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Abstract. The Schrödinger-type equation −�u + V u = λu on a noncompact Riemannian manifold M has
no nontrivial square integrable solution u for any positive constant λ, if the metric and the function V satisfy certain
conditions near the infinity. A set of conditions of that kind was given by the author in the case that the metric is
rotationally symmetric. It contained a condition which required smallness of the curvatures of M in the distance.
But we have had a question whether the set could remain sufficient even if we remove that condition. The present
paper answers it negatively by constructing a square integrable solution for a metric which satisfies all the conditions
except the one in question.

Let M be a d-dimensional Riemannian manifold (d ≥ 2) which admits a global system
of coordinates (r, ω) ∈ (r0,∞)× Sd−1 therewith the metric is represented as

ds2 = dr2 + ρ(r)2dω2 (1)

where dω is the standard metric of Sd−1 and ρ is a positive function. Let � denote the
Laplacian (Laplace-Beltrami operator) of M and V (r, ω) be a function defined on M; then
consider the equation

−�u+ V u = λu (2)

where λ is an arbitrary positive constant. What we are concerned in the present paper is the
behavior of the solution u near r = ∞, especially the existence or nonexistence of square
integrable solutions.

Many authors dealt with this or a similar type of problem when M is a complete non-
compact manifold having negative or positive definite curvatures (e.g. [1]–[3] and [6]–[8]).
But in this article we do not require the completeness of the manifolds. We only assume an
asymptotic behavior of ρ(r) for large r . In that sense, we are treating a local problem at the
infinity. As to the curvatures, the definiteness of the sign of the curvatures is not asked. Only
their absolute values are of interest.

There is a theorem due to the author which offers a set of conditions assuring the nonex-
istence of square integrable solutions. Our purpose is to examine the efficiency of those
conditions. Let us quote it here.

THEOREM A ([5, Theorem 1 combined with its corollary]). Let ψ(r) be a positive
function of r (r0 ≤ r < ∞) which is locally absolutely continuous and satisfies the following
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conditions: ∫ ∞

r0

ψ(r)dr = ∞ ,

ψ(r)−1ψ̇(r)+ ψ(r) ≥ −α ( for a.e. large r)

(the dot representing d/dr) with some positive constant α, and∫ ∞

r0

exp

(
−

∫ r

r0

ψ(s)ds

)
dr = ∞ .

Suppose that the function ρ(r) satisfies the following conditions (i)–(v):
(i) ρ ∈ C1(r0,∞), ρ(r) > 0, ρ̇(r) ≥ 0 in r0 < r < ∞, ρ(r) → ∞ (r → ∞) and ρ̇

is locally absolutely continuous in r0 < r < ∞,

(ii) ρ(r)−1ρ̇(r) = o(1) (r → ∞),

(iii) 2ρ(r)−1ρ̇(r) ≥ ψ(r) ( for large r),
(iv) ρ(r)−3ρ̇(r)3 = o(ψ(r)) (r → ∞),

(v) ρ(r)−1ρ̈(r) = o(ψ(r)) (r → ∞, a.e. r).
Furthermore, let

V (r, ω) = V1(r, ω)+ V2(r, ω)

where V1(r, ω) and V2(r, ω) are functions which satisfy the following conditions:
(vi) V1(r, ω) is real-valued, continuous and locally absolutely continuous in r for al-

most every fixed ω ∈ Sn−1, and

V1(r, ω) = o(1) , V̇1(r, ω) = o(ψ(r)) (r → ∞, uniformly in ω) ,

(vii) V2(r, ω) is complex-valued, bounded and measurable, and satisfies

V2(r, ω) = o(ψ(r)) (r → ∞, unif ormly in ω) .

Let λ be an arbitrary positive constant. Then no solution u of (2) is square integrable except
u ≡ 0.

The condition (v) implies that the absolute values of the curvatures of M should decrease
in a sufficiently rapid manner. But it has been an open problem whether that condition was
indispensable. In this article we will illustrate an example of ρ which satisfies (i)–(iv) with a
certain ψ for which (2) has a square integrable solution. The existence of such an example
indicates that (i)–(iv) alone are insufficient and hence (v) or some other condition is needed
in order to guarantee the nonexistence of nontrivial L2-solutions.

