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Abstract. We concern ourselves firstly with the abstract evolution equation{
x′(t) = (A+ B)x(t) , t > 0 ; x(0) = x0 ∈ D ,
ϕ(x(t))′ ≤ g (ϕ(x(t))) , t > 0

in a Banach space X, where A is m-quasidissipative, but B satisfies no global conditions of quasidissipativity. We
assume that a secondary topology (and a related notion of limits) can be introduced, through a lower semicontinuous
functional ϕ, such thatB is locally Lipschitz continuous with respect to this topology. Under appropriate assumptions,
the first product formula

x(t) = (D, ϕ) -lim
h↓0

{(I − hA)−1(I + hB)}[t/h]x0 , t ≥ 0

can be defined, and we show that this provides unique solutions in a generalized sense to our original equation. Here
(D,ϕ) -lim refers to our new notion of limit. For approximations Ah of A, we also show convergence for the second
product formula,

x(t) = (D, ϕ) -lim
h↓0

{(I − hAh)
−1(I + hB)}[t/h]x0 ,

and use this to generate solutions to a class of advection reaction diffusion systems. As a concrete example, a
mathematical model for HIV infection is studied.

Introduction

Generation theorems for nonlinear semigroups associated with evolution equations gov-
erned by either quasi-dissipative or quasi-accretive operators are well developed, and have
been widely used to treat a variety of mathematical models. There are, however, situations
where it is desirable to consider additive combinations of quasi-dissipatve operators and non-
quasidissipative perturbations, and this is the basic motivation for the work leading to this
paper.

By means of a bornoglogical-type structure, it is possible to treat a broad class of evolu-
tion equations that include nolinear perturbations satisfying no quasi-dissipativity conditions
in a global sense. For an appropriate lower semicontinuous functional ϕ on the Banach space
(X, ‖·‖) in question, ϕ-bounded sets make up this bornological structure, giving us a system
(D, ϕ) and a natural, related notion of convergence. This secondary structure is important
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in our argument for two reasons. Firstly, fundamental properties of operators appearing in
the evolution equations, such as quasidissipativity and continuity, are localized on ϕ-bounded
sets. Secondly, growth of solutions to the evolution equations is restricted with respect to this
functional.

Solutions are constructed through the use of the product formula, which generates “ϕ-
stable” approximate descrete schemes to an abstract evolution equation in (D, ϕ). By showing
the convergence (in the sense mentioned above) of such schemes in our system we obtain a
generation theorem for locally quasi-contractive semigroups providing solutions, perhaps in
a generalized sense, to evolution problems of the form{

x′(t) = (A+ B)x(t) , t > 0 ; x(0) = x0 ∈ D ,
ϕ(x(t))′ ≤ g (ϕ(x(t))) , t > 0

(EP)

in the system (D, ϕ), where the operator A + B is quasi-dissipative on ϕ-bounded sets, and
g (·) is a comparison function on [0,∞), specifying the growth rate of the solution and ensur-
ing ϕ-boundedness.

We start by placing assumptions on operators A and B, and the class D of initial data,
such that generalized solutions x(·) to (EP) may be generated by the first product formula:

x(t) = (D, ϕ) -lim
h↓0

{(I − hA)−1(I + hB)}[t/h]x0 , t ≥ 0 .

Here (D, ϕ) -lim means the limit in (D, ϕ), detailed later on. This semi-implicit scheme is
designed to extract the relevant “good” properties of the m-quasidissipative operator A and
the possibly non-quasidissipative operator B.

We then extend the class of equations which can be treated by decomposing the operator
A into a “well-behaved” principal partΛ, and a relatively continuous or non-smooth perturba-

tionΞ , which may be such that the resolvent (I−h(Λ+Ξ))−1 does not exist on a sufficiently
large domain. In this case we assume thatΞ can be approximated by operatorsΞh, as h tends
to 0, in such a way that a new type of product formula may be employed:

x(t) = (D, ϕ) -lim
h↓0

{(I − hAh)
−1(I + hB)}[t/h]x0 .

Here Ah is defined as Λ + Ξh. This second product formula can be used to treat equations
containing differential operators with “bad” coefficients, and even certain types of strong
coupling (our approach can be applied to the strongly coupled system of equations discussed
in [7]).

The first section of this paper contains some preliminary results, definitions and nota-
tional conventions which shall be used in the remaining sections, including definitions of the
system (D, ϕ) and related convergence mentioned above. In Section 2, we define the class
of evolution equations to be treated, and discuss the abstract theory related to the generation
of nonlinear semigroups associated with (EP). Towards the end of Section 2 a more general
class of equations and the related second product formula is considered, and it is to this more
general class that the semilinear systems of advection-reaction-diffusion equations, treated in
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Section 3, belong. The HIV infection model is a concrete and significant example of such a
system, consisting of three equations with coupled reaction terms, and is treated in Section 4.
It is expected to typify the kind of problem to which our approach can be applied.

Coupled reaction terms, such as those contained in the HIV model would ordinarily re-
quire rather technical treatment for existence of solutions to be shown by more direct methods.
It turns out that the product formula is proven in such a way that these terms may be dealt with
in a systematic and comprehensive way, and that as well as existence, we obtain some useful
information about the solutions, related to the physical meaning of the parameters.

1. Preliminaries

We begin by giving some definitions and general concepts used in this paper.
Let X be a real Banach space with norm ‖·‖, and let F(·) denote the duality mapping.

An operator A with domainD(A ) in a Banach spaceX is said to be quasi-dissipative of type
ω for some ω ∈ R, if for all x1, x2 ∈ D(A ),

〈A x1 − A x2, x1 − x2〉i ≤ ω‖x1 − x2‖2 .

Here the lower semi-inner product 〈·, ·〉i is defined 〈z2, z1〉i = inf{〈z2, z
∗〉 | z ∈ F(z1)},

z1, z2 ∈ X and the upper semi-inner product 〈·, ·〉s as the supremum of the same set. A is
dissipative onX, or simply dissipative, if ω = 0. Recall that an operator A is accretive if and
only if −A is dissipative.

Let ϕ : X → [0,∞] be a lower semicontinuous functional with effective domain
D(ϕ) = {x ∈ X : ϕ(x) < ∞}. A “ϕ-bounded set” is defined to be a subset W ⊂ X

contained in some level set Dα = {x ∈ X : ϕ(x) ≤ α}, α > 0, and in this sense, the family
{Dα : α > 0} defines a secondary structure on X. Denote by (D, ϕ) the metric space D
with this extra structure. Noting that the family B of ϕ-bounded sets satisfies the conditions:
(i) B is a covering for D(ϕ) = ⋃

α>0Dα , (ii) if E,F ∈ B, then E ∪ F ∈ B, and (iii) if
a set E ⊂ E1 for some E1 ∈ B, then E ∈ B. Thus B is a bornology on the metric space
(D(ϕ), ‖·‖). We shall say that a generalized sequence (xγ )γ∈Γ , Γ being a directional set,
converges to x in (D, ϕ) if supγ∈Γ ϕ(xγ ) < ∞ and limγ xγ = x in X. In this case, we write

(D, ϕ) -limγ xγ = x or xγ → x in (D, ϕ) .

The generalized notions of solution that we shall deal with (integral solutions and strong
solutions) are defined as follows.

