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Minimally Knotted Spatial Graphs are Totally Knotted
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Abstract. Applying Jaco’s Handle Addition Lemma, we give a condition for a 3-manifold to have an incom-
pressible boundary. As an application, we show that the boundary of the exterior of a minimally knotted planar graph
is incompressible.

1. Introduction

A 3-manifold M is said to be ∂-irreducible if ∂M is incompressible in M , namely, for any
disk D properly embedded in M , ∂D bounds a disk in ∂M . Otherwise M is ∂-reducible. See
[4] for the basic terminology in three-dimensional topology which is not stated here. In [2],
Haken constructed an algorithm to detect if an irreducible 3-manifold is ∂-irreducible or not.
See also Jaco-Oertel [6] for a survey. The algorithm is valid for all irreducible 3-manifolds
with handle decompositions, but it is not adapted for an execution by hand. In this paper, we
give a sufficient condition for a certain 3-manifold with non-empty connected boundary to be

∂-irreducible, and consider some properties of minimally knotted spatial graphs in S3. Indeed
our sufficient condition is adaptable for not all irreducible 3-manifolds, but is much easier to
check than Haken’s algorithm.

In §2, we introduce some concept for curves in the boundary of a 3-manifold to state a
sufficient condition to be ∂-irreducible as follows. (See §2 for definitions and notation.)

THEOREM 1.1. Let M be a 3-manifold with non-empty connected boundary ∂M . If
there exists a disjoint union of simple closed curves J in ∂M such that (M, J ) is almost
trivial, then M is irreducible and ∂-irreducible.

In fact, Theorem 1.1 has various applications to spatial graphs as will be described in

§3. A spatial graph means an embedded 1-dimensional graph in S3. A graph G is said to be
good if the degree of each vertex of G is greater than one. In this paper, we deal with good
planar graphs, and our result obtained here can be generalized for more general good graphs.

Let Γ be a spatial graph of a planar graph G embedded in S3. We say that Γ is minimally

knotted if any proper subgraph Γ ′ is contained in a sphere in S3, and Γ itself is not. A spatial

Received November 14, 2002; revised April 24, 2003∗ The second author was supported by Research Fellowships of the Japan Society for the Promotion of Science for
Young Scientists.



414 MAKOTO OZAWA AND YUKIHIRO TSUTSUMI

graph Γ is said to be totally knotted if the exterior E(Γ ) is irreducible and ∂-irreducible.
By using some tangles with the Brunnian property, we can show that every planar graph has
a spatial embedding which is minimally knotted and totally knotted. Inaba and Soma [3,
Theorem 2], Kawauchi [8, Theorem 2.1] and Wu [19] showed that every planar graph has
minimally knotted spatial embeddings with some additional conditions. On the other hand, it
is easy to construct totally knotted spatial embeddings of every graph which are not minimally
knotted by Myers’ technique [13] or Kawauchi’s [8, Theorem 1.1]. Together with a result of
Scharlemann and Thompson [15, Theorem 7.5], the following is obtained by our result. The
total knottedness is available under some weaker condition, as will be considered in §3.

THEOREM 1.2. Minimally knotted connected planar spatial graphs are totally knotted.

Scharlemann and Thompson [15, Theorem 7.5] showed similar results, and gave an algo-
rithm to detect the triviality of embedded planar graphs, via the extended Haken’s algorithm
[6], and Wu [20] reproved it and gave a necessary and sufficient condition for a planar graph
in general 3-manifold to be minimally knotted in terms of “cycle-triviality”.

We say that a 3-manifold with non-empty boundary is acylindrical if it is irreducible,
∂-irreducible and does not contain essential tori nor annuli. By Thurston’s hyperbolization
result ([11], [17]), such a 3-manifold admits a complete hyperbolic structure with totally
geodesic boundary. For example, see [7] and [18] for algorithms decomposing 3-manifolds
into acylindrical 3-manifolds which are based on normal surface theory.

It is noticed that Theorem 1.2 gives a sufficient condition for a spatial graph Γ to be
totally knotted, namely E(Γ ) is irreducible and ∂-irreducible. Now it is natural to ask the
following.

PROBLEM 1.3. Give a sufficient condition for spatial graphs to be acylindrical.

In §3, several examples of minimally knotted spatial graphs are given. The spatial graphs
in Figures 3-(A) and -(C) are acylindrical (cf. [17] and [12, Proposition 4.4]), but the exterior
of the graph shown in Figure 4-(A) contains essential annuli.

