On the Parametric Decomposition of Powers of Parameter Ideals in a Noetherian Local Ring

Shiro GOTO and Yasuhiro SHIMODA

Meiji University and Kitasato University

Abstract. There is given a characterization of Noetherian local rings A with $d = \dim A \ge 2$, in which the equality $(a_i \mid 1 \le i \le d)^n = \bigcap_{\alpha} (a_1^{\alpha_1}, a_2^{\alpha_2}, \dots, a_d^{\alpha_d})$ holds true for all systems a_1, a_2, \dots, a_d of parameters and integers $n \ge 1$, where the suffix α runs over $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_d) \in \mathbb{Z}^d$ such that $\alpha_i \ge 1$ for all $1 \le i \le d$ and $\sum_{i=1}^d \alpha_i = d + n - 1$.

1. Introduction

Let *A* be a commutative ring and let $\underline{a} = a_1, a_2, \dots, a_d$ $(d \ge 1)$ be a sequence of elements in *A*. We denote by $(\underline{a}) = (a_1, a_2, \dots, a_d)$ the ideal in *A* generated by a_1, a_2, \dots, a_d . For each integer $n \ge 1$ let

$$\Lambda_{d,n} = \left\{ (\alpha_1, \alpha_2, \cdots, \alpha_d) \in \mathbf{Z}^d \ \middle| \ \alpha_i \ge 1 \text{ for all } 1 \le i \le d \text{ and } \sum_{i=1}^d \alpha_i = d+n-1 \right\}.$$

Let $(\underline{a}; \alpha) = (a_1^{\alpha_1}, a_2^{\alpha_2}, \dots, a_d^{\alpha_d})$ for each $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_d) \in \Lambda_{d,n}$. In this paper we are interested in the question of when the equality $(\underline{a})^n = \bigcap_{\alpha \in \Lambda_{d,n}} (\underline{a}; \alpha) \ (n \ge 1)$ holds true for a given system $\underline{a} = a_1, a_2, \dots, a_d$ $(d = \dim A)$ of parameters in a Noetherian local ring A, and our main result partially answers the question in the following way.

THEOREM 1.1. Let A be a Noetherian local ring with the maximal ideal \mathfrak{m} and $d = \dim A \ge 2$. Let $\operatorname{H}^{0}_{\mathfrak{m}}(A) = \bigcup_{n \ge 1} [(0) :_{A} \mathfrak{m}^{n}]$ denote the 0^{th} local cohomology module of A. Then the following two conditions are equivalent.

- (1) $A/\mathrm{H}^{0}_{\mathfrak{m}}(A)$ is a Cohen-Macaulay ring and $\mathfrak{m}\mathrm{H}^{0}_{\mathfrak{m}}(A) = (0)$.
- (2) The equality

$$(\underline{a})^n = \bigcap_{\alpha \in \Lambda_{d,n}} (\underline{a}; \alpha)$$

Received April 1, 2003

²⁰⁰⁰ Mathematics Subject Classification. Primary 13H99.

Key words and phrases. generalized Cohen-Macaulay local ring, Cohen-Macaulay local ring, local cohomology, multiplicity, parametric decomposition, standard system of parameters.

The first author is supported by the Grant-in-Aid for Scientific Researches in Japan (C(2), No. 13640044).

SHIRO GOTO AND YASUHIRO SHIMODA

holds true for all systems $\underline{a} = a_1, a_2, \dots, a_d$ of parameters and integers $n \ge 1$.

When this is the case, A is a very special kind of Buchsbaum ring, so that every system of parameters in A forms a d-sequence.

We note here that condition (2) in Theorem 1.1 is always satisfied if d = 1, which shows the assumption that $d = \dim A \ge 2$ is crucial in Theorem 1.1.

In general, one has the inclusion $(\underline{a})^n \subseteq \bigcap_{\alpha \in A_{d,n}} (\underline{a}; \alpha)$ for all integers $n \ge 1$, and W. Heinzer, L. J. Ratliff Jr., and K. Shah [HRS, Theorem 2.4] proved that the equality

$$(\underline{a})^n = \bigcap_{\alpha \in \Lambda_{d,n}} (\underline{a}; \alpha)$$