1 DEFINITION. Let A be an operator on a Banach space X, such that (D, ϕ) is a
system of the type discussed above. For a real number ω and a Borel measurable function

g : [0,∞) → R, we say that x(·) : [0, τ ] → D(A ) is an integral solution of type (ω, g ) to
the evolution problem (EP) if the following hold:

(i) x(0) = x0 and x(·) is strongly continuous on [0, τ ],
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(ii) for every s, t ∈ [0, τ ] with s < t and every x̂ ∈ D(A ),

e−2ωt‖x(t)− x̂‖2 − e−2ωs‖x(s)− x̂‖2 ≤ 2
∫ t

s

e−2ωr [A x̂, x(r)− x̂]sdr,

(iii) for s, t ∈ [0, τ ] with s < t ,

ϕ(x(t)) ≤ ϕ(x(s))+
∫ t

s

g [ϕ(x(r))]dr .(1.1)

Equivalent to (ii) above is the following, slightly clearer condition:
(ii)′ for every s, t ∈ [0, τ ] with s < t and every x̂ ∈ D(A ),

‖x(t)− x̂‖2 − ‖x(s)− x̂‖2 ≤ 2
∫ t

s

[A x̂, x(r)− x̂]sdr + 2ω
∫ t

s

‖x(r)− x̂‖2dr .

It is clear that if x(t) is an integral solution of type ω1, then x(t) is an integral solution of type
ω2 to the same problem, whenever ω1 ≤ ω2.

2 DEFINITION. A function x(·) shall be called a strong solution to equation (EP) above,
if x(·) is strongly absolutely continuous on bounded intervals, the derivative x′(t) with respect
to time exists and is equal to A x(t) for almost every t ≥ 0, and if ϕ(x(·)) satisfies (iii) from
the previous definition.

The following fact is known about these generalized solutions.

3 LEMMA. For A a quasi-dissipative operator of type ω, a strong solution x(t) to (EP)
is always an integral solution of type (ω, g ). Conversely, when the following conditions are
satisfied by an integral solution x(·) of type (ω, g ) :

(i) x(·) is strongly absolutely continuous on bounded intervals and x′(t) exists for
almost all t in some interval,

(ii) A is a maximal dissipative operator of type ω,
then x(·) is in fact a strong solution to (EP).

2. Non-dissipative perturbations of m-quasidissipative operators

In this section we shall prove the existence of solutions, in a generalized sense, to the
abstract evolution problem{

x′(t) = (A+ B)x(t) , t > 0 ; x(0) = x0 ∈ D ,
ϕ(x(t))′ ≤ g (ϕ(x(t))) , t > 0 ,

(EP)

where X is a Banach space and the class of initial data D, described below, is contained in
the domain D(B) of B. The operator A is assumed to be an m-quasi dissipative operator of
type ω0, with domain D(A) dense in X. B denotes a nonlinear perturbing operator, locally
continuous in the sense described below, satisfying a certain growth condition.
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Assume that we may define a lower semicontinuous functional ϕ : X → R+ ∪{∞}, with
effective domain D = {x ∈ X | ϕ(x) < ∞}. For r > 0 let Dr = {x ∈ X | ϕ(x) ≤ r}, and note
thatD = ⋃∞

k=1Dk . Of course, in general, the class of admissible initial data may simply be a
subset of the effective domain of ϕ, however by simply restricting ϕ to an appropriate set we
may assume equality with no loss of generality. We further assume that the following hold:

(C1) There exists a Borel measurable function ψ∗ : R+ → R+ such that

ϕ(x + hBx) ≤ ϕ(x)+ hψ∗(ϕ(x))

holds for all x ∈ D, and for any real η0 ≥ 0, the integral inequality β(t) ≤ η0 +
∫ t

0
ψ∗(β(r))dr

β(0) = η0

has a bounded and integrable maximal solution β̂(·; η0), on any finite interval.
(C2) given an arbitrary r > 0, there exists a constant m(r) > 0 such that

‖Bx1 − Bx2‖ ≤ m(r)‖x1 − x2‖
for all x1, x2 ∈Dr . We may assume further that m(·) is nondecreasing and upper semi-
continuous on R+.

(C3) ϕ((I − hA)−1x) ≤ ϕ(x) for all x ∈ D and h > 0 sufficiently small.

In general, we may wish to consider the case where the resolvent (I − hA)−1 satisfies

some more general growth condition than (C3), for example by including a factor (1−hα)−1,
for some α > 0, on the right hand side of the inequality. The arguments presented here can
be extended to this case, although even in the rather general application dealt with later on
we need only consider the case described by (C3). Condition (C2) is effectively the local
Lipschitz continuity of the operator B, although here “locally” means with respect to the sec-
ondary topology defined by ϕ, where as the continuity is with respect to the norm itself. This
condition is not strong enough to guarantee, for example, boundedness of the approximate so-
lutions we shall construct later on, (necessitating (C1) or some equivalent) but covers a broad
range of operators describing reaction-type terms in the class of equations we shall treat.

We thus have a system (D, ϕ) of the type mentioned previously, with respect to which
bothA and B are well behaved. Depending on the choice of ϕ, the “good properties” of B that
are exploited may include, for example, relative continuity with respect to A, or with respect
to some family of sets which reflect the structure of A+ B. It is clear that the choice of ϕ is
heavily related to the explicit form of B, depending on the problem to be treated.

Our approach shall revolve around the product formula, used to generate a difference

approximation scheme consisting of elements xhi . Let the initial value x0 belong to some Dk
and τ > 0 be given. For h > 0 and positive integer i such that ih ≤ τ , define

xhi = [(I − hA)−1(I + hB)]ix0 .(PF)
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To start with, we shall need the stability condition, namely the ϕ-boundedness, given in the
following lemma.

4 LEMMA. Given a real number τ > 0 and an element x0 ∈ D, there exists h0 > 0
such that the set

Sτ,x0 = {[(I − hA)−1(I + hB)][ th ]x0 | h < h0, 0 ≤ t ≤ τ }(2.1)

is uniformly bounded with respect to ϕ, i.e. there exists k > 0 such that ϕ(x) ≤ k for all
x ∈ Sτ,x0 .

PROOF. For x0 ∈ Dr , define xhi = [(I − hA)−1(I + hB)]ix0, ih ≤ τ , h < h0 (suffi-
ciently small, as in C3). Then, by the properties of A and B above, we have

ϕ(xhi ) = ϕ((I − hA)−1(I + hB)xhi−1)

≤ ϕ(xhi−1 + hBxhi−1) ≤ ϕ(xhi−1)+ hψ∗(ϕ(xhi−1))

≤ ϕ(xhi−2)+ hψ∗(ϕ(xhi−2))+ hψ∗(ϕ(xhi−1)) .

Continuing inductively, we eventually obtain

ϕ(xhi ) ≤ ϕ(x0)+ h

i−1∑
j=0

ψ∗(ϕ(xhj )) .

Thus, defining βh(t) = ϕ([(I − hA)−1(I + hB)][t/h]x0), it is clear that

βh(t) ≤ βh(0)+
∫ t

0
ψ∗(βh(r))dr , 0 ≤ t ≤ τ ,(2.2)

for h ∈ (0, h0]. Here βh(0) = ϕ(x0) and so by (C1) there exists a maximal solution

β̂(·; ϕ(x0)), with

ϕ(xhi ) ≤ sup
t∈[0,τ ]

β̂(t; ϕ(x0)) = β̂(τ ; ϕ(x0)) for all x ∈ Sτ,x0 .(2.3)

Note that β̂(·, η) is non-decreasing. �

We are now in a position to treat a discrete scheme of the form (PF) and prove its con-

vergence. Let x0 ∈ D, and define xhi as in (PF), for h ∈ (0, h0), i = 1, . . . , Nh, hNh ≤ τ .

