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Abstract. We consider Bianchi surfaces parametrized by a generalized Chebyshev net and show that such a
surface with constant Chebyshev angle is a piece of a right helicoid.

1. Introduction

Bianchi surfaces are a class of surfaces with negative Gaussian curvature discovered by
generalizing Bäcklund transformation for surfaces with constant negative Gaussian curvature
[1, 2]. On the other hand Bobenko [3] introduced a new class of surfaces which are called har-
monic inverse mean curvature (HIMC for short) surfaces as a generalization of surfaces with
constant mean curvature. Nowadays both surfaces are studied from the viewpoint of theory of
integrable systems [4, 7, 8, 10, 11, 12, 13, 15]. In particular they admit a one-parameter family

of deformations preserving the ratio of the principal curvatures and if the ambient space is R3

any isothermic HIMC surface is a dual to a Bonnet surface. Moreover isothermic HIMC sur-

faces in R3 with constant ratio of the principal curvatures can be expressed more concretely
than general case as well as Bonnet surfaces with constant curvature [5, 6, 9, 14, 16].

In this paper we introduce the notion of generalized Chebyshev nets which is a natural
generalization of Chebyshev nets for surfaces with constant negative Gaussian curvature and
show that the following:

THEOREM 1.1. A Bianchi surface with constant Chebyshev angle parametrized by a
generalized Chebyshev net is a piece of a right helicoid.

In the following we consider only surfaces with negative Gaussian curvature in the Eu-

clidean 3-space R3. Since such a surface has two directions, called the asymptotic directions,
in which the curvature vanishes, we can parametrize the surface locally by asymptotic line
coordinates (x, y):

F : D → R3 ,
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where D ⊂ R2. If the Gaussian curvature is − 1
ρ2 for a positive function ρ on D then the

fundamental forms become as follows:

I = A2dx2 + 2AB cos φdxdy + B2dy2, II = 2AB sin φ

ρ
dxdy ,

where A = |Fx |, B = |Fy | and φ is the angle between the asymptotic lines, called the
Chebyshev angle. Changing the coordinates if necessary, we may assume that 0 < φ < π . If

we put a = A
ρ

, b = B
ρ

then the Gauss-Codazzi equations have the following form [3]:

φxy +
(

ρxb

2ρa
sin φ

)
x

+
(

ρya

2ρb
sin φ

)
y

− ab sin φ = 0 ,(1.1)




ay + ρy

2ρ
a − ρx

2ρ
b cos φ = 0 ,

bx + ρx

2ρ
b − ρy

2ρ
a cos φ = 0 .

(1.2)

DEFINITION 1.1. A surface is called a Bianchi surface if ρxy = 0, i.e., ρ = f (x) +
g(y), where f and g are functions of x and y only respectively.

DEFINITION 1.2. A parametrization of a surface is called a generalized Chebyshev net
if A = B, i.e., a = b.

EXAMPLE 1.1. For a surface with constant negative Gaussian curvature, (1.2) implies
that a and b are functions of x and y only respectively. Changing the coordinates conformally
if necessary, we may assume that a = b = C for a positive constant C. Hence the surface is
parametrized by a so-called Chebyshev net.

EXAMPLE 1.2. A surface with negative Gaussian curvature is minimal if and only if

φ = π
2 since the mean curvature is 1

ρ
cot φ. In this case we can solve (1.2) directly:

a = α(x)ρ− 1
2 , b = β(y)ρ− 1

2 ,

where α and β are positive functions of x and y only respectively. Similar to Example 1.1 the
surface is parametrized by a generalized Chebyshev net.

2. Proof of Theorem 1.1

For a Bianchi surface with constant Chebyshev angle parametrized by a generalized
Chebyshev net, (1.1) and (1.2) become(

ρx

2ρ

)
x

+
(

ρy

2ρ

)
y

− a2 = 0 ,(2.1)
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

ay

a
+ ρy

2ρ
− ρx

2ρ
cos φ = 0 ,

ax

a
+ ρx

2ρ
− ρy

2ρ
cos φ = 0 .

(2.2)

LEMMA 2.1. φ = π
2 .

PROOF. Since the integration of (2.2) gives

a = α(x)ρ− 1
2 e

cos φ
2

∫ ρx
ρ

dy = β(y)ρ− 1
2 e

cos φ
2

∫ ρy
ρ

dx
,(2.3)

where α and β are positive functions of x and y only respectively, we have(
ρx

ρ

)
x

cos φ =
(

ρy

ρ

)
y

cos φ ,(2.4)

which is equivalent to

{(ρxx − ρyy)ρ − (ρ2
x − ρ2

y )} cos φ = 0 .(2.5)

Combining (2.1), (2.3) and (2.4), we have{(
ρx

ρ

)
x

− α2

ρ
e

cos φ
∫ ρx

ρ
dy

}
cos φ = 0 ,(2.6)

{(
ρy

ρ

)
y

− β2

ρ
e

cos φ
∫ ρy

ρ
dx

}
cos φ = 0 .(2.7)

From (2.6) we have

(ρρxx − ρ2
x − α2ρe

cos φ
∫ ρx

ρ dy
) cos φ = 0 .(2.8)

Since ρxy = 0, differentiating (2.8) twice by y, we have

{ρxxρyy − (ρρyy + ρxρy cos φ + ρ2
x cos2 φ)a2} cos φ = 0 .(2.9)

Similarly from (2.7) we have

{ρxxρyy − (ρρxx + ρxρy cos φ + ρ2
y cos2 φ)a2} cos φ = 0 .(2.10)

Combining (2.5), (2.9) and (2.10), we have

(ρ2
x − ρ2

y ) cos φ = 0 .(2.11)

Now we assume that φ �= π
2 . From (2.11) we have

ρ = C(x ± y) ,

where C ∈ R \ {0}. Then from (2.1) we have

a2 = − 1

(x ± y)2
,
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which is a contradiction.

By Example 1.2 we may assume that a = ρ− 1
2 .

LEMMA 2.2. ρ is a function of x or y only.

PROOF. From (2.1) we have

(ρxx + ρyy)ρ − (ρ2
x + ρ2

y ) − 2ρ = 0 .(2.12)

Differentiating (2.12) by x and y, we have

ρxρyyy + ρyρxxx = 0 .(2.13)

Now we assume that ρ = f (x) + g(y), where f and g are functions of x and y only respec-
tively such that f ′, g ′ �= 0. From (2.13) we have{

(f ′)2 = C1f
2 + C2f + C3 ,

(g ′)2 = −C1g2 + C4g + C5 ,
(2.14)

where C1, · · · , C5 ∈ R. Combining (2.12) and (2.14), we have(
−C2

2
+ C4

2
− 2

)
f +

(
C2

2
− C4

2
− 2

)
g − (C3 + C5) = 0 ,

which is a contradiction.

PROOF OF THEOREM 1.1. For simplicity we consider only the case that ρ is a func-
tion of x only. Then we can solve (2.12) explicitly:

ρ = 1

C2
1

cosh2(C1x + C2) ,

where C1 ∈ R \ {0}, C2 ∈ R. Now we have obtained the fundamental forms concretely:

I = 1

C2
1

cosh2(C1x + C2)(dx2 + dy2) , II = 2dxdy .

Hence the surface is a piece of a right helicoid. Indeed we have

F(x, y) = 1

C2
1

T


sinh(C1x + C2) sin C1y

sinh(C1x + C2) cos C1y

y


 + p ,

where T ∈ SO(3), p ∈ R3.

By Example 1.2 we have the following:

COROLLARY 2.1. A minimal Bianchi surface is a piece of a right helicoid.
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