Let us consider the simple case where V ≡ 0, because that seems to tell best the essential
point. Our construction goes in the reverse direction. That means, we at first pick up an L2-
function u, and then study the property of ρ for which

�u+ λu ≡ 1

ρd−1

∂

∂r

(
ρd−1 ∂u

∂r

)
+ 1

ρ2Λu+ λu = 0 (3)

holds (Λ is the Laplacian of Sd−1). Before beginning the construction, we change the function
u to

v(r, ω) = ρ(r)
d−1

2 u(r, ω) . (4)
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Then v satisfies

∂2v

∂r2 + 1

ρ2Λv −
[
(d − 1)(d − 3)

4

ρ̇2

ρ2 + d − 1

2

ρ̈

ρ

]
v + λv = 0 , (5)

where a dot represents d/dr . Note that u ∈ L2(M) if and only if v ∈ L2((r0,∞) ×
Sd−1; drdS), where dS is the measure of Sd−1.

Now, let r0 ≥ 1, write n = [r], the largest integer not exceeding r , and set⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

r = n+ s,

λ = π2,

v(r, ω) = v(r) = sinπr

n(n+ 1)

(
n+ 1 − s + 1

2π
sin 2πr

)
(n ≤ r < n+ 1; n = 1, 2, · · · ) .

(6)

The function v depends only on r , hence Λu = 0 and, as is easily seen, v ∈ C2(r0,∞) ∩
L2(r0,∞) as a function of the single variable r . (The number λ = π2 is not essential. We
can get a similar example for any λ > 0 by changing the scale of the variable r .) What we
intend to show is the following statement:

THEOREM B. We can find a positive C1-function ρ(r) and positive constants k1, k2

and r∗ such that ρ satisfies the relation (5) with the v given by (6) and yields the estimate

k1

r
≤ ρ̇(r)

ρ(r)
≤ k2

r
(7)

for r ≥ r∗.

If we prove this theorem, the conditions (i)–(iv) of Theorem A are fulfilled with ψ(r) =
k1/2r , although (3) has a square integrable solution u. Therefore, we shall be able to conclude
that the condition (v) is significant.

Let us consider the following function

x(r) = (d − 1)r

2

ρ̇(r)

ρ(r)
. (8)

Then a straightforward calculation and the equation (5) show that

d

dr
x(r) = 1

r
x(r)(1 − x(r))+ h(r) (9)

where h(r) is the continuous function given by

h(r) = r

(
π2 + v̈(r)

v(r)

)

= − 4πr sin 2πr

n+ 1 − s + 1

2π
sin 2πr

(10)

= − 4π(n+ s) sin 2πs

n+ 1 − s + 1

2π
sin 2πs

,
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for n ≤ r = n+ s < n+ 1, (n = 1, 2, · · · ). Note that the inequality (7) is equivalent to

c1 ≤ x(r) ≤ c2 (r ≥ r∗)

where c1 and c2 are some positive constants. Therefore, our purpose will be achieved by
proving the following proposition.

PROPOSITION 0. We can find a positive integer n0 and positive constants c1 and c2

such that the initial value problem⎧⎨
⎩
d

dr
x(r) = 1

r
x(r)(1 − x(r))+ h(r) (n0 < r) ,

x(n0) = α0

(11)

has a unique solution x(r) throughout n0 ≤ r < ∞ which satisfies

c1 ≤ x(r) ≤ c2 (n0 ≤ r < ∞)

provided the initial value α0 lies in the interval

4.2 ≤ α0 ≤ 4.4 . (12)

We will prove this proposition in stages. First we show

PROPOSITION 1. For n ≤ r ≤ n+ 1 (n = 1, 2, · · · ) we have

h(r) = −4π sin 2πs + 1

n
(4π sin 2πs − 8πs sin 2πs + 2 sin2 2πs)+ R(r), |R(r)| ≤ 4π

n2
.