Define fhi by

fhi = xhi − xhi−1

h
− (A+ B)xhi .(2.4)
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We shall show a localized version of the consistency condition as used in [2], i.e. that the error

terms fhi satisfy

lim
h↓0

h

Nh∑
i=1

‖fhi ‖ = 0 ,(2.5)

and finally estimate terms of the form ‖xλi − xµj ‖, for λ,µ ∈ (0, h0).

5 LEMMA. Let x̂ ∈ D(A) and let k be the ϕ-bound on Sτ,x0 from Lemma 4. Then,

‖fhi ‖ ≤ m(k) eτ (m(k)+ωh) ·{2‖x̂ − x0‖ + h(‖Bx0‖ + ‖Ax̂‖)}(2.6)

for all i = 1, . . . , Nh, where ωh ≡ (1 − hω0)
−1ω0.

PROOF. Firstly, noting that (I − hA)xhi = (I + hB)xhi−1, we obtain that for x̂ ∈ D(A),
‖xh1 − x0‖ ≤ ‖xh1 − x̂‖ + ‖x̂ − x0‖

≤ (1 − hω0)
−1‖(I + hB)x0 − (I − hA)x̂‖ + ‖x̂ − x0‖

≤ (1 + (1 − hω0)
−1)‖x0 − x̂‖ + h(1 − hω0)

−1‖Bx0 + Ax̂‖ .
(2.7)

Secondly, using the stability condition,

‖xhi − xhi−1‖ ≤ (1 − hω0)
−1‖(I − hA)xhi − (I − hA)xhi−1‖

= (1 − hω0)
−1‖xhi−1 − xhi−2 + h(Bxhi−1 − Bxhi−2)‖

≤ (1 − hω0)
−1(1 + hm(k))‖xhi−1 − xhi−2‖,

and inductively,

‖xhi − xhi−1‖ ≤ (1 − hω0)
−(i−1)(1 + hm(k))i−1‖xh1 − x0‖ .(2.8)

Now, the error terms may be estimated, since

‖fhi ‖ = h−1‖(I − hA)xhi − xhi−1 − hBxhi ‖
= h−1‖(I + hB)xhi−1 − xhi−1 − hBxhi ‖ = ‖Bxhi − Bxhi−1‖ .

(2.9)

Using again the Lipscitz continuity of B on the set Sτ,x0 the statement follows by combining

(2.7), (2.8) and (2.9), and noting that (1 − hω0)
−1 ≤ ehωh . �

Using the above it is seen that the error terms fhi satisfy (2.5), in the following
way: Given an ε > 0, we may choose some x̂ ∈ D(A) sufficiently close to x0 that

2τm(k) eτ (m(k)+ω0) ‖x̂ − x0‖ ≤ ε. Then, letting h tend to zero from above, we see that

lim
h↓0

h

Nh∑
i=1

‖fhi ‖ ≤ lim
h↓0

τm(k) eτ (m(k)+ωh) ·{2‖x̂ − x0‖ + h(‖Bx0‖ + ‖Ax̂‖)}

= 2τm(k) eτ (m(k)+ω0) ‖x̂ − x0‖ ≤ ε .

(2.10)
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Since we may choose ε arbitrarily small, we conclude that limh↓0 h
∑Nh
i=1 ‖fhi ‖ = 0.

Let x, x̂ ∈ D(A) ∩Dk . There exists some functional f ∈ X∗ in the image of the duality

mapping of x− x̂ such that 〈Ax−Ax̂, f 〉 ≤ ω0‖x − x̂‖2. Considering the full operator A+B,
we have

〈(A+ B)x − (A+ B)x̂, f 〉 = 〈Ax − Ax̂, f 〉 + 〈Bx − Bx̂, f 〉
≤ ω0‖x − x̂‖2 + ‖Bx − Bx̂‖ · ‖x − x̂‖
≤ (ω0 +m(k))‖x − x̂‖2 ,

whereby it is seen that the operator A + B is quasi-dissipative, of type ωk = ω0 + m(k) on
the set D(A) ∩Dk . Therefore, we have (see e.g. [1]), for x, x̂ ∈ D(A) ∩Dk ,

‖(I − λ(A+ B))x − (I − λ(A+ B))x̂‖ ≥ (1 − λωk)‖x − x̂‖ , and

(λ+ µ− λµωk)‖x − x̂‖ ≤ µ‖x − λ(A+ B)x − x̂‖ + λ‖x̂ − µ(A+ B)x̂ − x‖ .
It is then possible to show local convergence through the following Lemma. For details of the
proof, the reader is refered to the work of Y. Kobayashi, and K. Kobayasi, Y. Kobayashi and
S. Oharu, who treated a similar localized, and in fact time-dependent, case. Their arguments
hold locally with little adjustment.

6 LEMMA. Given x0 ∈ D and λ,µ > 0, let the elements xλi and xµj be generated by the

product formula (PF). Let h0 be the appropriate constant from Lemma 4, and k = β̂(τ ; ϕ(x0))

be the ϕ-bound on Sτ,x0 . Then, given an element x̂ in D(A) ∩D,

(1 − λωk)
i(1 − µωk)

j‖xλi − xµj ‖ ≤ ‖xλ0 − x̂‖ + ‖xµ0 − x̂‖

+ {(λi − µj)2 + λ2i + µ2j } 1
2 ‖(A+ B)x̂‖ +

i∑
k=1

λ‖fλk‖ +
j∑
k=1

µ‖fµk ‖ .
(2.11)

This estimate is used to prove that the scheme converges to some limit as h ↓ 0, and that
the limit itself is a unique integral solution of typeωk to the problem (EP) on the interval [0, τ ].
The proof of Lemma 4 shows that k = β̂(τ ; ϕ(x0)). Let xτ (·) represent the corresponding
solution on the interval [0, τ ]. If τ ′ < τ then, since xτ (·) restricted to the interval [0, τ ′] is still
an integral solution of type ω

β̂(τ ;ϕ(x0))
, and xτ ′(·) is an integral solution of type ω

β̂(τ ′;ϕ(x0))
≤

ω
β̂(τ ;ϕ(x0))

, uniqueness implies that

xτ (t) = xτ ′(t) for all t ∈ [0, τ ′] .(2.12)

Thereby we can continue taking arbitrarily large τ > 0 and define a solution x(·) on the whole
interval [0,∞). Also, on [0, τ ′], the solution xτ (·) satisfies

‖xτ (t)‖ ≤ etm(k
′) ‖x0‖ ,(2.13)

where k′ = β̂(τ ′; ϕ(x0)). These facts allow us to show the following theorem.