holds true for all $n \ge 1$, if the sequence $\underline{a} = a_1, a_2, \dots, a_d$ is A-regular. The converse is also true, if A is a Noetherian local ring, $(\underline{a}) \subsetneq A$, and each a_i is a non-zerodivisor in A ([GS, Theorem (1.1)]). A Noetherian local ring A with $d = \dim A \ge 1$ is, therefore, necessarily a Cohen-Macaulay ring, if $\dim A/\mathfrak{p} = d$ for all $\mathfrak{p} \in Ass A$ and if A contains a system $\underline{a} = a_1, a_2, \dots, a_d$ of parameters for which the equality $(\underline{a})^n = \bigcap_{\alpha \in A_{d,n}} (\underline{a}; \alpha)$ holds true for all integers $n \ge 1$ ([GS, Corollary 3.7]). Our Theorem 1.1 gives an answer also to the question of whether the converse of [HRS, Theorem 2.4] holds true, showing that the assumption in [GS, Corollary 3.7] that $\dim A/\mathfrak{p} = d$ for all $\mathfrak{p} \in Ass A$ and the one in [GS,Theorem (1.1)] that each a_i is a non-zerodivisor are not superfluous.

We now briefly explain how this paper is organized. The proof of Theorem 1.1 will be given in Section 3. A Noetherian local ring with $d = \dim A \ge 1$ is not necessarily Cohen-Macaulay, even if depth $A \ge d - 1$ and A contains a system $\underline{a} = a_1, a_2, \dots, a_d$ of parameters such that $(\underline{a})^n = \bigcap_{\alpha \in A_{d,n}} (\underline{a}; \alpha)$ for all $n \ge 1$. We will give an example in Section 2 (Corollary (2.3)). In Section 4 we shall explore generalized Cohen-Macaulay local rings A with dim A = 2 in order to show that the ring $A/H_m^0(A)$ is Cohen-Macaulay, once A contains a standard system a_1, a_2 of parameters such that $(a_1, a_2)^n = \bigcap_{\alpha \in A_{2,n}} (a_1, a_2; \alpha)$ for *some* $n \ge$ 2. The authors do not know whether the assertion is true or not also for higher-dimensional generalized Cohen-Macaulay local rings. A Noetherian local ring A with $d = \dim A \ge 1$ may contain two systems $\underline{a} = a_1, a_2, \dots, a_d$ and $\underline{b} = b_1, b_2, \dots, b_d$ of parameters such that $Q = (\underline{a}) = (\underline{b})$ in $A, Q^n = \bigcap_{\alpha \in A_{d,n}} (\underline{a}; \alpha)$ for all $n \ge 1$, but $Q^n \neq \bigcap_{\alpha \in A_{d,n}} (\underline{b}; \alpha)$ for any $n \ge 2$. Thus the *parametric* decomposition $Q^n = \bigcap_{\alpha \in A_{d,n}} (\underline{a}; \alpha)$ of powers of the parameter ideal $Q = (\underline{a})$ heavily depends on the choice of systems $\underline{a} = a_1, a_2, \dots, a_d$ of generators. We will explore in Section 5 such an example of dimension two.

Throughout this paper, let A denote a Noetherian local ring with the maximal ideal m and $d = \dim A \ge 1$. Let $H^i_{\mathfrak{m}}(*)$ $(i \in \mathbb{Z})$ be the local cohomology functors of A with respect to the maximal ideal m. Let $\ell_A(*)$ and $\mu_A(*)$ denote, respectively, the length and the number of generators. For a given system $\underline{a} = a_1, a_2, \dots, a_d$ of parameters in A let $e^0_{(\underline{a})}(A)$ denote the multiplicity of A with respect to the ideal (\underline{a}).

2. Non-Cohen-Macaulay local rings with high depth containing parameter ideals whose powers all possess parametric decompositions

In this section we shall show that for a given integer $d \ge 2$, there exists a Noetherian local ring A with $d = \dim A$ and depth A = d-1, containing at least one system $\underline{a} = a_1, a_2, \dots, a_d$ of parameters such that $(\underline{a})^n = \bigcap_{\alpha \in A_{d,n}} (\underline{a}; \alpha)$ for all $n \ge 1$.

Let us begin with the following, which is a direct consequence of [HRS, Theorem 2.4] via the principle of idealization. We shall note a brief proof for the sake of completeness.

LEMMA 2.1. Let R be a commutative ring and let M be an R-module. Let $\underline{a} = a_1, a_2, \dots, a_d$ $(d \ge 1)$ be a sequence of elements in R and assume that \underline{a} is M-regular. Then

$$(\underline{a})^{n}M = \bigcap_{\alpha \in \Lambda_{d,n}} [(\underline{a}; \alpha)M]$$

for all $n \ge 1$.