2. Proof of Theorem 1.1

In this paper, we use the following notation:
• cl(·): the closure,
• N(Y,X): a regular neighborhood of Y in X where Y ⊂ X,
• ∂N(Y,X): the frontier of N(Y,X) in X, and
• E(Y,X): an exterior of Y in X, namely E(Y,X) = cl(X − N(Y,X)).
The total space X is not indicated if it is well-understood.
Let M be a compact, orientable 3-manifold with non-empty boundary ∂M . For a disjoint

union J of simple closed curves in the boundary ∂M , the manifold obtained by attaching 2-

handles D2 × I ’s along J is denoted by M(J ). Let J = J1 ∪ · · · ∪ Jn be a disjoint union of
simple closed curves, possibly empty (i.e. n = 0), in ∂M .
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We say that (M, J ) is trivial (otherwise it is non-trivial) if:
(T.1) There are mutually disjoint essential disks D1, · · · ,Dn in M transverse to J such

that |∂Di ∩ Jj | = δi
j , and

(T.2) M(J ) is a 3-ball.
For our convenience, we define the quasi-triviality for (M, J ) inductively as follows. We

say that (M, J ) is n-quasi-trivial provided that:

(Q.1) For some i, there is an essential disk Di in M transverse to J with |∂Di∩Jj | = δi
j ,

(Q.2) for i in (Q.1), the pair (M(Ji), J − Ji) is (n − 1)-quasi-trivial, and
(Q.3) if n = 0, then M is a 3-ball.
It is noticed that if (M, J ) is trivial, then it is |J |-quasi-trivial and the genus of ∂M

coincides with the number of the components of J . If (M, J ) is n-quasi-trivial, then n = |J |
and we say that (M, J ) is quasi-trivial.

We say that (M, J ) is almost trivial if:
(A.1) For each Ji ⊂ J , (M(Ji), J − Ji) is trivial,
(A.2) (M, J ) is not trivial. (By Lemma 2.3, we can replace this with that (M, J ) is not

quasi-trivial.)
We will prove Theorem 1.1 by applying Jaco’s Handle Addition Lemma [5]. The fol-

lowing result is known as the Handle Addition Lemma.

THEOREM 2.1 ([5]). Let M be an irreducible 3-manifold with compressible boundary,
and J a simple closed curve in ∂M . If ∂M − J is incompressible, then ∂M(J ) is incompress-
ible.

Theorem 2.1 was generalized in several ways. (See [10], [14]). The following is needed
later.

LEMMA 2.2 ([10, Lemma 1.6], [14, Lemma 2.3]). Suppose ∂M − (J1 ∪ · · · ∪ Jn) is
incompressible in M and ∂M − (J − Ji) is compressible in M . Then, ∂M(Ji) − (J − Ji) is
incompressible in M(Ji).

In order to prove Theorem 1.1, we describe some properties of quasi-trivial pairs.

LEMMA 2.3. Assume (M, J ) is quasi-trivial. Then (M, J ) is trivial and M is a han-
dlebody.

PROOF. We prove this by induction on |J | = g (∂M). In the case where n = 0, we
are done by condition (Q.3). Suppose n > 0. By condition (Q.2) and by the assumption of
the induction, (M(Ji), J − Ji) is trivial for some i. In particular, M(Ji) is a handlebody. It
is noticed that M is viewed as the exterior of a properly embedded arc τ in the handlebody
M(Ji), where τ corresponds to a cocore of the attached 2-handle. By condition (Q.1), there
is a disk D properly embedded in E(τ,M(Ji)) such that D ∩ ∂N(τ) is a single arc in the
annulus ∂N(τ) and D ∩ (J − Ji) = ∅. Let D′ be the union of mutually disjoint properly
embedded disks in M(Ji) corresponding to the disks of condition (T.1) for (M(Ji), J − Ji).
We may assume that D′ and τ are in general position and N(τ)∩D′ consists of meridian disks
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of N(τ). By using an innermost disk argument, we can isotope D so that D ∩ D′ consists of
arcs.