A CLASS OF QUASILINEAR EVOLUTION SYSTEMS 431

7 THEOREM (First product formula). Given any x0 ∈ D there exists a unique x(t) :
[0,∞) → D, defined by

x(t) = (D, ϕ) -lim
h↓0

{(I − hA)−1(I + hB)}[t/h]x0 , t ≥ 0 ,(2.14)

where, for any τ > 0, convergence is uniform and x(·) is an integral solution of type

(m(β̂(τ ; ϕ(x0))), ψ
∗) to the problem (EP) on [0, τ ]. Moreover, for 0 ≤ t , x(·) satisfies

ϕ(x(t)) ≤ β̂(t) ≡ β̂(t; ϕ(x0))(2.15)

and

‖x(t)‖ ≤ exp

{
tω0 +

∫ t

0
m(β̂(r))dr

}(
‖x0‖

(
1 +

∫ t

0
m(β̂(r))dr

)
+ t‖Bx0‖

)
.(2.16)

PROOF. The only part of the statement whose proof is not complete or immediate from

the above, is the last estimate. However this follows readily since we know that ‖xhi+1‖ ≤
(1 − hω0)

−1‖(I + hB)xhi ‖ and ϕ(xhi ) ≤ β̂(hi). Hence,

‖(I + hB)xhi ‖ ≤ (1 + hm(β̂(hi)))‖xhi ‖ + h(m(β̂(hi))‖x0‖ + ‖Bx0‖) .
It then follows that

‖xhi ‖ ≤ exp

{
ihωh + h

i−1∑
j=0

m(β̂(hj))

}(
‖x0‖ + ih‖Bx0‖ + h

i∑
j=1

m(β̂(hj))‖x0‖
)

(ωh as is Lemma 5). Letting h tend to 0 and ih to t , we obtain the desired result. �

It is not difficult to imagine a situation in which the operator A, although being quasi-
dissipative in the appropriate sense, does not have a resolvent (I − hA)−1 on all of X, as was
assumed for the scheme discussed above. Examples include differential operators with cou-
pled terms, and with non-smooth coefficients (as discussed in the following sections). It turns
out that these operators can often be dealt with effectively through the use of approximate
operators Ah, satisfying some convergence condition.

From now on, we shall assume that A is quasi-dissipative of type ω0, with domainD(A)
dense in X. As before, assume that we have some class D of initial data, on which we define
the functional ϕ. Let B satisfy conditions (C1) and (C2). Assume that we may write the
operator A in the form A = Λ + Ξ , where Λ is m-quasi-dissipative, D(Ξ) ⊃ D(Λ), and
where we may approximate Ξ by a sequence {Ξh}0<h<h0 of operators such that D(Ξh) ⊃
D(Λ).

(i) lim
h↓0

‖Ξhx − Ξx‖ = 0 for all x ∈ D(Λ);
(ii) the operators Ah ≡ Λ+ Ξh are uniformly quasidissipative of type ω0.

(iii) the resolvents (I − hAh)
−1 are defined over the whole of D and preserve ϕ-

boundedness, as was previously assumed for (I − hA)−1.
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As before, let τ > 0 and x0 ∈ D be given. Under the conditions above we may generate,

for each h with 0 < h < h0, a sequence {x̂hi }ih≤τ defined{
x̂h0 = x0

x̂hi = (I − hAh)
−1(I + hB)x̂hi−1 for i ≥ 1, ih ≤ τ .

(2.17)

Note that since D is invariant under (I − hAh)
−1 and we assume condition (C1), (I + hB)

mapsD into itself, and all elements x̂hi are well-defined.

8 THEOREM (Second product formula). Under the above assumptions, and the added
condition that

lim
h↓0

‖Ξhx̂hi −Ξ x̂hi ‖ = 0(2.18)

uniformly over i, with ih ≤ τ, there exists a unique integral solution x(·) : [0, τ ) → D to
(EP). Furthermore, the solution is given by

x(t) = (D, ϕ) -lim
h↓0

{(I − hAh)
−1(I + hB)}[t/h]x0 ,(2.19)

9 REMARK. As an example of a case in which this convergence condition is satisfied,
let Λ be an elliptic operator generating an analytic semigroup, and let Ξ be a differential

operator of lower order. If ‖Ahx̂hi ‖ is bounded, then the terms (−Λ)γ x̂hi are also bounded,
where (−Λ)γ denotes a fractional power of the generator −Λ, and this fact can be used

to show convergence of Ξhx̂hi to Ξ x̂hi in the appropriate way. The reader is refered to [7]
for a concrete example in which this condition also holds for operators coupled strongly in
differential terms.

PROOF. Firstly, note that we obtain the ϕ-bound of Lemma 4 for the set Ŝτ,x0 =
{x̂hi : 0 < h < h0, ih ≤ τ }. Re-examining the proof of lemma 5, it is seen that we may
replace A by Ah in (2.7) to obtain

‖x̂h1 − x0‖ ≤ (1 + (1 − hω0)
−1)‖x0 − x̂‖ + h(1 − hω0)

−1‖Bx0 + Ahx̂‖(2.20)

for x̂ ∈ D(Ah). In the next step we may proceed similarly, to obtain

‖x̂hi − x̂hi−1‖ ≤ (1 − hω0)
−(i−1)(1 + hm(k))i−1‖x̂h1 − x0‖(2.21)

from (2.8), and finally we evaluate the error terms f̂
h

i , by proceeding as follows:

‖f̂
h

i ‖ = h−1‖(I − hA)x̂hi − x̂hi−1 − hBx̂hi ‖
≤ h−1‖{(I − hAh)− (I − hA)}x̂hi ‖

+ h−1‖(I − hAh)x̂hi − x̂hi−1 − hBx̂hi ‖
= ‖Ahx̂hi − Ax̂hi ‖ + ‖Bx̂hi − Bx̂hi−1‖
= ‖Ξhx̂hi − Ξ x̂hi ‖ + ‖Bx̂hi − Bx̂hi−1‖

(2.22)
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by (2.17). Combining these estimates as before, it is seen that

‖fhi ‖ ≤ ‖Ξhx̂hi −Ξ x̂hi ‖ +m(k) eτ (m(k)+ωh){2‖x̂ − x0‖ + h(‖Bx0‖ + ‖Ax̂‖)} .(2.23)

By an argument similar to that given after the proof of Lemma 5 we may show the consis-
tency condition for our new approximate scheme. The dissipativity of A can now be used in
the same way as before, and we have hence shown the existence of a solution of the form
described in Theorem 7. The estimate (2.16) for the growth of the solution x(·) also holds.
We note here that the uniform quasidissipativity of Ah is equivalent to the case in which the
constants of quasidissipativity have bounded lim sup, as h converges to zero. �

3. Semilinear Parabolic Systems

We shall treat a general class of systems of semilinear equations containing reaction,
diffusion and advection terms, by applying the results above concerning the product formula
approach. Initially, we require some preliminary definitions.

Let Ω be a bounded domain in Rn with sufficiently smooth boundary, and fix a positive
integer m. Define the operators Λj and Ξj by

Λj = dj� and Ξj = bj · ∇ , j = 1, · · · ,m(3.1)

for positive constants dj , and variable coefficients bj ∈ L∞(Ω)n. We assume that the Laplace
operator � is defined under homogeneous Neumann boundary conditions. Let functions Ψj
describe coupled reaction terms, so that we have a system of equations over the domain Ω ,
given by 

(u1)t = Λ1u1 +Ξ1u1 + Ψ1(u1, · · · , um) , u1(0, ·) = u0
1(·)

...
...

...

(um)t = Λmum + Ξmum + Ψm(u1, · · · , um) , um(0, ·) = u0
m(·) ,

(RDS)

under 0-Neumann boundary conditions. We assume that uj ≡ uj (·, x), j = 1, · · · ,m, are all

elements of Lp ⊂ L1, for some p > n, and define our Banach space X to be Lp(Ω)m, with
norm ‖·‖X given by

‖(z1, · · · , zm)‖X = (‖z1‖pp + · · · + ‖zm‖pp)
1
p .