PROOF. We may assume that the sequence \underline{a} is also *R*-regular (replace *R* by the polynomial ring $\mathbb{Z}[X_1, X_2, \dots, X_d]$ and \underline{a} by $\underline{X} = X_1, X_2, \dots, X_d$). Let $S = R \ltimes M$ be the idealization of *M* over *R*. Hence $S = R \oplus M$ as additive groups and the multiplication in *S* is defined by $(a, x) \cdot (b, y) = (ab, ay + bx)$. We put $f_i = (a_i, 0)$ $(1 \le i \le d)$. Then, since the sequence $f = f_1, f_2, \dots, f_d$ is *S*-regular, for all $n \ge 1$ we have by [HRS, Theorem 2.4] that

$$(\underline{f})^n = \bigcap_{\alpha \in \Lambda_{d,n}} (\underline{f}; \alpha)$$

in the ring S. Hence $(\underline{a})^n M = \bigcap_{\alpha \in \Lambda_{d,n}} [(\underline{a}; \alpha)M]$, because $(\underline{f})^n = (\underline{a})^n \times (\underline{a})^n M$ and $(f; \alpha) = (\underline{a}; \alpha) \times [(\underline{a}; \alpha)M]$ for all $n \ge 1$ and $\alpha \in \Lambda_{d,n}$.

The local rings A cited in the following are exactly *approximately Cohen-Macaulay* rings in the sense of [G, Theorem (1.1)].

PROPOSITION 2.2. Let A be a Noetherian local ring with the maximal ideal \mathfrak{m} and $d = \dim A \ge 2$. Let $I ((0) \ne I \subsetneq A)$ be an ideal in A, and assume that A/I is a Cohen-Macaulay ring with $\dim A/I = d$ and that I is a Cohen-Macaulay A-module with $\dim_A I = d - 1$. Let $\underline{a} = a_1, a_2, \dots, a_d$ be a system of parameters in A such that $a_1I = (0)$. Then

$$(\underline{a})^n = \bigcap_{\alpha \in \Lambda_{d,n}} (\underline{a}; \alpha)$$

for all $n \geq 1$.

PROOF. Let $\alpha = (\alpha_1, \alpha_2, \cdots, \alpha_d) \in \Lambda_{d,n}$. Then

$$(\underline{a};\alpha) \cap I = (\underline{a};\alpha)I = (a_2^{\alpha_2},\cdots,a_d^{\alpha_d})I,$$

since $a_1^{\alpha_1}I = (0)$ and the sequence $a_1^{\alpha_1}, a_2^{\alpha_2}, \dots, a_d^{\alpha_d}$ is A/I-regular. Let $x \in \bigcap_{\alpha \in \Lambda_{d,n}} (\underline{a}; \alpha)$ and let $\overline{*}$ denote the reduction mod I. Then

$$\overline{x} \in \bigcap_{\alpha \in \Lambda_{d,n}} (\overline{a_1}, \overline{a_2}, \cdots, \overline{a_d}; \alpha) = (\overline{a_1}, \overline{a_2}, \cdots, \overline{a_d})^n$$

by [HRS, Theorem 2.4], because the sequence $\overline{a_1}, \overline{a_2}, \dots, \overline{a_d}$ is A/I-regular. Hence $x \in (\underline{a})^n + I$ so that we have

$$\bigcap_{\alpha \in \Lambda_{d,n}} (\underline{a}; \alpha) = (\underline{a})^n + \left[\left(\bigcap_{\alpha \in \Lambda_{d,n}} (\underline{a}; \alpha) \right) \cap I \right]$$
$$= (\underline{a})^n + \bigcap_{\alpha \in \Lambda_{d,n}} [(\underline{a}; \alpha) \cap I]$$
$$= (\underline{a})^n + \left[\bigcap_{(\alpha_1, \alpha_2, \cdots, \alpha_d) \in \Lambda_{d,n}} (a_2^{\alpha_2}, \cdots, a_d^{\alpha_d}) I \right].$$

Notice that the sequence a_2, \dots, a_d is *I*-regular, because a_2, \dots, a_d is a system of parameters for the Cohen-Macaulay A-module *I*. By Lemma 2.1 we then have

$$\bigcap_{(\alpha_1,\alpha_2,\cdots,\alpha_d)\in\Lambda_{d,n}} (a_2^{\alpha_2},\cdots,a_d^{\alpha_d})I \subseteq \bigcap_{(\beta_2,\cdots,\beta_d)\in\Lambda_{d-1,n}} [(a_2^{\beta_2},\cdots,a_d^{\beta_d})I]$$
$$= (a_2,\cdots,a_d)^n I$$
$$\subseteq (\underline{a})^n,$$

since $(1, \beta_2, \dots, \beta_d) \in \Lambda_{d,n}$ for every $\beta = (\beta_2, \dots, \beta_d) \in \Lambda_{d-1,n}$. Thus

$$(\underline{a})^n = \bigcap_{\alpha \in \Lambda_{d,n}} (\underline{a}; \alpha)$$

as is claimed.

