Токуо J. Матн. Vol. 27, No. 2, 2004

A Note on the Ampleness of Numerically Positive Log Canonical and Anti-Log Canonical Divisors

Shigetaka FUKUDA

Gifu Shotoku Gakuen University (Communicated by H. Tsuji)

Abstract. In this short note, we consider the conjecture that the log canonical divisor (resp. the anti-log canonical divisor) $K_X + \Delta$ (resp. $-(K_X + \Delta)$) on a pair (X, Δ) consisting of a complex projective manifold X and a reduced simply normal crossing divisor Δ on X is ample if it is numerically positive. More precisely, we prove the conjecture for $K_X + \Delta$ with $\Delta \neq 0$ in dimension 4 and for $-(K_X + \Delta)$ with $\Delta \neq 0$ in dimension 3 or 4.

Every variety is defined over the field of complex numbers throughout the paper. Let *X* be an *n*-dimensional nonsingular projective algebraic variety and $\Delta = \sum_{i \in I} \Delta_i$ a reduced simply normal crossing divisor on *X* (where Δ_i is a prime divisor). We denote the canonical divisor of *X* by K_X . Thus $K_X + \Delta$ denotes the log canonical divisor on the pair (X, Δ) . By the symbol $\kappa(X, L)$, we mean the Iitaka dimension of a **Q**-Cartier **Q**-divisor *L*.

By the symbol $\kappa(X, L)$, we mean the marka dimension of a Q-Cartiel Q-divisor L.

DEFINITION 0.1. A **Q**-Cartier **Q**-divisor *L* on *X* is *numerically positive* (*nup* ([5]), for short) if (L, C) > 0 for every curve *C* on *X*.

REMARK 0.2. In the case where dim X = 1, the nupness means the ampleness.

In this paper we deal with the following four conjectures, which are well known to the specialists of higher dimensional algebraic varieties.

CONJECTURE 0.3. If K_X is nup, then it is ample.

CONJECTURE 0.4. If $K_X + \Delta$ is nup, then it is ample.

CONJECTURE 0.5. If $-K_X$ is nup, then it is ample.

CONJECTURE 0.6. If $-(K_X + \Delta)$ is nup, then it is ample.

Conjectures 0.3 and 0.4 are theorems in dimension $n \le 3$, by virtue of the abundance and the log abundance theorems (due to Kawamata [2] and [3], Miyaoka [10] and Keel-Matsuki-McKernan [4]). Conjecture 0.5 was proved by Hidetoshi Maeda [6] in dimension n = 2 and by Serrano [12] in dimension n = 3.

Hironobu Maeda [7] proved Conjecture 0.6 in the case where $\Delta \neq 0$ and n = 2, as follows: Assume that n = 2, the anti-log canonical divisor $-(K_X + \Delta)$ is nup and $\Delta \neq 0$.

Received July 3, 2003; revised September 1, 2003 2000 Mathematics Subject Classification. 14E30

SHIGETAKA FUKUDA

First we shall show that $(-(K_X + \Delta))^2 > 0$. Let us derive a contradiction, assuming that $(-(K_X + \Delta))^2 = 0$. From the nupness of $-(K_X + \Delta)$, we have $-(K_X + \Delta)\Delta > 0$. Thus $-(K_X + \Delta)K_X < 0$. Then $\kappa(X, -(K_X + \Delta)) = 1$ by virtue of Sakai [11], Theorem 2. Hence the nupness of $-(K_X + \Delta)$ implies that $(-(K_X + \Delta))(-(K_X + \Delta)) > 0$, because a high multiple of $-(K_X + \Delta)$ becomes linearly equivalent to some nonzero effective divisor. This is a contradiction! Consequently we have $(-(K_X + \Delta))^2 > 0$. Next we apply the Nakai criterion to the divisor $-(K_X + \Delta)$ and obtain that it is ample.

By using Wilson's technique [13], Hironobu Maeda [7] proved Conjecture 0.6 also in dimension n = 3 under the extra condition $\kappa(X, -(K_X + \Delta)) \ge 1$. (This result was reviewed by Matsuki [8].)

Here we remark that Serrano [12] has implicitly proved Conjecture 0.6 in dimension n = 3 under the weaker condition that $\kappa(X, -(K_X + \Delta)) \ge 0$, as follows: Assume that n = 3, that the anti-log canonical divisor $-(K_X + \Delta)$ is nup and that $\kappa(X, -(K_X + \Delta)) \ge 0$. Then $\kappa(X, (-1)K_X + 1(-(K_X + \Delta))) = \kappa(X, -2(K_X + \Delta) + \Delta) \ge \kappa(X, -2(K_X + \Delta)) = \kappa(X, -(K_X + \Delta)) \ge 0$. Thus Serrano [12], Proposition 3.1 implies that $-(K_X + \Delta) + \varepsilon K_X$ is ample for a sufficiently small positive rational number ε . Therefore $-(K_X + \Delta) = (1/(1 - \varepsilon))((-(K_X + \Delta) + \varepsilon K_X) + \varepsilon \Delta)$ is big. This satisfies the extra condition stated in the preceding paragraph.