Let A = Λ+Ξ , where

Λ

 z1
...

zm

 =
 Λ1z1

...

Λmzm

 and Ξ

 z1
...

zm

 =
 Ξ1z1

...

Ξmzm

 for

 z1
...

zm

 ∈ D(A) .(3.2)

Here, the domain D(A) is defined

D(A) =
{
z ∈ Lp

∣∣∣∣ z ∈ W 2,p(Ω),
∂

∂ν
z

∣∣∣∣
∂Ω

= 0

}m
,(3.3)
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where ν represents the outward normal vector on the boundary ∂Ω .
As in the previous section, we define the set of permissible initial data D by

D = {(z1, · · · , zm) ∈ X | ‖zj‖∞ < ∞ j = 1, · · · ,m} .(3.4)

Let the functional ϕ : D → R+ be given by

ϕ((z1, · · · , zm)) = max{‖z1‖∞, · · · , ‖zm‖∞} .(3.5)

We assume that the functions Ψj are Lipschitz continuous on ϕ-bounded sets, in such a
way that the operator B, defined

B

 z1
...

zm

 =
 Ψ1(z1, · · · , zm)

...

Ψm(z1, · · · , zm)

 for

 z1
...

zm

 ∈ D ,(3.6)

satisfies conditions (C1) and (C2).
To apply Theorem 7 directly, we would need to construct the resolvents of the operators

Λj +Ξj , which, given the fact that the bj s are possibly discontinuous, is not straightforward.
We therefore attempt to apply Theorem 8, by constructing resolvents to approximate opera-
tors, and showing convergence in the appropriate sense, as well as the remaining conditions
as set out in the previous section.

10 DEFINITION. The operators Ah, used to approximate A, shall be defined as fol-

lows: Firstly, for j = 1, · · · ,m, if bj = (bj,1, · · · , bj,n) ∈ (L∞)n, let {b(h)j,k}h>0 in C∞(Ω̄)

converge to bj,k in Lp as h ↓ 0, with ‖b(h)j,k‖∞ ≤ ‖bj,k‖∞ for k = 1, · · · , n. Then

bhj ≡ (b
(h)
j,1, · · · , b(h)j,n) → bj as h ↓ 0 ,(3.7)

in (L1)n. Define

Ξh
j = bhj · ∇ for j = 1, · · · ,m(3.8)

and Ah = Λ+Ξh, where

Ξh

 z1
...

zm

 =
 Ξ

h
1 z1
...

Ξh
mzm

 for

 z1
...

zm

 ∈ D(A) .(3.9)

Note that the resolvents (I − hAh)
−1, of the operators Ah, are defined by

(I − hAh)
−1

 z1
...

zm

 =
 (I − h(Λ1 + Ξh

1 ))
−1z1

...

(I − h(Λm +Ξh
m))

−1zm

 for

 z1
...

zm

 ∈ X .(3.10)

The following well-known elliptic estimates shall be useful at a number of points through-
out this section.
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11 LEMMA (Elliptic Estimates). Let z ∈ W 2,p and let A = d� + b · ∇ for positive

constant d and b = [bj ]nj=1 ∈ C1(Ω; Rn). Then there exists some constant C such that

‖∇z‖∞ ≤ C(‖A z‖p + ‖z‖p) .(3.11)

Here C ≡ C(n,Ω, d,K), and ‖bj‖∞ < K .

PROOF. This follows simply from well known estimates. Since

‖z‖W 2,p ≤ C′(‖A z‖p + ‖z‖p) ,

we know that ∇z ∈ W 1,p, and given the embedding W 1,p ↪→ C1−n/p(Ω̄), the statement is
obtained through the estimates

‖∇z‖∞ + [∇z]1−n/p ≤ C′′‖∇z‖W 1,p ≤ C′′′‖z‖W 2,p .

Details may be found in [6]. �

12 PROPOSITION. Let 1 < p < ∞, and F : Lp → (Lp)∗ be the duality mapping from

Lp into its dual. Let A = d�+ b · ∇ for positive constant d and b ∈ C1(Ω; Rn). Then, the
following holds for z ∈ D(A ) :

〈A z,F(z)〉 ≤
( ‖b‖2∞

4d(p − 1)

)
‖z‖2

p .(3.12)

PROOF. Let A be written d� + b · ∇. We begin by recalling that (Lp)∗ ≡ Lq , for p

and q such that 1 < p, q < ∞ and p−1 + q−1 = 1, and that F(z)(x) = ‖z‖2−p
p |z(x)|p−2z(x)

for a.e. x ∈ Ω where z �= 0 in Lp. Let z ∈ D(A ), and z �= 0. Then z ∈ C1(Ω̄), and

〈A z,F(z)〉 =
∫
Ω

A z · F(z)dx .(3.13)

Write 〈A z,F(z)〉 = 〈d�z,F(z)〉 + 〈b · ∇z,F(z)〉. The contraction semigroup et� is analytic
and positivity preserving on Lp for general p with 1 ≤ p < ∞, so that for η > 0, eη� z ∈
D(�) ∩ C∞, and in particular eη� z satisfies the 0-Neumann boundary conditions for any
z ∈ Lp. Thus F(z)∇ eη� z ∈ C1, and hence we may apply the divergence theorem to obtain∫

Ω

� eη� z · F(z)dx =
∫
Ω

div
(
F(z)∇ eη� z

)
dx −

∫
Ω

∇ eη� z · ∇F(z)dx

=
∫
∂Ω

F(z)
(∇ eη� z · ν) dS −

∫
Ω

∇ eη� z · ∇F(z)dx

= −
∫
Ω

∇ eη� z · ∇F(z)dx ,

where
∫
∂Ω
dS represents the integral over the surface of Ω , and as usual ν is the outward

normal to ∂Ω . Let η tend to 0. Then � eη� z tends to �z, and by the well-known elliptic
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estimate, ‖∇ ẑ‖∞ ≤ C(‖�ẑ‖p + ‖ẑ‖p), ẑ ∈ D(A ), we see that ∇ eη� z tends to ∇z in Lp .
Hence, we have

〈�z,F(z)〉 = −
∫
Ω

∇z · ∇F(z)dx .

Noting that ∇F(z) = (p − 1)‖z‖2−p
p |z|p−2∇z we obtain

〈A z,F(z)〉 = −d(p − 1)‖z‖2−p
p

∫
Ω

|z(x)|p−2|∇z(x)|2dx

+ ‖z‖2−p
p

∫
Ω

z(x)|z(x)|p−2b · ∇z(x)dx

≤ −d(p − 1)‖z‖2−p
p

∫
Ω

|z(x)|p−2|∇z(x)|2dx

+ ‖z‖2−p
p

∫
Ω

|z(x)|p−2|b| · |∇z(x)| · |z(x)|dx ,

and since

−|∇z(x)|2 + (d(p − 1))−1|b| · |∇z(x)| · |z(x)| = −{|∇z(x)| − (2d(p − 1))−1|b| · |z(x)|}2

+ (2d(p − 1))−2|b|2 · |z(x)|2

it is finally seen that

〈A z,F(z)〉 ≤ −d(p − 1)‖z‖2−p
p

∫
Ω

|z(x)|p−2
{
|∇z(x)| − |b|

2d(p − 1)
|z(x)|

}2

dx

+ (4d(p − 1))−1‖b‖2∞‖z‖2−p
p

∫
Ω

|z(x)|pdx

≤ ‖b‖2∞(4d(p − 1))−1‖z‖2
p .