The reader may consult [G] for characterizations and examples of approximately Cohen-Macaulay rings. Here let us note the simplest one for which, as an immediate consequence of Proposition 2.2, we have the following.

EXAMPLE 2.3 ([G, Example (3.5) (5)]). Let *R* be Cohen-Macaulay local ring with $d = \dim R \ge 2$ and let *M* be a Cohen-Macaulay *R*-module with $\dim_R M = d - 1$. Let $A = R \ltimes M$. Then dim A = d, depth A = d - 1, and *A* contains a system a_1, a_2, \dots, a_d of parameters such that a_2, a_3, \dots, a_d forms an *A*-regular sequence and $(\underline{a})^n = \bigcap_{\alpha \in A_{d,n}} (\underline{a}; \alpha)$ for all $n \ge 1$.

3. Proof of Theorem 1.1

Let *A* be a Noetherian local ring with the maximal ideal \mathfrak{m} and $d = \dim A \ge 1$. Let $W = H^0_{\mathfrak{m}}(A)$. We then have the following.

128

LEMMA 3.1. The following conditions are equivalent.

(1) A/W is a Cohen-Macaulay ring.

(2) There exists an integer $\ell \gg 0$ such that for every system $\underline{a} = a_1, a_2, \dots, a_d$ of parameters contained in \mathfrak{m}^{ℓ} , the equality $(\underline{a})^n = \bigcap_{\alpha \in \Lambda_{d,n}} (\underline{a}; \alpha)$ holds true for all $n \ge 1$.

PROOF. Choose an integer $N \gg 0$ so that $W \cap \mathfrak{m}^N = (0)$.

(1) \Rightarrow (2). Let $\underline{a} = a_1, a_2, \dots, a_d$ be any system of parameters in A. Then, since the sequence a_1, a_2, \dots, a_d is A/W-regular, it follows for the same reason as in the proof of Proposition (2.2) that

$$\bigcap_{\alpha \in \Lambda_{d,n}} (\underline{a}; \alpha) = (\underline{a})^n + \left[\left(\bigcap_{\alpha \in \Lambda_{d,n}} (\underline{a}; \alpha) \right) \cap W \right]$$
$$= (\underline{a})^n + \bigcap_{\alpha \in \Lambda_{d,n}} [(\underline{a}; \alpha)W].$$

Thus $(\underline{a})^n = \bigcap_{\alpha \in \Lambda_{d,n}} (\underline{a}; \alpha)$ for all $n \ge 1$, if $(\underline{a}) \subseteq \mathfrak{m}^N$, or more generally, if $(\underline{a})W = (0)$.

(2) \Rightarrow (1). Choose a system $\underline{a} = a_1, a_2, \dots, a_d$ of parameters in $\mathfrak{m}^{\ell+N}$ so that each a_i is A/W-regular. We denote by $\overline{*}$ the reduction mod W. Let $\varphi \in \bigcap_{\alpha \in \Lambda_{d,n}} (\overline{a_1}, \overline{a_2}, \dots, \overline{a_d}; \alpha)$ and write $\varphi = \overline{x}$ with $x \in (\underline{a})$. Let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_d) \in \Lambda_{d,n}$. Then

$$x \in [(\underline{a}; \alpha) + W] \cap (\underline{a}) = (\underline{a}; \alpha) + [W \cap (\underline{a})] = (\underline{a}; \alpha),$$

since $W \cap (\underline{a}) \subseteq W \cap \mathfrak{m}^N = (0)$. Therefore $x \in \bigcap_{\alpha \in \Lambda_{d,n}} (\underline{a}; \alpha) = (\underline{a})^n$, because $(\underline{a}) \subseteq \mathfrak{m}^\ell$. Hence $\varphi = \overline{x} \in (\overline{a_1}, \overline{a_2}, \dots, \overline{a_d})^n$. Thus $(\overline{a_1}, \overline{a_2}, \dots, \overline{a_d})^n = \bigcap_{\alpha \in \Lambda_{d,n}} (\overline{a_1}, \overline{a_2}, \dots, \overline{a_d}; \alpha)$ for all $n \ge 1$, whence by [GS, Theorem (1.1)] A/W is a Cohen-Macaulay ring. \Box

Thanks to Lemma 3.1 and the proof of the implication $(1) \Rightarrow (2)$, we have the following.