PROOF. One has

h(r) = −
4π

(
1 + s

n

)
sin 2πs

1 + 1

n

(
1 − s + 1

2π
sin 2πs

)

= −4π sin 2πs + 4π

n
sin 2πs

(
1 − 2s + 1

2π
sin 2πs

)
+ R(r) ,

R(r) = − 1

n2 ·
4π sin 2πs

(
1 − s + 1

2π
sin 2πs

) (
1 − 2s + 1

2π
sin 2πs

)

1 + 1

n

(
1 − s + 1

2π
sin 2πs

) ,

for n ≤ r < n+ 1, which shows |R(r)| ≤ 4π/n2 because

0 ≤ 1 − s + 1

2π
sin 2πs ≤ 1 , −1 ≤ 1 − 2s + 1

2π
sin 2πs ≤ 1 .

Next we consider an initial value problem in the interval n ≤ r for each integer n sepa-
rately in order to observe the influence of the magnitude of x(n) on that of x(n+ 1).
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PROPOSITION 2. We can find a positive integer n1 and a positive constant β1 such
that for each integer n ≥ n1 and any real number α, 4.2 ≤ α ≤ 4.4, the solution of⎧⎨

⎩
d

dr
x(r) = 1

r
x(r)(1 − x(r))+ h(r) (n < r)

x(n) = α
(13)

satisfies x(r) ≤ β1 in the interval of the form n ≤ r ≤ r1, r1 being any number, as long as
x(r) exists there.

PROOF. The proposition is clear from

x(n+ s) = α +
∫ n+s

n

h(r)dr +
∫ n+s

n

1

r
x(r)(1 − x(r))dr ,

because |h(r)| ≤ 8π (r ≥ 1) and x(1 − x)/r ≤ 1/4r .

PROPOSITION 3. There exist an integer n2 and a number β2 such that if n ≥ n2 and
4.2 ≤ α ≤ 4.4 then the solution of (13) exists everywhere in the interval n ≤ r ≤ n+ 3

2 and
fulfills

x(r) ≥ β2 (14)

for n ≤ r ≤ n+ 3
2 .

REMARK. The number 3/2 does not have a special meaning. One has only to show that
x(r) exists for n ≤ r ≤ n + 1 and satisfies the differential equation (for the left derivative)
even at r = n.

PROOF. (I) Consider the differential equation for a function ϕn(r):

⎧⎪⎪⎨
⎪⎪⎩
d

dr
ϕn(r) = 1

r
ϕn(r)(1 − ϕn(r))−

5πn+ 1

4
r

(n < r) ,

ϕn(n) = α − ε ,

(15)

where ε is an arbitrary constant, 0 < ε < 1/2. Put kn = √
5πn, then we have

tan−1
ϕn − 1

2
kn

= tan−1
α − ε − 1

2
kn

− kn log
(

1 + s

n

)

(tan−1 is the principal value) at least in some interval. But since kn log
(

1 + s

n

)
= O(1/

√
n)

for large n, the solution ϕn exists in n ≤ r ≤ n+ 3
2 if n is sufficiently large. We therefore get

ϕn = 1

2
+
α − ε − 1

2
− kn tan

{
kn log

(
1 + s

n

)}

1 +
α − ε − 1

2
kn

tan
{
kn log

(
1 + s

n

)} .
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It is clear that if n is not less than some number, say, n2, then ϕn fulfills

β2 ≤ ϕn(r) ≤ β ′
2

(
n ≤ r ≤ n+ 3

2

)
for some real numbers β2, β ′

2 which are independent of n.
(II) We will show that x(r) exists in n ≤ r ≤ n + 3

2 . Set y(r) := x(r) − ϕn(r).
Suppose contrary to the conclusion that x(r) ceases to exist somewhere before n+ 3

2 . Due to
Proposition 2 and the existence theorem for ordinary differential equations, such a case occurs
only when x(r) diverges to −∞ at that point. Hence we can find a number γ (n < γ < n+ 3

2 )

such that limr→γ−0 y(r) = 0 and y(r) > 0 in the interval n ≤ r < γ .
Now, take n2 so large that for any n ≥ n2, h(r) admits the following estimate from

below:

h(r) ≥ −4π
(

1 + s

n

)
≥ −

5πn+ 1

4
r

(
n ≤ r ≤ n+ 3

2

)
.