�

13 REMARK. Since ‖bhj‖∞ ≤ ‖bj‖∞, there exists some uniform constant of quasidis-

sipativity, ω0, for the operators Ah and A. Furthermore, the operators (I − hAh)
−1 are non-

expansive with respect to ϕ. This is shown through the use of the maximum principle for
elliptic equations (for details see [7] and [5]).

14 DEFINITION. Let x0 = (u0
1, · · · , u0

m) ∈ D and let τ > 0 be a constant. We now
define the scheme as set out in (2.17), namely{

x̂h0 = x0

x̂hi = (I − hAh)
−1 (I + hB) x̂hi−1 for i ≥ 1 , ih ≤ τ .
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Denote the uniform ϕ-bound of the scheme by k, as previously. The convergence ofΞhx
to Ξx, for x ∈ D(Λ) is clear. We set about showing the appropriate uniform convergence,
starting with the following lemma.

15 LEMMA. Let x0 ∈ D ∩ D(A) and let elements x̂hi be generated as above for 0 <

h < h0 and ih ≤ τ . Then the set
{
Ahx̂hi

}
is uniformly ‖·‖-bounded for sufficiently small h.

PROOF. Performing the argument of equation (2.8) we obtain

‖x̂hi − x̂hi−1‖ ≤ (1 − hω0)
−(i−1)(1 + hm(k))i−1‖x̂h1 − x0‖ .

Next, we see that

‖x̂h1 − x0‖ ≤ (1 − hω0)
−1‖(I + hB)x0 − x0 + hAhx0‖ ,

and thus

‖x̂hi − x̂hi−1‖ ≤ h eτ (ωh+m(k)) ‖Bx0 + Ahx0‖ .(3.14)

As before we define ωh = ω0(1 − hω0)
−1. It is now clear that

‖h−1(x̂hi − x̂hi−1)− (Ah + B)x̂hi ‖ = h−1‖(I − hAh)x̂hi − x̂hi−1 − Bx̂hi ‖
≤ h−1‖(I + hB)x̂hi−1 − x̂hi−1 − Bx̂hi ‖
≤ hm(k) eτ (ωh+m(k)) ‖Bx0 + Ahx0‖ .

Thus, it is immediately seen that h−1‖x̂hi − x̂hi−1‖ is uniformly bounded, and it is clear by

the Lipschitz continuity of B on Dk that ‖Bx̂hi ‖ is. Hence it follows that Ahx̂hi must also be
uniformly bounded. �

16 THEOREM. Given x0 ∈ D∩D(A), there exists a unique solution x(·) : R+ → D of
the type described in Theorem 7 to the parabolic system (RDS), given by the product formula

x(t) = (D, ϕ) -lim
h↓0

{(I − hAh)
−1(I + hB)}

[
t
h

]
x0 , t ≥ 0 .(3.15)

PROOF. It remains only to show the uniform convergence as described in the remark

after Theorem 7. We let the elements x̂hi be written (uh1,i, · · · , uhm,i ) and proceed as follows.

We have

‖Ξhx̂hi −Ξ x̂hi ‖ = (‖(bh1 − b1) · ∇uh1,i‖pp + · · · + ‖(bhm − bm) · ∇uhm,i‖pp)
1
p .

The elliptic estimates then give us

‖∇uhj,i‖∞ ≤ C(‖(Λj + Ξh
j )u

h
j,i‖p + ‖uhj,i‖p) ≤ C(‖Ahx̂hi ‖ + ‖x̂hi ‖) ,

where the constant C may be chosen uniformly over h, since ‖bhj ‖∞ is uniformly bounded.

Thus, since bhj converges to bj in Lp, uniform convergence is seen to hold. �
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Since convergence in Lp implies convergence in L1, (3.15) gives solutions to (RDS) in
this larger space.

For equations of the type discussed here, we can extract further information about the
generated solutions. In preparation for this, the following lemma is necessary.

17 LEMMA. Let the sequence {xh}h>0 ⊂ X converge to some x ∈ X as h ↓ 0. Then,

(I − hAh)
−1xh → x as h ↓ 0 .(3.16)

PROOF. Firstly,

‖(I − hAh)
−1xh − x‖ ≤ ‖(I − hAh)

−1xh − (I − hAh)
−1x‖

+ ‖(I − hAh)
−1x − x‖

≤ (1 − hω0)
−1‖xh − x‖ + ‖(I − hAh)

−1x − x‖ .
Given some x̂ ∈ D(A) with ‖x̂ − x‖ ≤ ε,

‖(I − hAh)
−1x − x‖ ≤ ‖(I − hAh)

−1x − (I − hAh)
−1x̂‖

+ ‖(I − hAh)
−1x̂ − x̂‖ + ‖x̂ − x‖

≤ (1 + (1 − hω0)
−1)ε + h‖(I − hAh)

−1Ahx̂‖ .
In particular, letting h tend to 0 we see that in the limit the difference above is bounded by 2ε.
Since ε may be chosen arbitrarily we obtain the desired result. �

Note that the equivalent result for weak convergence also holds.

18 PROPOSITION. The solution x(·), constructed in Theorem 16, satisfies

x(t) = x0 + (Λ+Ξ)

∫ t

0
x(s)ds +

∫ t

0
Bx(s)ds(3.17)

for all t ≥ 0.

PROOF. Fix some t > 0 and let x̂hi be generated as in (2.17). Initially, note that

x̂hi − x0 =
i∑

k=1

x̂hk − x̂hk−1

=
i∑

k=1

(I − hAh)
−1(I + hB)x̂hk−1 − x̂hk−1

= h

i∑
k=1

Ah(I − hAh)
−1x̂hk−1 + h

i∑
k=1

(I − hAh)
−1Bx̂hk−1

= (I − hAh)
−1Λ

∫ ih

0
x̂h(s)ds + (I − hAh)

−1
∫ ih

0
Ξhx̂h(s)ds
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+ (I − hAh)
−1

∫ ih

0
Bx̂h(s)ds ,

where the functions xh(·) are defined xh(s) = x̂hi , i = [
s
h

]
, for s ≥ 0. On the interval [0, t],

xh(·) and Bxh(·) converge uniformly to x(·) and Bx(·), and so letting h converge to 0 and

ih to t we see that
∫ ih

0 xh(s)ds converges to
∫ t

0 x(s)ds, and by Lemma 17, the final term

converges to
∫ t

0 Bx(s)ds. We already know that ‖∇xhi ‖∞ is uniformly bounded, and thus the

(vector valued) integral
∫ ih

0 ∇xh(s)ds is also uniformly bounded (we permit ourselves use of
this notation to represent the vector in the appropriate product Banach space, with components
formed by the appropriate integral). Since X is a reflexive Banach space, there exists some
null sequence {hj }∞j=1 and some w(t) ∈ Xn such that

ihj → t and
∫ ihj

0
∇xhj (s)ds ⇀ w(t) .