COROLLARY 3.2. Let A be a Noetherian local ring with the maximal ideal \mathfrak{m} and $d = \dim A \ge 1$. Then $A/\mathrm{H}^0_{\mathfrak{m}}(A)$ is a Cohen-Macaulay ring, if the equality

$$(\underline{a})^n = \bigcap_{\alpha \in \Lambda_{d,n}} (\underline{a}; \alpha)$$

holds true for all systems $\underline{a} = a_1, a_2, \dots, a_d$ of parameter in A and $n \ge 1$. The converse is also true, when $\mathfrak{mH}^0_{\mathfrak{m}}(A) = (0)$.

We are now ready to prove Theorem 1.1.

PROOF OF THEOREM 1.1 We put $W = H^0_m(A)$. By Corollary 3.2 it suffices to show that $\mathfrak{m}W = (0)$, when condition (2) is satisfied. Let $a \in \mathfrak{m}$ such that $\dim A/aA = d - 1$ and extend it to a system a, x_2, \dots, x_d of parameter in A such that $(x_2, \dots, x_d)W = (0)$. Let $n \geq 1$ be an integer and put $a_i = a + x_i^n$ for $2 \leq i \leq d$. We look at the system $a = a_1, a_2, \dots, a_d$ of parameters in A. Then $a_i W = a W$ for all $1 \le i \le d$, so that

$$aW \subseteq (a) \cap (a_2, \cdots, a_d) \subseteq \bigcap_{\alpha \in \Lambda_{d,2}} (\underline{a}; \alpha) = (\underline{a})^2$$

Hence $aW \subseteq (a, x_2^n, \dots, x_d^n)^2 \subseteq (a^2) + (x_2^n, \dots, x_d^n) \subseteq (a^2) + \mathfrak{m}^n$ for all $n \ge 1$. Thus $aW \subseteq (a^2)$. Let $x \in W$ and write $ax = a^2y$ with $y \in A$. Then $x - ay \in (0)$: a. Hence $W \subseteq (a) + [(0) : a]$, so that W = aW + [(0) : a], because $(a) \cap W = aW$ and $(0) : a \subseteq W$ (recall that a is A/W-regular, since A/W is by Corollary 3.2 a Cohen-Macaulay ring). Thus W = (0) : a, whence $\mathfrak{m}W = (0)$, because the maximal ideal \mathfrak{m} is generated by the elements *a* with dim A/aA = d - 1.

4. Generalized Cohen-Macaulay local rings with $\dim A = 2$

In this section we shall explore standard systems of parameters in generalized Cohen-Macaulay local rings with dim A = 2.

To begin with let R be a commutative ring and $a, b \in R$. Let M be an R-module. Then we have the following.

LEMMA 4.1 (K. Nishida). Let $n \ge 2$. Then there exists an exact sequence

$$0 \to M / \bigcap_{i=1}^{n} (a^{n+1-i}, b^i) M \xrightarrow{\varphi} \bigoplus_{i=1}^{n} M / (a^{n+1-i}, b^i) M \xrightarrow{\psi} \bigoplus_{i=1}^{n-1} M / (a^{n-i}, b^i) M \to 0$$

of *R*-modules, where the homomorphism φ and ψ are defined by

$$\varphi\left(x \mod \bigcap_{i=1}^{n} (a^{n+1-i}, b^{i})M\right) = \{x \mod (a^{n+1-i}, b^{i})M\}_{1 \le i \le n} \text{ and } \psi(\{x_{i} \mod (a^{n+1-i}, b^{i})M\}_{1 \le i \le n}) = \{x_{i} - x_{i+1} \mod (a^{n-i}, b^{i})M\}_{1 \le i \le n-1}.$$

PROOF (K. Kurano). We certainly have φ is a monomorphism and $\psi \varphi = 0$. It is standard to show that ψ is an epimorphism. Let us check that Ker $\psi \subseteq \text{Im } \varphi$. Let $\alpha \in \text{Ker } \psi$ and write

$$\alpha = \{x_i \mod (a^{n+1-i}, b^i)M\}_{1 \le i \le n}$$

with $x_i \in M$. Then $x_i - x_{i+1} \in (a^{n-i}, b^i)M$ for all $1 \le i \le n-1$. We write

(4.2)
$$x_i = x_{i+1} + a^{n-i} f_i + b^i g_i$$

with $f_i, g_i \in M$. Let $x = x_1 - \sum_{i=1}^{n-1} b^i g_i$. We then have the following. CLAIM. $x = x_i + \sum_{j=1}^{i-1} a^{n-j} f_j - \sum_{j=i}^{n-1} b^j g_j$ for all $1 \le i \le n$

CLAIM.
$$x = x_i + \sum_{j=1}^{i-1} a^{n-j} f_j - \sum_{j=i}^{n-1} b^j g_j$$
 for all $1 \le i \le n$.