Now we state our main theorem

THEOREM 0.7. (1) Conjecture 0.4 is true in the case where $\Delta \neq 0$ and n = 4. (2) Conjecture 0.6 is true in the case where $\Delta \neq 0$ and n = 3, 4.

ACKNOWLEDGMENT. I thank the referee for careful reading the manuscript and for valuable advice concerning the presentation.

1. Proof of Theorem 0.7

We define $\mathbf{Strata}(\Delta) := \{\Gamma \mid \Gamma \text{ is an irreducible component of } \bigcap_{j \in J} \Delta_j \neq \emptyset$, for some nonempty subset *J* of *I*} and $\mathbf{MS}(\Delta) := \{\Gamma \in \mathbf{Strata}(\Delta) \mid \text{ If } \Gamma' \in \mathbf{Strata}(\Delta) \text{ and } \Gamma' \subseteq \Gamma$, then $\Gamma' = \Gamma$ }. We remark that $(K_X + \Delta) \mid_{\Gamma} = K_{\Gamma}$ for every $\Gamma \in \mathbf{MS}(\Delta)$.

Let L be a **Q**-Cartier **Q**-divisor on X.

L is said to be *nef and log big* on (X, Δ) , if *L* is nef, $L^n > 0$ and $(L \mid_{\Gamma})^{\dim \Gamma} > 0$ for any $\Gamma \in \mathbf{Strata}(\Delta)$.

REMARK 1.1. Assume that L is nef.

If $bL - (K_X + \Delta)$ is nef for some $b \ge 0$, then so is $aL - (K_X + \Delta)$ for $a \gg 0$.

If $bL - (K_X + \Delta)$ is nup for some $b \ge 0$, then so is $aL - (K_X + \Delta)$ for $a \gg 0$.

If $bL - (K_X + \Delta)$ is nef and big for some $b \ge 0$, then so is $aL - (K_X + \Delta)$ for $a \gg 0$. If $bL - (K_X + \Delta)$ is nef and log big on (X, Δ) for some $b \ge 0$, then so is $aL - (K_X + \Delta)$ for $a \gg 0$.

We cite two lemmas:

378

LEMMA 1.2 (An uniruledness theorem of Miyaoka-Mori type, Matsuki [9]). Let D_1, D_2, \dots, D_n be a sequence of nef Cartier divisors. Suppose $D_1 \cdot D_2 \cdots D_n = 0$ and $-K_X \cdot D_1 \cdot D_2 \cdots D_{n-1} > 0$. Then X is covered by a family of rational curves C such that $D_n \cdot C = 0$.

LEMMA 1.3 (Base point free theorem of Reid type, Fukuda [1]). If L is nef and $bL - (K_X + \Delta)$ is nef and log big on (X, Δ) for some $b \ge 0$, then L is semi-ample.

PROPOSITION 1.4. Assume that L is nef and $bL - (K_X + \Delta)$ is nup for some $b \ge 0$ and that $\Delta \ne 0$. If $((bL - (K_X + \Delta)) |_{\Gamma})^{\dim \Gamma} > 0$ for any $\Gamma \in \mathbf{MS}(\Delta)$, then $aL - (K_X + \Delta)$ is nef and log big on (X, Δ) for $a \gg 0$.

PROOF. We prove this proposition by induction on *n*. If n = 1, the statement is trivial. Thus we may assume that $n \ge 2$.

We note that $(aL - (K_X + \Delta))|_{\Delta_i} = aL|_{\Delta_i} - (K_{\Delta_i} + (\Delta - \Delta_i)|_{\Delta_i}).$

First we shall show that $((aL - (K_X + \Delta)) |_{\Gamma})^{\dim \Gamma} > 0$ for any $\Gamma \in \mathbf{Strata}(\Delta)$. If $(\Delta - \Delta_i) |_{\Delta_i} \neq 0$, then the induction hypothesis implies that $((aL - (K_X + \Delta)) |_{\Gamma})^{\dim \Gamma} > 0$ for any $\Gamma \subseteq \Delta_i$. Thus we may assume that $(\Delta - \Delta_i) |_{\Delta_i} = 0$. Then $\Delta_i \in \mathbf{MS}(\Delta)$. Therefore $((aL - (K_X + \Delta)) |_{\Delta_i})^{\dim \Delta_i} > 0$.