The weak convergence of (I − hAhj )
−1Λ

∫ ihj
0 xhj (s)ds then also follows (since all other

terms converge), and hence the boundedness of Λ
∫ ihj

0 xhj (s)ds and the demi-closedness of
the operator � imply that

x(t)− x0 = Λ

∫ t

0
x(s)ds + b · w(t)+

∫ t

0
Bx(s)ds .(3.18)

Now, let φ ∈ C∞
0 (Ω̄), and denote w(t) by (w1, · · · , wn). Then,∫
Ω

φ(x)wk(x)dx = lim
j→∞

∫
Ω

φ(x)

[ ∫ ihj

0

∂

∂xk
xhj (s)ds

]
(x)dx

= − lim
j→∞

∫
Ω

φxk(x)

[ ∫ ihj

0
xhj (s)ds

]
(x)dx

= −
∫
Ω

φxk

[ ∫ t

0
x(s)ds

]
(x)dx .

Here, the first and last equalities hold by the weak convergence of the appropriate terms.

Hence w(t) = ∇{∫ t0 x(s)ds}, in the sense of distributions, and the statement holds. �

19 REMARK. As mentioned in the proof of Lemma 15, the estimate in (3.14) implies
that for the solution x(·) above, we have

‖x(t)− x(s)‖ ≤ e(ω0+m(k))(t+s) ‖(A+ B) x0‖ · |t − s| for t, s ∈ [0, τ ] .(3.19)

This also follows by examining the estimate (2.11) in the limit as h ↓ 0 and ih → t , jh → s.
Recall thatm(k) depends on the ϕ-bound k of the solution in the interval [0, τ ], which in turn
depends on τ . However, we can say that the solution is Lipschitz continuous on any bounded
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interval, with Lipschitz constant

Lip
(

x(·)∣∣[0,τ ]) ≤ e2(ω0+m(k))τ ‖(A+ B) x0‖ .(3.20)

It follows then that x(·) is strongly differentiable at almost every point on the real line. Let t
be one such point. Calculating the derivative at t , we have

x′(t) = lim
δ↓0

x(t + δ)− x(t)
δ

= lim
δ↓0
(Λ+Ξ)

1

δ

∫ t+δ

t

x(s)ds + lim
δ↓0

1

δ

∫ t+δ

t

Bx(s)ds

= lim
δ↓0
(Λ+Ξ)

1

δ

∫ t+δ

t

x(s)ds + Bx(t) .

It is clear that limδ↓0
1
δ

∫ t+δ
t x(s)ds = x(t), and also that ‖∇ 1

δ

∫ t+δ
t x(s)ds‖ is bounded for δ

sufficiently small, using an argument similar to that used in the proof of Proposition 18. Thus,
as was done previously, we may construct a null-sequence {δj }∞j=1 such that

w-lim
j→∞ ∇ 1

δj

∫ t+δj

t

x(s)ds = w(t)

for some w(t) ∈ Xn. Again we obtain the weak convergence of Λ 1
δj

∫ t+δj
t

x(s)ds, which by

the demi-closedness of Λ gives

x′(t) = Λx(t)+ b · w(t)+ Bx(t) .

We proceed in the same way as in Proposition 18 to show that w(t) is in fact equal to ∇x(t) in
the sense of distributions, and that ∇x(t) makes sense in Xn. Hence we obtain the following
theorem.

20 THEOREM. The solution x(·) to the system (RDS) of equations generated by the
second product formula for x0 ∈ D ∩D(A) is a unique strong solution.

21 REMARK. For x0 ∈ Dα ∩D(A) = Dα for some α > 0, we still know that all
elements xhi of the scheme belong to someDk for any bounded time interval, where k naturally
depends on this interval. The estimate in (2.11) implies continuous dependence of solutions on
initial data. Thus we can construct solutions to (RDS) as the pointwise limit of strong solutions

for any x0 ∈ Dα by considering a sequence {h(i)0 } of elements in Dα ∩ D(A) converging to
x0. In fact, we require only that

(D, ϕ) -lim
i→∞ x(i)0 = x0

for convergence to hold. Thus we have generalized solutions to (RDS) for initial data on all
of D.



A CLASS OF QUASILINEAR EVOLUTION SYSTEMS 441

4. Application to HIV model

The system of equations (HIV) below describes the processes of HIV infection in the hu-

man body, represented by a bounded, open domainΩ in R3 with sufficiently smooth boundary
∂Ω . Let u(t, x) represent the spatial distribution of uninfected cells at time t , v(t, x) that of
infected cells, and w(t, x) the concentration of the virus itself. We shall assume that u(t, ·),
v(t, ·) and w(t, ·) are all elements of Lp ⊂ L1 (t ≥ 0) for some p > n, and we therefore
define the Banach space X to be Lp(Ω)× Lp(Ω)× Lp(Ω), with norm ‖·‖ given by

‖(u, v,w)‖X = (‖u‖pp + ‖v‖pp + ‖w‖pp)
1
p .

Since the values of u, v and w shall represent quantities such as density and concentration, it

would seem more natural to use the space L1. However, in order to obtain estimates necessary
for convergence to be shown we begin by using the space Lp and later use the fact that Ω is

bounded, which implies the appropriate convergence and boundedness in L1. The equations
themselves take the form

ut = d1�u+ b1 · ∇u+ S(w)− αu+ (p(w)− γ )wu , u(0) = u0

vt = d2�v + b2 · ∇v + γwu− βv − q(w)wv , v(0) = v0

wt = d3�w + b3 · ∇w + r(w)vw − δuw + g (w) , w(0) = w0

(HIV)

where (u0, v0, w0) ∈ D, the set of permissible initial data detailed later on. The homogeneous
Neumann boundary condition is imposed on the unknown functions u, v and w. This system
of equations is based on a model given in [4], where a detailed description of the specific
reaction terms can also be found. We give a brief outline here and refer the reader to [4] for
more specific information.

The constants α, β, γ and δ represent, repectively, mortality rates of u and v, the rate of
infection, and the rate of decrease of HIV virus through immune response. The functions p,
q and r are given by

p(w) = p∗

cp + |w| , q(w) = q∗

cq + |w| , r(w) = r∗

cr + |w|(4.1)

and correspond to production of uninfected cells and virus cells, and loss of infected cells
due to presence of the virus. The constants p∗, q∗, r∗, and cp, cq , cr are the primary and
secondary constants of saturation. Finally, g (·) and S(·) correspond to the supply of the virus
and uninfected cells, and are assumed here to be uniformly bounded, Lipschitz continuous
functions in C∞(Ω̄ × R; R).

Diffusion of the individual substances and advection effects along the vector fields b1,
b2 and b3, are described by the terms dj� and bj · ∇. Here we shall assume each bj to be a

function in the space (L∞(Ω))3, expecting the vector field to describe the paths of veins and
other such channels.
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22 DEFINITION. We formulate the problem in the manner described in the previous
section, defining D, ϕ, A and Ah as set out there. The operator B is defined

B

 uv
w

 =
S(w)− αu+ (p(w)− γ )wu

γwu− βv − q(w)wv

r(w)wv − δuw + g(w)

 for

 uv
w

 ∈ D .(4.2)

It therefore follows that, explicitly, the approximate scheme takes the form:
uhi+1 = (I − h(Λ1 + Ξh

1 ))
−1{uhi + h(S(whi )− αuhi + (p(whi )− γ )whi u

h
i )}

vhi+1 = (I − h(Λ2 +Ξh
2 ))

−1{vhi + h(γwhi u
h
i − βvhi − q(whi )w

h
i v
h
i )}

whi+1 = (I − h(Λ3 + Ξh
3 ))

−1{whi + h(r(whi )w
h
i v
h
i − δuhi w

h
i + g(whi ))} .