PROOF OF CLAIM. We may assume that $1 \le i < n$ and our equality holds true for *i*. Then

$$x = (x_i - b^i g_i) + \sum_{j=1}^{i-1} a^{n-j} f_j - \sum_{j=i+1}^{n-1} b^j g_j$$

= $(x_{i+1} + a^{n-i} f_i) + \sum_{j=1}^{i-1} a^{n-j} f_j - \sum_{j=i+1}^{n-1} b^j g_j$ (by (4.2))
= $x_{i+1} + \sum_{j=1}^{i} a^{n-j} f_j - \sum_{j=i+1}^{n-1} b^j g_j$

as is claimed.

Consequently, $x - x_i \in (a^{n+1-i}, b^i)M$ for all $1 \le i \le n$, so that

$$\alpha = \varphi(\{x \mod (a^{n+1-i}, b^i)M\}_{1 \le i \le n}).$$

Thus $\alpha \in \operatorname{Im} \varphi$.

The following is an immediate consequence of Lemma 4.1.

PROPOSITION 4.3. Let A be a Noetherian local ring with dim A = 2 and let $\underline{a} = a_1, a_2$ be a system of parameters in A. Then

$$\ell_A\left(A \middle/ \bigcap_{\alpha \in \Lambda_{2,n}} (\underline{a}; \alpha)\right) = \sum_{i=1}^n \ell_A(A / (a_1^{n+1-i}, a_2^i)) - \sum_{i=1}^{n-1} \ell_A(A / (a_1^{n-i}, a_2^i))$$

for all $n \geq 2$.

Now let *A* be a two-dimensional generalized Cohen-Macaulay local ring with the Stückrad-Vogel invariant I(*A*). Hence the *A*-module $H^1_{\mathfrak{m}}(A)$ is finitely generated and I(*A*) = $h^0(A) + h^1(A)$, where $h^i(A) = \ell_A(H^i_{\mathfrak{m}}(A))$ (cf. [SV, Appendix, Theorem and Definition 17]). Let a_1, a_2 be a standard system of parameters in *A*, that is a_1, a_2 is a system of parameters in *A* and the equalities

(4.4)

$$I(A) = \ell_A(A/(a_1, a_2)) - e^0_{(a_1, a_2)}(A)$$

$$= \ell_A(A/(a_1^m, a_2^n)) - e^0_{(a_1^m, a_2^n)}(A)$$

$$= \ell_A(A/(a_1^m, a_2^n)) - mne^0_{(a_1, a_2)}(A)$$

hold true for all integers $m, n \ge 1$. (We note here that there exists an integer $\ell \gg 0$ such that every system of parameters contained in \mathfrak{m}^{ℓ} is standard.) Let $Q = (a_1, a_2)$. Then there exist integers $e_Q^i(A)$ (i = 0, 1, 2) such that

(4.5)
$$\ell_A(A/Q^{n+1}) = e_Q^0(A) \binom{n+2}{2} - e_Q^1(A) \binom{n+1}{1} + e_Q^2(A)$$

for all $n \ge 0$ ([S]). We furthermore have that $e_Q^1(A) = -h^1(A)$ and $e_Q^2(A) = h^0(A)$, whence $I(A) = e_Q^2(A) - e_Q^1(A)$ ([S]).

With this notation we have the following.

COROLLARY 4.6. Let $n \ge 1$ be an integer. Then

(1) $\ell_A(A/\bigcap_{\alpha\in A_{2,n}}(\underline{a};\alpha)) = \binom{n+1}{2}e_Q^0(A) + I(A)$ and

(2) $\ell_A([\bigcap_{\alpha \in \Lambda_{2,n}}(\underline{a}; \alpha)]/Q^n) = e_Q^1(A)(1-n).$

Hence $Q^n = \bigcap_{\alpha \in \Lambda_{2,n}}(\underline{a}; \alpha)$ for all $n \ge 1$ if and only if $Q^n = \bigcap_{\alpha \in \Lambda_{2,n}}(\underline{a}; \alpha)$ for some $n \ge 2$, or equivalently $Q^2 = \bigcap_{\alpha \in \Lambda_{2,2}}(\underline{a}; \alpha)$.