Let ∆ be an outermost disk of D with respect to D ∩ D′. Put α = ∆ ∩ ∂D and β =
cl(∂∆ − α). Notice that there are three possibilities for ∆ as follows: (A) α ⊂ ∂N(τ), (B) α

consists of two connected arcs α∩∂N(τ) and α∩∂M(Ji), and (C) α ⊂ ∂M(Ji). In the case of
(A), by sliding τ along ∆, we can isotope τ so that D ∩ D′ is reduced. This isotopy preserves
∂M(Ji). In the case of (B), we can also isotope τ so that D ∩ D′ is reduced by sliding along
∆. Though this isotopy does not preserve ∂τ , by condition (Q.1), α ∩ ∂M(Ji) does not meet
J − Ji . In the case of (C), we can replace D′ by another union of disks as follows. Let D′′ be
the component of D′ containing β. Let D1 and D2 be components of D′′ − β. By condition
(T.1), we may assume that D1 does not meet J − Ji . By removing D1 from D′′, pasting ∆,
and pushing it slightly, we obtain the new system D∗ of disks satisfying condition (T.1) and
|D∗ ∩ D| < |D′ ∩ D|. Thus we may assume D′ ∩ D = ∅. Now we see that D′ ∪ D satisfies
condition (T.1), and M = E(τ,M(Ji)) is a handlebody. �

Note that by Lemma 2.3, any quasi-trivial pair (M, J ) is a handlebody of genus |J | and
J is a primitive set (in Gordon’s notion [1]) of simple closed curves in ∂M as illustrated in
Figure 1.

LEMMA 2.4. Assume (M, J ) is almost trivial. Then M(Ji) is a handlebody for each i,

and either ∂M(Ji) − (J − Ji) is compressible in M(Ji), or M(Ji) is a solid torus.

PROOF. By condition (A.1), the pair (M(Ji), J − Ji) is trivial, and thus quasi-trivial.
By Lemma 2.3, M(Ji) is a handlebody. By conditions (A.1) and (T.1), for some j , there is a
disk D ⊂ M(Ji) such that D ∩J = D ∩Jj is a transverse point. If M(Ji) is not a solid torus,
the frontier ∂N(D ∪ Jj ) is actually a compressing disk of ∂M(Ji) − (J − Ji). �

LEMMA 2.5. For an almost trivial pair (M, J ), M is irreducible. If M is not a han-
dlebody, then ∂M − J is incompressible in M .

PROOF. By condition (A.1), (M(Ji), J − Ji) is trivial. Thus, M(J ) is a 3-ball by con-

dition (T.2) and we see that M is embeddable in S3. Since ∂M is connected, M is irreducible.
Now M is viewed as the exterior of properly embedded arcs τ1, · · · , τn in a 3-ball B

such that each meridian of τi corresponds to Ji . Thus, any compressing disk D for ∂M − J is
isotoped so that ∂D ⊂ ∂B. Hence, D separates B into two 3-balls B1 and B2. Let Mi denote
the submanifold of M corresponding to Bi .

FIGURE 1.



MINIMALLY KNOTTED SPATIAL GRAPHS 417

Without loss of generality, we may assume τ1, · · · , τm (m < n) is contained in B1,
and the rest in B2, after reordering if necessary. By condition (A.1), M(J1) is trivial. Thus
by Lemma 2.3, M(J1) is a handlebody. Since M2 is a component of the result of cutting
the handlebody M(J1) along D, M2 is a handlebody. Similarly, M1 is a handlebody. Thus
M = M1 ∪D M2 is a handlebody. Hence we can conclude that if M is not a handlebody, then
∂M − J is incompressible. �

LEMMA 2.6. Assume (M, J ) is almost trivial. Then M is irreducible and either M is
∂-irreducible or M is a handlebody.

PROOF. Suppose that M is ∂-reducible and not a handlebody. First, we consider the

case where g (∂M) > 2. Then, there is a number 1 ≤ h ≤ n such that ∂M − (J − ⋃h
k=1 Jk)

is compressible and ∂M − (J − (
⋃h

k=1 Jk − Jh)) is incompressible in M . By Lemma 2.5,

∂M − J is incompressible. Thus, it follows from Lemma 2.2 that ∂M(Jh) − (J − ⋃h
k=1 Jk)

is incompressible. On the other hand, ∂M(Jh) − (J − Jh) is compressible in M(Jh) by
Lemma 2.4, since M(Jh) is not a solid torus for g(∂M) > 2. Hence we see that h > 1. It
is noticed that ∂M(Jh) − (J − Jh) is a subsurface of ∂M(Jh) − (J − J1 ∪ · · · ∪ Jh−1 ∪ Jh)

and each of loops J1, · · · , Jh−1 is non-separating in ∂M(Jh). Thus a compression of ∂M(Jh)−
(J −Jh) gives a compression of ∂M(Jh)−(J −J1∪· · ·∪Jh) in M(Jh). This is a contradiction.
This shows that ∂M is incompressible in M if M is not a handlebody.

