reductions of type
III, then we obtain the other four cases B»), B3), Cz) and C3) (cf. Example 2.5 1)).

Note that if the essential dimensions-reductions of type III is used, then the correspond-
ing conditions for @ are a little complicate, and the essential dimensions-reduction of type
IIT contains the cases that at least one of the multiple relaxation parameters w; becomes a
negative or complex number.

The following lemma implies these facts.

LEMMA 2.4. Let A =[—l;, 1, —u;] be a3 x 3 tridiagonal matrix. If louy = lzuy = 1
or lhuy + lzuy = 1, then w1 and w3 do not exist such that wy; = 1 and p(L¢p) = 0. Assume
that l; and u; are real numbers such that (lou; — 1)2 + (lauy — 1)2 > 0 and lyuy + l3us # 1.
Then there are w| and wy such that wy = 1 and p(L¢) = 0, that is,



THE OPTIMAL RELAXATION PARAMETERS 57

o = 1+ Vhuiluy/(buy + Buy — 1)
1 —lhu ’
w3 = ¥ Vhulsua /(G + Bz — 1) , (double sign in order) and
1 —1lup
1
w103 = 1 —lbuy —lauy

Hence
1) w1 and w3 are real for lhu1lzuz(lbbuy + lzuy — 1) > 0, and wiwz < 0 for louy +
lZur > 1 and wywz > 0 for lhuy 4+ l3uy < 1.
i) w; and w3 are both imaginary numbers for loulzuy(lauy + l3uy — 1) < 0.
i) w; =1and wsz = %for bu; =0.

and w3z = 1 for 3ur = 0.

: 1
IV) w] = Thu;

PROOF. In case of wy = 1, the selection of w; is case B in Example 2.2. Then
arto3=po+ B3, i3 = 3o+ Pras.
From the definition of 7, 83,
(1 —lbupw; + (1 —lu)ws3 =2 and (1 —lhu; —lur)wjwsz =1.

Hence, (lbu; — 1)2 + (lzuy — 1)2 # 0 and lhu1 4 lzup # 1 and we have

1 £+ /huilzuy/(auy + l3up — 1)

w] =

1 —lu;
1 huil ] ] —1
w3 = F vhuibua/(uy + ) ,  (double sign in order).
1 —lup
Thus we obtain the conclusion. O

For the constant coefficient case, we have the following corollary:

COROLLARY 2.1. Let A = [—I, 1, —u] be a 3 x 3 tridiagonal matrix. If lu = 1 or
lu = 1/2, then w1 and w3 do not exist under the conditions that wp = 1 and p(Ly) = 0.
Iflu # 1, 1/2, then there are w| and w3 such that wy = 1 and p(Le) = 0, and

L |l /20— 1

1—1lu
1 |lul//2lu — 1
w3 = F lul/ “ ,  (double sign in order) .
1—1lu
Moreover, iflu > 1/2, then w1 and w3 are real numbers and wiwy = =57 712114 < 0.

Iflu = 0, then w1 = w3 = 1. Iflu < 1/2 and lu # 0, then w; and w3 are both
imaginary numbers.
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EXAMPLE 2.3. For a 3 x 3 tridiagonal matrix A = [-3/4, 1, —5/4], we have 1 >
lu = 15/16 > 1/2, and A is not an H-matrix but p(Lp) = 0 for @ = diag(w, w2, w3),
where w; = 4(4 — 15/3/14) < 0, wp = 1 and w3 = 4(4 + 5//14) > 2.

This coincides with the conclusion of the above corollary.

We give other examples of the conditions of p(Lg) = 0.

EXAMPLE 2.4. For an n x n tridiagonal matrix A = [—[;, p;, —u;] and 2 < k <
n—1,n > 3, by the essential dimensions-reductions of types I and II, we see that w, wy, - - -,

Wk—2, Wk+2, Wk+3, * * + , W, are determined by
1 1 ] )
w=—, wi=——————, i=2,3--,k=2, ifk>3,
P1 pi — liwi—jui—
1 1
op=—, wi=—"—, i=n—-1n-2,---k+2, ifk<n-2,
Pn pi — uiwit1liy1

~(m) ~(m) ~(m) )T

and the reduced error vectors (¢;_, ¢, ', ¢, ()" satisfy the following form:

- 1 -
(m+1) Br—1 —ox—1 Pk 0 (m)

gt = Bor—a1 Br—a B ~(m) NE))
S(m+1) i —a _ _ _ o

& Br—1 — k-1 Br—ox  Pr+1 — (@k+1 — Br+2) &

Moreover, for (5),
i) If we use only the essential dimensions-reductions of type I or II, then we obtain, for
example,

1 1
Wg—-1 = ) wk+1 = )
Prk—1 — lk—1wp_2ur—2 Pr+1 — lp10k2up2

1
Pk — lkwk 11 — Up@p 1 Uk

W =

ii) If we use the essential dimensions-reduction of type III, then under the conditions
that ax = O (that is, wg px = 1) and p(Lep) = 0, wg—1 and wk| are determined by

{ (ok—1 — Br—1) + (k+1 — Br+2) = Br + Pr+1 ©)
(k-1 = Br—1) (k1 — Br+2) = Br(dk+1 — Br+2) + Br1(ok—1 — Br—1) -
~ ~ ~(m,2
EXAMPLE 2.5. i) We reduce the error vectors from (e(m), (m) .. (m))T to (e(lm ),
- ~ m,2) . - - ~(m,3) . ~ ~
egm), cee ef,m))T and next, from (e ), gm)’ flm), e (m))T to (e, (m ) (m) (m) e e,({"))T

=(mn—1) -
and so on. From (eﬁ’" "D BT 6 (

reduction of type I to ggm, . Then we obtain one of the conditions for the multiple relaxation

and ﬁnally, we apply the essentlal dimensions-
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parameters which satisfy p(Lgp) = 0 (cf. [5]):

ar =0

_ (B — B3
(B1—a1) + (B2 —a)

o = {(B1 —a1) + (B2 — a2)} B4
(Bi —a1) + (B2 —a2) + (B3 — a3) -

o3

{Br—aD)+Br—a)+ -+ (B2 — 0n—2)}Bu
Br—a)+ (B —o2) + -+ (Bu—1 — 1)
Br—a)+Br—a)+--+ (B —ay) =0.

ii) If (7)is satisfied and

n =

[((Br—a)+Br—)+- -+ Bn—an)| <1,

then p(Lg) < 1 (cf. [7]).

REMARK 2.1. The condition ii) in Example 2.5 gives another convergence condition
for the one parameter improved SOR method with orderings which is different from the results
in [7].

These facts imply the difference between the convergent range of the multiple relaxation
parameters w;, i = 1,2, ---, n for the improved SOR method with orderings and that of the
relaxation parameter 0 < w < 2 for the SOR method.

3. Applications to Hessenberg matrices.

Now, let us consider Ax = b, where A = [a; ;] is an n x n nonsingular Hessenberg
matrix such that

a,j=0, j=12,---,i-2, ai 1=, a,;=pi,

ajj=—ujj, j=i+Li+2,---,n, i=12,---,n

For a proper starting vector x(© = [xi(o)], the improved SOR method with natural ordering is
expressed as follows:

xl-(mH) = U)ilix,-(Tfr]) + (1 — Pi)x,-(m) + wiui,i+1xi(4"fi + ot o™ + wiby
i=12-n, x"V=0, x" =0, m=012-.

For the exact solution & = [£;] of Ax = b, let e/ = x"™ — 3 = [efm)] be the error vectors
of x™ = [xi(m)], m=0,1,2,---. Then et = L4e™ where L is the improved SOR
matrix for A, that is,
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1 1
e,(m+ ) w;l; ,(mii_ ) = = —U):Pz)e( )+(Utut t+1€l+] + wju; l+261+2 + oy, nel(1 )’
i=12--.n, "V =0 " =0, m=012--.

The error vector et = [e(mH)] at the (m + 1)-th iteration is expressed as follows:

eimﬁ) =(1- wlpl)e +w1u1 262 '+ wu 365 Dbt opug e
65’"“) = wpl (1 — w1P1)€ )+ {w212w1u1 2+ (1 — wzpz)}e(m)
+ (w2hhwruy 3 + w2u2,3)€3 + o+ (bou, + o ey
e§m+1) = w3lzawpl2(1 — wlpl)e(m) + wslz{wrlhwiuy o + (1 — wzpz)}egm)
+ {wslz(@mhwiuy 3 + wauz3) + (1 — w3p3)}€(m)
+ {w3l3(walrwiuy 4 + wous 4) + w3u3,4}e4 +-e
+ {3l3(@2hwiut , + w2u2,) + w313 )en”
e = wplywn—ily—y - w2l (1 — wlpl)eﬁ’")
+ oplpwn—1ly—1 - - w3lz{wrbwiuy o + (1 — wzpz)}egm)
+ oplpwp—1lp—1 - - - walg{wslz(rlrwiuy 3 + wpuz 3) + (1 — w3p3)}€(m)
+ o Oulu{ (@n—t by 1On—21n 2.0 + Op—1tn—1.0) + (1 — 0 pp)}es” .
Let us consider El.(m), i = 1,2,---,n such that e(m) = eim), éfm) = (wilijwj_1li—1---
wzlz)’lefm), i=2,3,---,n,andseta; =w;p; —1,i=1,2,---,n, 1 j=wjljoj quj_1---
wbwiuyj, j =2,3,---,n, Bij = Bi—1,j +wjljoj_1lj_1- - wipliqiojuj, j =11+
Loooyn, i =23,---,n—1,1 = Bur1 = 0,and Bi11 = Biiv1 = wirilivioiuiivi,

i=1,2,---,n—1.
Then we obtain

&' = (1 — ane” + pey" + Br3es" + Brady” + - + Pracy”
*m*” = (1 —an@" + (B — )& + B + Ba, 4e(”” o Brnéy”
(m+;) ~(m) (m) (m) ®
é =(B1—ane; + (B2 —a2)e, 4 (B _anfl)é + Bne.
H = (81— )™ + (8 — )l +
+ Buet — tu—DE") + (Ba —an)e(””.
If we put e = (e(m) s .. 8" and
B1— oy B2 B1.3 Bra - Bi.n
Br—o1 Pr—a2 B3 Bra - Ba.n
: ‘ ,
Br—ar Pr—ar Bz—a3 Pa—os - Puo1— i Bn

Bi—ar Pr—ar PBz—a3z Pa—os - Puo1—dn—1 Bu— o
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then (8) may be written in the form ™Y = M,&"™ . Hence we have the following theorem
(cf. [4, Theorem 2.1]):

THEOREM 3.1. Let f,(A) = det(Al — Lg). Then

fu(A) = det(Al — M)

Atar =B —B1.3 —B1.4 e —Bin
- Atoar Bi13—PB3 Bia— P4 e Bin — Bon

—A A+ a3 B2.4 — Pa e Bon — B3.n

—A A+ o ,3n72,n - ,Bn
—A A+ oy

Moreover, we have the following recursion formula:

oy =1, fi)=r+ar,
fl()\) = ()\ +Oli)fi71()\.) — ﬁl)\'fl—Z()\t) _ 181'—2,1')\'2](‘[—3()\,) o (10)
—BrLiM T fo0), i=2,3,---,n.

The formula is verified by induction.
Then we have the n conditions of p (L) = 0, thatis, f,(A) = A" (cf. [5, Theorem 2.2]).

THEOREM 3.2. Ifforl <k <n,
a,-:,Bi, i=1,2,~',k—1
oy = ,3n+l , Op—1 = B — ,Bn—Z,n
i = (Bi+1 — Bi—1i+1) + (Bii+2 — Bi—1.i+2) + -+ (Bin — Bi—1.n) »
i=n—2, n—3,---,k+1
ar = Bk + (Br+1 — Br—1.k+1) + Brk+2 — Brk—1,k+2) + -+ + Bron — Bk—1.1) »
then the spectral radius of Lo equals to zero.

The proof can be obtained from Theorem 3.1 by induction and direct computation. For
other technique to have the above conditions and the recursion formulaof w;, i = 1,2, -+, n,
see [8].

On the other hand, we can directly extend the essential dimensions-reductions of type I,
IT and III in Lemma 2.1-2.3, to the equation (8), and obtain the results which are similar to
Lemma 2.1-2.3 and Theorem 2.1.

For example, we have the following theorem:

THEOREM 3.3. Forann x n Hessenberg matrix, there are totally 2"~ conditions for
the relaxation matrix ® = diag(w, wy, - - -, w,) which satisfies p(Le) = 0, and they are
obtained by the essential dimensions-reductions of the similar types 1, II or I11.

Note that for an n x n nonsingular matrix, there are at most 27=1 conditions for the
relaxation matrix @ = diag(w;, w2, - - -, w,) which satisfies p(Lgp) = 0. We will elsewhere
perform a detailed study of this fact.
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