PROOF. Let $e_i = e_Q^i(A)$ (i = 0, 1, 2). Then by Proposition 4.3 and (4.4) we get

$$\ell_A \left(A \middle/ \bigcap_{\alpha \in A_{2,n}} (\underline{a}; \alpha) \right) = \sum_{i=1}^n [(n+1-i)ie_0 + I(A)] - \sum_{i=1}^{n-1} [(n-i)ie_0 + I(A)]$$
$$= \frac{n(n+1)}{2}e_0 + I(A)$$
$$= e_0 \binom{n+1}{2} + I(A).$$

Hence by (4.5)

$$\ell_A \left(\left[\bigcap_{\alpha \in \Lambda_{2,n}} (\underline{a}; \alpha) \right] \middle/ \mathcal{Q}^n \right) = \left[e_0 \binom{n+1}{2} - e_1 n + e_2 \right] - \left[e_0 \binom{n+1}{2} + \mathrm{I}(A) \right]$$
$$= e_1 (1-n) \,,$$

because $I(A) = e_2 - e_1$.

We now come to the main result of this section. The authors do not know whether similar characterizations still hold true for higher-dimensional generalized Cohen-Macaulay rings.

THEOREM 4.7. Suppose A is a generalized Cohen-Macaulay local ring with dim A = 2. Let $\underline{a} = a_1, a_2$ be a standard system of parameters in A and put $Q = (a_1, a_2)$. Then the following conditions are equivalent.

- (1) $A/\mathrm{H}^{0}_{\mathfrak{m}}(A)$ is a Cohen-Macaulay ring.
- (2) $\sup_{n>0} \ell_A^{\omega}([\bigcap_{\alpha \in \Lambda_{2,n}} (\underline{a}; \alpha)]/Q^n) < \infty.$
- (3) $Q^n = \bigcap_{\alpha \in \Lambda_{2,n}} (\underline{a}; \alpha) \text{ for all } n \ge 1.$
- (4) $Q^n = \bigcap_{\alpha \in \Lambda_{2,n}} (\underline{a}; \alpha) \text{ for some } n \ge 2.$
- (5) $Q^2 = \bigcap_{\alpha \in \Lambda_{2,2}} (\underline{a}; \alpha).$
- (6) $(a_1) \cap (a_2) \subseteq (a_1, a_2)^2$.

PROOF. The ring $A/H^0_m(A)$ is a Cohen-Macaulay ring if and only if $h^1(A) = 0$. Since $e_O^1(A) = -h^1(A)$, by Corollary 4.6 (2) the latter condition is equivalent to saying that

$$\sup_{n>0} \ell_A\left(\left[\bigcap_{\alpha\in\Lambda_{2,n}} (\underline{a};\alpha)\right]/Q^n\right) = \sup_{n>0} e_Q^1(A)(1-n) < \infty.$$

We then have by Corollary 4.6 (2) the equivalences $(1) \Leftrightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4) \Leftrightarrow (5)$. Since

$$\bigcap_{\alpha \in \Lambda_{2,2}} (\underline{a}; \alpha) = (a_1^2, a_2) \cap (a_1, a_2^2) = (a_1^2, a_2^2) + [(a_1) \cap (a_2)],$$

we get the equivalence $(5) \Leftrightarrow (6)$.

5. An example

Let us explore one example to illustrate our theorems. The example shows also that the *parametric* decomposition of powers of an ideal (\underline{a}) depends on the choice of systems of generators for the ideal (\underline{a}).

Let *R* be a three-dimensional regular local ring with the maximal ideal \mathfrak{n} and let $\mathfrak{n} = (X, Y, Z)$ with $X, Y, Z \in R$. We put

$$A = R/(X, Y) \cap (Z) .$$

Let *x*, *y* and *z* denote the reduction of *X*, *Y* and *Z* mod $(X, Y) \cap (Z)$, respectively. Let Q = (x + z, y). We then have the following.

EXAMPLE 5.1. (1) $Q^n = \bigcap_{\alpha \in \Lambda_{2,n}} (x + z, y; \alpha)$ and $\ell_A(A/Q^n) = (n^2 + 3n)/2$ for all $n \ge 1$.

(2) Let $b_1 = x + z$ and $b_2 = x + y + z$. Then $Q = (b_1, b_2)$ and for every $n \ge 1$

$$\ell_A\left(A \middle/ \bigcap_{\alpha \in A_{2,n}} (\underline{b}; \alpha)\right) = \begin{cases} \frac{n^2 + 2n}{2} & \text{if } n \text{ is even} \\ \frac{(n+1)^2}{2} & \text{if } n \text{ is odd} \end{cases}$$

Hence the function $\ell_A(A / \bigcap_{\alpha \in \Lambda_{2,n}}(\underline{b}; \alpha))$ is not the polynomial in $n, Q^n \neq \bigcap_{\alpha \in \Lambda_{2,n}}(\underline{b}; \alpha)$ for any $n \ge 2$, and

$$\sup_{n>0} \ell_A \left(\left[\bigcap_{\alpha \in \Lambda_{2,n}} (\underline{b}; \alpha) \right) \right] / Q^n \right) = \infty.$$