(4.3)

The operator B is locally Lipschitz continuous in the sense described in (C4), and in
fact, since its terms are all rather well-behaved, we can see that it should be possible to find
a function ψ∗(·) to bound the growth with respect to time of our descrete scheme. However,
we shall show the ϕ-boundedness in a slightly more technical way, and at the same time

extract some useful information about the elements {x̂hi }, related to the physical meaning of
the quantities u, v and w.

23 PROPOSITION. Let (u0, v0, w0) ∈ D satisfy u0(x), v0(x) andw0(x) ≥ 0 for almost

every x ∈ Ω . Then there exists some h0 > 0 such that the components uhi , v
h
i and whi of

x̂hi , are all non-negative in the same sense and are uniformly L∞-bounded for ih ≤ τ and

0 < h < h0.

PROOF. To begin, note that for whi ≥ 0,

p(whi )w
h
i = p∗whi

cp +whi

≤ p∗ ,(4.4)

and similarly, q(whi )w
h
i ≤ q∗ and r(whi )w

h
i ≤ r∗. Let g ∗ = ‖g ‖∞ and S∗ = ‖S‖∞. To

simplify notation we define the following constants. The uniform bound Cu on uhi shall be
given by

Cu = eτp
∗
{
‖u0‖ + S0

p∗

}
,(4.5)

and constants C1 and C2, used next in the uniform bound Cx for ϕ(xhi ), defined

C1 = max{α + p∗ + γCu, β + q∗ + γCu, r∗ + δCu}
C2 = max{S∗, g ∗} .(4.6)

Define Cx = eτC1{ϕ(x0)+ C2
C1

} and finally

h0(τ ) = min

{
1

β + q∗ ,
1

α + γCx ,
1

δCu

}
.(4.7)
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The statement shall be shown by proving the following:

CLAIM. For all h such that 0 ≤ h ≤ h0, and all i = 0, 1, · · · , Nh such that hNh ≤ τ ,
we have

(i) ‖ui‖∞ ≤ (1 + hp∗)i ‖u0‖∞ + h
∑i−1
j=0 (1 + hp∗)j S∗

(ii) ϕ(xhi ) ≤ (1 + hC1)
i ϕ(x0)+ h

∑i−1
j=0 (1 + hC1)

j C2

(iii) uhi , vhi , whi ≥ 0,
where the sums in (i) and (ii) are naturally taken to be zero for i = 0. Note that under (i) and

(ii) the uniform bounds ‖ui‖∞ ≤ Cu and ϕ(xhi ) ≤ Cx follow simply from the definitions.

PROOF OF CLAIM. Choose some appropriate h. We shall use an induction argument
to show the result. Firstly, it is easily verified that (i),(ii) and (iii) are satisfied for i = 0.
We therefore assume that (i) through (iii) hold for some i, and show the result for i + 1.

For notational convenience, let ûi+1 = (I − h(Λ1 + Ξh
1 ))ui+1 and define v̂i+1 and ŵi+1

similarly. Also, we shall drop the superscript h and write ui etc for uhi where no confusion
will be caused.

Consider the terms ϕ(xi ). The nature of our operators Ah is such that ϕ(xi+1) ≤ ϕ((I −
hAh)xi+1) = ϕ((ûi+1, v̂i+1, ŵi+1)). By (4.3),

‖ûi+1‖∞ ≤ ‖ui‖∞ + h
(
S∗ + (α + p∗)‖ui‖∞ + γCu‖wi‖∞

)
≤ {

1 + h
(
α + p∗ + γCu

)}
ϕ(xi)+ hS∗ .

Similarly, we obtain

‖v̂i+1‖∞ ≤ {
1 + h

(
γCu + β + q∗)} ϕ(xi) and

‖ŵi+1‖∞ ≤ {
1 + h

(
r∗ + δCu

)}
ϕ(xi )+ hg ∗ .

It is clear that

ϕ(xi+1) ≤ (1 + hC1) ϕ(xi )+ hC2

≤ (1 + hC1)
i+1ϕ(x0)+ h

i∑
j=0

(1 + hC1)
jC2 ,

showing that (ii) holds for xi+1.
By the definition of h0, the following estimates hold

ûi+1 ≥ (1 − h(α + γwi))ui ≥ (1 − h(α + γCx))ui ≥ 0

v̂i+1 ≥ (1 − h(β + q∗))vi ≥ 0

ŵi+1 ≥ (1 − hδui)wi ≥ 0 .
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By hypothesis, ui , vi and wi are all non-negative, so that by (4.3) and (4.4) we see that

ûi+1 ≤ (1 + hp∗)ui + hS∗

≤ (1 + hp∗)‖ui‖∞ + hS∗

≤ (1 + hp∗)i+1‖u0‖∞ + h

i∑
j=0

(1 + hp∗)j S∗ .

Statements (i) and (iii) then follow by the L∞-norm and order preserving properties of the

operator (I − hAh)
−1 and its components. This completes the proof of the claim, and hence

that of the proposition. �

The reader will note the dependence of h0 on both the time-bound τ and the ϕ-bound of
initial data. In other words we have had to take full advantage of the localization used in the
convergence theorem. The following statement can now be made:

24 THEOREM. Unique generalized solutions x(·) : R+ → D exist to the system (HIV)
for all initial data x0 ∈ D. When x0 ∈ D ∩ D(A), these solutions are strong solutions and
are given by the product formula

x(t) = lim
h↓0

{(I − hAh)
−1(I + hB)}[t/h]x0 , t ≥ 0 .(4.8)

Furthermore, for initial data x0 consisting of component functions u0, v0 and w0, all non-
negative almost everywhere, the generated solution x(·) retains this property, and is therefore
physically reasonable in this sense.

25 REMARK. Note that when x(·) is a strong solution x(·) ∈ D(Λ), and hence by
definition the 0-Neumann boundary conditions are satisfied in a strict sense.

5. Concluding remarks

The reader will note that in Section 3, the assumption that initial data x0 belongs not only
to some ϕ-bounded set, but also to the domain of A, is essential to the proof of convergence

of Ξhx̂hi − Ξ x̂hi to zero uniformly over i, and thus the convegence of the product formula.
We then use the fact that the semigroup generating solutions depends on initial data in a
continuous way to show that solutions exist for all x0 ∈ D. Note that such an extension

is possible for any operator A satisfying D(A) ∩Dα = Dα for all α > 0, using the local
quasidissipativity of A + B as was done in Section 3. This means that the space (D, ϕ) is
complete with respect to the topology introduced in Section 1.

In the inductive argument used in the proof of Lemma 23 we firstly require a bound on

terms ‖uhi ‖∞, namely the first component of the elements of the scheme, in order to find the

uniform bound for ϕ(xhi ). Expecting the operator B used here to be typical of the type of
perturbations encountered in other applications, we note that this proof can be generalized to
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the case of multiple functionals with bounds dependent on each other. In the case of the HIV

model above we could have defined a second functional ϕ1 : X → (R+)2 by

ϕ1[(u, v,w)] = ‖u‖∞ , (u, v,w) ∈ X
and it is easy to think of a situation in which a larger number of relevant inter-related func-
tionals can be defined to obtain similar results concerning boundedness and non-negativity for
reaction operators of other convective reaction-diffusion systems.
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