Next we shall show that $(aL - (K_X + \Delta))^n > 0$. Assuming that $(aL - (K_X + \Delta))^n = 0$ for any $a \gg 0$, we will derive the contradiction. Then we have $L^i(K_X + \Delta)^{n-i} = 0$ for $i = 0, 1, 2, \dots, n$, by regarding $(aL - (K_X + \Delta))^n$ as a polynomial in the variable a. Thus $-K_X \cdot (aL - (K_X + \Delta))^{n-1} = (-aL + \Delta) \cdot (aL - (K_X + \Delta))^{n-1} = \Delta \cdot (aL - (K_X + \Delta))^{n-1} \ge (aL - (K_X + \Delta))^{n-1} \Delta_i = ((aL - (K_X + \Delta)) \mid_{\Delta_i})^{\dim \Delta_i} > 0$. Consequently Lemma 1.2 derives the contradiction.

THEOREM 1.5. Assume that L is nef and $bL - (K_X + \Delta)$ is nup for some $b \ge 0$ and that $\Delta \ne 0$. If $((bL - (K_X + \Delta)) |_{\Gamma})^{\dim \Gamma} > 0$ for any $\Gamma \in \mathbf{MS}(\Delta)$, then L is semi-ample.

PROOF. The assertion follows from Lemma 1.3, because $aL - (K_X + \Delta)$ is nef and log big on (X, Δ) for $a \gg 0$ by Proposition 1.4.

PROPOSITION 1.6. (1) Conjecture 0.4 is true in the case $\Delta \neq 0$, if Conjecture 0.3 is true in dimension $\leq n - 1$.

(2) Conjecture 0.6 is true in the case $\Delta \neq 0$, if Conjecture 0.5 is true in dimension $\leq n-1$.

PROOF. (1) Put $L = K_X + \Delta$ in the statement of Theorem 1.5. (2) Put $L = -(K_X + \Delta)$ in the statement of Theorem 1.5.

PROOF OF THEOREM 0.7. (1) Conjecture 0.3 is true in the case $n \le 3$ (Miyaoka [10], Kawamata [3]). Thus Proposition 1.6 implies the assertion.

(2) Conjecture 0.5 is true in the case $n \le 3$ (Hidetoshi Maeda [6], Serrano [12]). Thus Proposition 1.6 implies the assertion.

SHIGETAKA FUKUDA

References

- [1] S. FUKUDA, On base point free theorem, Kodai Math. J. 19 (1996), 191–199.
- Y. KAWAMATA, *The Zariski decomposition of log-canonical divisors*, Algebraic Geometry, Bowdoin, 1985, [Proc. Sympos. Pure Math. 46, Amer. Math. Soc., Providence, RI, 1987], 425–433.
- [3] Y. KAWAMATA, Abundance theorem for minimal threefolds, Invent. Math. 108 (1992), 229–246.
- [4] S. KEEL, K. MATSUKI and J. MCKERNAN, Log abundance theorem for threefolds, Duke Math. J. 75 (1994), 99–119.
- [5] A. LANTERI and B. RONDENA, Numerically positive divisors on algebraic surfaces, Geom. Dedicata 53 (1994), 145–154.
- [6] Hidetoshi MAEDA, A criterion for a smooth surface to be Del Pezzo, Math. Proc. Cambridge Philos. Soc. 113 (1993), 1–3.
- [7] Hironobu MAEDA, On logarithmic canonical divisors on threefolds, Tokyo J. Math. 8 (1985), 455-461.
- [8] K. MATSUKI, A criterion for the canonical bundle of a 3-fold to be ample, Math. Ann. 276 (1987), 557–564.
- [9] K. MATSUKI, A correction to the paper "Log abundance theorem for threefolds", math. AG/0302360, February 2003.
- [10] Y. MIYAOKA, On the Kodaira dimension of minimal threefolds, Math. Ann. **281** (1988), 325–332.
- F. SAKAI, D-dimension of algebraic surfaces and numerically effective divisors, Composito Math. 48 (1983), 101–118.
- [12] F. SERRANO, Strictly nef divisors and Fano threefolds, J. Reine Angew. Math. 464 (1995), 187–206.
- [13] P. M. H. WILSON, On complex algebraic varieties of general type, Sympos. INDAM, Rome, 1979, Symposia Mathematica 24, Academic Press, (1981), 65–73.

Present Address: FACULTY OF EDUCATION, GIFU SHOTOKU GAKUEN UNIVERSITY, YANAIZU-CHO, GIFU, 501–6194 JAPAN. *e-mail*: fukuda@ha.shotoku.ac.jp