PROOF. (1) Letting I = (z), the first equality follows from Proposition 2,2, because $I \cong R/(X, Y)$ and A/(z) = R/(Z). We put $a_1 = x + z$ and $a_2 = y$ and look at the exact sequence

1

(5.2)
$$0 \to R/(Y,Z) \xrightarrow{\phi} A \to R/(Z) \to 0$$

of *R*-modules, where the homomorphism ϕ is defined by $\phi(1) = z$. Let $\ell, m \ge 1$ be integers. Then the sequence a_1^{ℓ}, a_2^{m} is R/(Z)-regular and so by (5.2), we get the exact sequence

$$0 \to R/(X^{\ell}, Y, Z) \to A/(a_1^{\ell}, a_2^m) \to R/(X^{\ell}, Y^m, Z) \to 0.$$

Hence $\ell_A(A/(a_1^\ell, a_2^m)) = \ell(m+1)$, so that by Proposition 4.3

$$\ell_A(A/Q^n) = \ell_A\left(A \middle/ \bigcap_{\alpha \in \Lambda_{2,n}} (\underline{a}; \alpha)\right) = \frac{n^2 + 3n}{2}$$

for all $n \ge 1$.

(2) Let $b_1 = x + z$ and $b_2 = x + y + z$. Then $Q = (b_1, b_2)$. Let $\ell, m \ge 1$ be integers. Then by (5.2) we have the exact sequence

$$0 \to R/((Y, Z) + (X^{\ell}, X^{m})) \to A/(b_{1}^{\ell}, b_{2}^{m}) \to R/((Z) + (X^{\ell}, (X+Y)^{m})) \to 0,$$

whence $\ell_A(A/(b_1^{\ell}, b_2^m)) = \ell m + \min\{\ell, m\}$. Consequently by Proposition 4.3 we get

$$\ell_A \left(A \middle/ \bigcap_{\alpha \in \Lambda_{2,n}} (\underline{b}; \alpha) \right) = \frac{n^2 + n}{2} + \sum_{i=1}^n \min\{n + 1 - i, i\} - \sum_{i=1}^{n-1} \min\{n - i, i\}$$
$$= \frac{n^2 + n}{2} + \begin{cases} \frac{n}{2} & \text{if } n \text{ is even,} \\ \frac{n+1}{2} & \text{if } n \text{ is odd.} \end{cases}$$

Thus the function $\ell_A(A/[\bigcap_{\alpha \in \Lambda_{2,n}}(\underline{b}; \alpha)])$ of *n* is not the polynomial in *n* and $Q^n \neq \bigcap_{\alpha \in \Lambda_{2,n}}(\underline{b}; \alpha)$ for any $n \ge 2$. Letting $n = 2\ell$ with $\ell \ge 1$, we have

$$\ell_A\left(\left[\bigcap_{\alpha\in\Lambda_{2,n}}(\underline{b};\alpha)\right]/\mathcal{Q}^n\right)=\frac{n^2+3n}{2}-\frac{n^2+2n}{2}=\ell.$$

Hence $\sup_{n>0} \ell_A([\bigcap_{\alpha \in \Lambda_{2,n}} (\underline{b}; \alpha)]/Q^n) = \infty.$

References

- [G] S. GOTO, Approximately Cohen-Macaulay rings, J. Alg. 76 (1982), 214–225.
- [GS] S. GOTO AND Y. SHIMODA, Parametric decomposition of powers of ideals versus regularity of sequences, Proc. Amer. Math. Soc. (to appear).
- [HRS] W. HEINZER, L. J. RATLIFF, and K. SHAH, Parametric decomposition of monomial ideals (I), Houston J. Math. 21 (1995), 29–52.
- [S] P. SCHENZEL, Multiplizitöten in verallgemeinerten Cohen-Macaulay-Moduln, Math. Nachr. 88 (1979), 295–306.
- [SV] J. STÜCKRAD and W. VOGEL, Buchsbaum rings and applications, Springer (1986).

134

PARAMETRIC DECOMPOSITION OF POWERS OF PARAMETER IDEALS

Present Addresses: SHIRO GOTO DEPARTMENT OF MATHEMATICS, SCHOOL OF SCIENCE AND TECHNOLOGY, MEIJI UNIVERSITY, 214–8571 JAPAN *e-mail*: goto@math.meiji.ac.jp.

YASUHIRO SHIMODA DEPARTMENT OF MATHEMATICS, FACULTY OF GENERAL EDUCATION, KITASATO UNIVERSITY, 228–8555 JAPAN. *e-mail:* shimoda@clas.kitasato-u.ac.jp.