Then from Proposition 2 and from the first part of this proof, one sees

dy

dr
= 1

r
x(1 − x)+ h(r)− 1

r
ϕn(1 − ϕn)+ 1

r

(
5πn+ 1

4

)

≥ 1

r
(x − ϕn)(1 − x − ϕn)

≥ −β1 + β ′
2

n
y (n < r < γ )

if n ≥ n2 and r stays in the interval n < r < γ . Therefore, putting M = (β1 + β ′
2)/n, we

have
y(r) ≥ y(n)e−M(r−n) ≥ εe−3M/2 > 0 (n ≤ r < γ ) .

But this is incompatible with y(r) → 0 (r → γ − 0). Hence x(r) exists throughout the
interval n ≤ r ≤ n+ 3

2 and is not less than ϕn(r) there. This establishes the proposition.

PROPOSITION 4. Suppose n ≥ n2. Let x be the solution of (13) and write α = a + 2.
If 4.2 ≤ α ≤ 4.4, then x(r) admits the expression

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x(r) = a + 2 cos 2πs + 1

n
[(−a2 + a − 1 + 4 cos 2πs) · s + 2(1 − cos 2πs)

−2a + 1

π
sin 2πs − 3

4π
sin 4πs] + R∗(r) (n ≤ r ≤ n+ 1) ,

|R∗(r)| ≤ β3

n2 ,

(16)

where β3 is some positive number independent of n and r .

PROOF. For saving the description, we write η ± δ to denote an entity which lies be-
tween η − δ and η + δ so that the expression

ξ = η ± δ
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stands for
|ξ − η| ≤ δ .

Moreover, by the calculation

ξ = η ± smaller = η ± bigger

we state
|ξ − η| ≤ smaller therefore |ξ − η| ≤ bigger .

Now, let n ≥ n2 and n ≤ r ≤ n+ 1. From β2 ≤ x(r) ≤ β1 we get |x(r)(1 − x(r))| ≤ β4

where β4 dose not depend on n nor on r . Hence, from (13) it follows that

x(r) = a + 2 +
∫ n+s

n

h(r)dr ± β4 log
(

1 + s

n

)
. (17)

On the other hand, Proposition 1 shows that∫ n+s

n

h(r)dr = − 2 + 2 cos 2πs + 1

n

(
s + 2 − 2 cos 2πs + 4s cos 2πs

(18)

− 2

π
sin 2πs − 1

4π
sin 4πs

)
+

∫ n+s

n

R(r)dr .

Therefore, since |R(r)| ≤ 4π/n2, one sees

x(r) = a + 2 cos 2πs ± β5

n

for some β5 and hence one can choose a number β6 to compute

1

r
x(1 − x) = 1

n
(

1 + s

n

) (
a + 2 cos 2πs ± β5

n

) (
1 − a − 2 cos 2πs ± β5

n

)

= 1

n
(a + 2 cos 2πs)(1 − a − 2 cos 2πs)± β6

n2 .

Substituting this estimate together with (18) to the equation (13) and integrating both sides
from n to n+ s again, we obtain, by setting β3 = β6 + 4π , that

x(r) = a + 2 +
∫ n+s

n

h(r)dr + 1

n

∫ s

0
(a + 2 cos 2πt)(1 − a − 2 cos 2πt)dt ± β3

n2

= a + 2 cos 2πs + 1

n

[
(−a2 + a − 1 + 4 cos 2πs) · s + 2(1 − cos 2πs)

−1 + 2a

π
sin 2πs − 3

4π
sin 4πs

]
± β3

n2
.

PROPOSITION 5. We can find an integer n3 such that if n ≥ n3 and 4.2 ≤ α ≤ 4.4
then x of (13) satisfies 4.2 ≤ x(n+ 1) ≤ 4.4.