Suppose g(∂M) = 2 and J = J1 ∪ J2. Since (M, J ) is almost trivial, and g(∂M(Ji)) =
1, the manifold M(Ji) is a solid torus. By Lemma 2.5, ∂M − J is incompressible in M .
Suppose ∂M − J1 is incompressible in M . It follows from Theorem 2.1 that ∂M(J1) is
incompressible in M(J1). This contradicts that M(J1) is a solid torus. Hence ∂M − J1 is
compressible. Namely a compressing disk D of ∂M can be chosen so that ∂D ∩ J1 = ∅.
Similarly, ∂M − J2 is compressible and we let E be a compressing disk of ∂M − J2, possibly
E ∩ J1 �= ∅. Now M is viewed as the exterior of an arc τ1 properly embedded in a solid torus
V and J2 is considered to be a longitude of V . Thus, D is isotoped so that ∂D ⊂ ∂V since
∂D ∩ J1 = ∅. If D separates V , then V is separated into a 3-ball V1 and a solid torus V2 such
that V1 contains τ1, and a meridian disk of V2 is a compressing disk of ∂M − J1. Hence we
may assume D is non-separating and D is a meridian disk of V . If E(D,M) is a solid torus,
then M is a handlebody and we are done.

By the same reason as above, E can be assumed to be non-separating in M so that E is a
meridian disk of the solid torus M(J2). Thus, we may assume that the algebraic intersection
number ∂E ·J1 = 1. Let us consider the intersection D∩E. By using an innermost argument,
we can remove all circles of D∩E. Let ∆ be an outermost disk in D. Now E is ∂-compressed
by ∆ to two disks E1 and E2, possibly ∂Ei ∩ J2 �= ∅. Without loss of generality, we may
assume ∂E1 · J1 is odd since ∂E1 · J1 + ∂E2 · J1 = ∂E · J1 is odd. Repeating such ∂-
compressions, finally we get a properly embedded disk E′ in M ′ = E(D,M) with ∂E′ · J1

odd. This means that E′ is a non-separating compressing disk of ∂M ′ in M ′. Since M is
irreducible, M ′ is also irreducible. Thus, the sphere obtained by compressing ∂M ′ along E′
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bounds a 3-ball in M ′ on the side not containing E′, and we see that M ′ is a solid torus.
Hence, M = M ′ ∪N(D) is a handlebody of genus two and the conclusion follows in the case
g (∂M) = 2.

In the case where g (∂M) = 1, it is easy to see that if M is not a solid torus, then it is a

non-trivial knot exterior in S3 and it is ∂-irreducible. �

LEMMA 2.7. If (M, J ) is almost trivial, then M is not a handlebody.

PROOF. Suppose M is a handlebody. By condition (A.1) and Lemma 2.3, we see that
M(J ′) is a handlebody for any subsystem J ′ of J . Now the conclusion follows directly form
[1, Theorem 1]. �

PROOF OF THEOREM 1.1. By Lemmas 2.6 and 2.7, M is irreducible and ∂-irreducible.
�

Now the following is available. (Compare with [1, Theorem 1].)

THEOREM 2.8. Let (M, J ) be such that for any Ji ⊂ J, (M(Ji), J − Ji) is trivial.
Then either

• If M is ∂-reducible, then M is a handlebody and (M, J ) is trivial, or
• M is ∂-irreducible. �

3. Proof of Theorem 1.2 and examples

Let Γ be a spatial graph in S3 of a connected graph G. For edges E = {e1, · · · , en} of Γ ,
we denote the simple closed curve in ∂E(Γ ) corresponding to a meridian of ei by e∗

i , and put
E∗ = {e∗

1, · · · , e∗
n}. Then by the notion of 2-handle addition, we have E(Γ −E) = E(Γ )(E∗).

(cf. Figure 2) We use the same letters for the edges of Γ corresponding to edges of G. For a
graph or a spatial graph, we denote the set of vertices, edges by V(·) and E(·) respectively.

A set of edges E of G is called a base edge system of G if G−E is connected and simply
connected, and a set of edges E of Γ is called a base edge system of Γ if Γ − E is connected
and simply connected, equivalently E(Γ − E) = E(Γ )(E∗) is a 3-ball.

LEMMA 3.1. Let Γ be a spatial graph in a sphere F in S3. For any base edge system
E = {e1, · · · , en} of Γ, the pair (E(Γ ), E∗) is trivial.

FIGURE 2.
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PROOF. By Lemma 2.3, it is sufficient to prove that (E(Γ ), E∗) is quasi-trivial.
Let Γ ∗

E be the subgraph of the dual graph of Γ in F whose vertices are dual of all faces
of F − Γ and edges consist of the dual of E . Since E is a base edge system, Γ − E is simply
connected.