PROOF. Set α = a + 2. By Proposition 4, the solution of (13) fulfills

x(n+ 1) = a + 2 − 1

n
(a2 − a − 3)± β3

n2
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provided n ≥ n2 and 4.2 ≤ α ≤ 4.4. But since a + 2 − (a2 − a − 3)/n is an increasing
function of a in the interval 2.2 ≤ a ≤ 2.4 for fixed n ≥ 4, it follows that

4.2 + 0.36

n
− β3

n2
≤ x(n+ 1) ≤ 4.4 − 0.36

n
+ β3

n2
.

Hence if n3 is an integer ≥ max(n2, 4, β3/0.36), we have 4.2 ≤ x(n + 1) ≤ 4.4, provided
n ≥ n3.

PROOF OF PROPOSITION 0. At first we note that if x1(r) and x2(r) are the solutions
of ⎧⎨

⎩
d

dr
x1(r) = 1

r
x1(r)(1 − x1(r))+ h(r)

(
n < r < n+ 3

2

)
x1(n) = α

and ⎧⎨
⎩
d

dr
x2(r) = 1

r
x2(r)(1 − x2(r))+ h(r) (n+ 1 < r < n+ 2)

x2(n+ 1) = x1(n+ 1)
(19)

for large n respectively, then the connected function

x(r) =
{
x1(r) (n ≤ r ≤ n+ 1) ,

x2(r) (n+ 1 ≤ r ≤ n+ 2)

is the solution in the interval n ≤ r ≤ n+ 2, because the solution of the initial value problem
(19) is unique. Hence Proposition 5 tells that if n0 ≥ n3 and 4.2 ≤ α0 ≤ 4.4, then the solution
of ⎧⎨

⎩ẋ(r) = 1

r
x(r)(1 − x(r))+ h(r) (n0 < r) ,

x(n0) = α0

(20)

exists throughout n0 ≤ r < ∞ and fulfills 4.2 ≤ x(n) ≤ 4.4 for any integer n ≥ n0. Take n0

so large that

1

n0
|(−a2+a−1+4 cos 2πs) ·s+2(1−cos 2πs)− 1 + 2a

π
sin 2πs− 3

4π
sin 4πs|+ β3

n2
0

≤ 0.1

holds for 0 ≤ s ≤ 1. Then from (16) we ontain

0.1 ≤ x([r])− 4 − 0.1

≤ x(r)

≤ x([r])+ 0.1

≤ 4.5

and Theorem B as well as Proposition 0 is established.

REMARK 1. Since
ρ̈

ρ̇
= h

x
− d − 3

2

ρ̇

ρ
, we have

ρ̈

ρ̇
�→ 0. Hence the condition (v) of

Theorem A can not be fulfilled by any ψ satisfying (iii).
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REMARK 2. The Schrödinger equation −�u + q(x)u = λu, λ > 0 in a Euclidean
space Ed can possess a nontrivial square integrable solution u if we simply assume q(x) =
o(1) as |x| → ∞. Such q(x) and u were shown first by von Neumann and Wigner [9] and
then generalized by Kato [4]. The solution u(x) of [9] has, in effect, the form⎧⎪⎨

⎪⎩
u(x) = u(r) = r− d−1

2 v1(r), r = |x| ,
v1(r) = sin

√
λr

1 + (2
√
λr − sin 2

√
λr)2

(6′)

which corresponds to the potential q(x) = q(r) through

q(r) = v̈1(r)

v1(r)
+ λ− (d − 1)(d − 3)

4r2 .

It is natural to consider the equation

d

dr
x(r) = 1

r
x(r)(1 − x(r))+ r

(
v̈1(r)

v1(r)
+ λ

)
(9′)

instead of (6) and (9) of the present paper. But the solution of (9′) is not positive definite. It
means, the function ρ(r) which satisfies (8) is not monotone increasing, hence the condition
(i) of Theorem A is partly violated besides (v). Another choice, for example,

v2(r) = sin
√
λr

2 + 2
√
λr − sin 2

√
λr

also gives an oscillating ρ(r), and so forth. The choice of v(r) is thus delicate.
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