First we claim that Γ ∗
E contains a vertex of valence 1. Put v = |V(Γ )|, e = |E(Γ )|, f =

|F−Γ |, and put v∗
E = |V(Γ ∗

E )|, e∗
E = |E(Γ ∗

E )|. Since Γ is embedded in the sphere F , we have
v−e+f = 2. Put g = 1+e−v. Notice that g is equal to the genus of the handlebody N(Γ ).
Clearly, e∗

E = g , v∗
E = f . Hence we have v∗

E = e∗
E + 1. On the other hand, if we assume that

all valences are greater than or equal to 2, then we have e∗
E ≥ 2v∗

E/2 = v∗
E = e∗

E + 1. This is
a contradiction.

Since E(Γ − E) is homeomorphic to a 3-ball, the subgraph Γ − E does not contain any
cycles. Hence, each face of F − Γ meets E . Thus, each vertex of Γ ∗

E has non-zero valence.
Thus, the exterior E(Γ ) contains a non-separating disk D coming from a face of F − Γ

corresponding to a vertex with valence 1 of Γ ∗
E such that |∂D ∩ E∗| = 1. Now it is easy to

check that (E(Γ ), E∗) is quasi-trivial by induction on |E |. �

Now we are ready to prove the following.

LEMMA 3.2. If Γ is a minimally knotted planar spatial graph, then for any base edge
system E = {e1, · · · , en} of Γ, the pair (E(Γ ), E∗) is almost trivial.

PROOF. Since Γ is minimally knotted, Γ − ei is in a sphere in S3. By Lemma 3.1,
we have (E(Γ − ei), E∗ − e∗

i ) is trivial. Hence condition (A.1) holds for (E(Γ ), E∗). By
[15, Theorem 7.5], if the exterior E(Γ ) is a handlebody (π1(E(Γ )) is free), then Γ is trivial,

namely, Γ is embedded in a sphere in S3, since π1(E(Γ − e)) is free for each non-separating
edge e by the minimal knottedness. Thus, E(Γ ) is not a handlebody. Hence (E(Γ ), E∗) is
non-trivial by Lemma 2.3. Thus, it is an almost trivial pair. �

The converse is true in the following sense.

PROPOSITION 3.3. For any almost trivial pair (M, J ), there exists a spatial graph Γ

such that (E(Γ ), E∗) = (M, J ) for some base edge system E of Γ . In fact, Γ can be chosen
to be a bouquet with n loops.

PROOF. Since M(J ) is a 3-ball, M is the exterior of some properly embedded arcs

τ1, · · · , τn in a 3-ball B. Embedding (B, τ ) in S3 and shrinking S3 − B into a point, we

obtain a bouquet Γ embedded in S3 such that E(Γ ) = M . This completes the proof. �

THEOREM 3.4. Let Γ be a spatial graph. If Γ has a base edge system E such that
(E(Γ ), E∗) is almost trivial, then Γ is totally knotted.

PROOF. By Theorem 1.1, E(Γ ) is irreducible and ∂-irreducible. Thus Γ is totally
knotted. �

PROOF OF THEOREM 1.2. Theorem 1.2 follows directly from Lemma 3.2 and Theo-
rem 3.4. �
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FIGURE 3.

FIGURE 4.

Here we describe some examples of spatial graphs which are totally knotted. The θ -
curve Γ1 illustrated in Figure 3-(A) is known to be non-trivial ([9]), but is minimally knotted.
The handcuff graph Γ2 embedded as shown in Figure 3-(B) is not minimally knotted for the
two loops e1, e2 have the linking number one. However it is not hard to see that the exterior
M contains an incompressible torus, thus M is not a handlebody. On the other hand, taking
meridians of e1, e2 as J , we see that (M, J ) is almost trivial. Hence by Theorem 3.4, Γ2

is totally knotted. The graph Γ3 illustrated in Figure 3-(C) is not minimally knotted, in fact,
each subgraph is a trefoil knot and we cannot adapt Theorem 3.4, but it is totally knotted since
E(Γ3) is homeomorphic to the tangle space of the “true lover’s tangle”, which was proved by
Myers [12, Proposition 4.1] to be atoroidal.

In [16], Taniyama gave a useful method to confirm the non-triviality of certain spatial
graphs, and the graph illustrated in Figure 4-(A) is shown to be irreducible (see [16] for
definition), thus it is non-trivial. Now it is easy to see that it is minimally knotted. Hence
by Theorem 1.2, it is totally knotted. It is remarked that the exterior is homeomorphic to the
tangle space of the tangle illustrated in Figure 4-(B), and the tangle is non-trivial.
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