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Abstract. The Collatz conjecture is that there exists a positive integer n which satisfies f n(m) = 1 for any
integer m ≥ 3, where f is the function on the rational number field defined by f (m) = m/2 if the numerator of m is
even and f (m) = (3m + 1)/2 if the numerator of m is odd. Let m be a rational number such that f n(m) = m > 1.
Then we show that, if m has some simple sequences, then the total number of positive integer m is finite, by estimating
f (m) − m.

1. Introduction

We define a function f on the set of the rational numbers by

f (m) =




m

2
if m is even ,

3m + 1

2
if m is odd ,

where m is a positeive integer. We denote by f n = f ◦ f n−1 the n-fold iterate of f , for
each positive integer n. The Collatz conjecture is that there exists a positive integer n which
satisfies f n(m) = 1 for any integer m ≥ 2. We call m the “starting-number” and the smallest
n the “total-sequence”.

This conjecture is equivalent to the next two conditions for every odd integer m > 1:
(1) f n(m) �= m for any n ≥ 1. (If f n(m) = m holds, then we call m “cycle-number”.)
(2) m has total-sequence. (f n(m) dose not diverge.)
We consider the condition, (1) and assume that m is odd, since even number is mapped

to an odd number by iterating f . We know only one cycle-number: m = 1. We call it the
“trivial-cycle”.

Let m be a cycle-number. We define the numbers li (i ≥ 0) and mi (i ≥ 1) by the
following rules:

(i) We put l0 = −1 and m1 = m.

(ii) For i ≥ 1, li is the least positive integer such that f li+1(mi) is odd.
(iii) We put mi+1 = f li+1(mi).
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If m = m1 = mk+1, then we call k “odd-cycle-sequence”. We write

m1 = 〈l1 + 1, l2 + 1, · · · , lk + 1〉 (li ≥ 0)

We can easily see that

mi = 〈li + 1, li+1 + 1, · · · , lk + 1, l1 + 1, · · · , łi−1 + 1〉 . (i = 1, · · · , k)

We can write trivial-cycle

1 = 〈2〉 .

If m is a cycle-number, and f n(m) = m, then we call n a “cycle-sequence”. We can easily
see that

n =
k∑

i=1

(li + 1) .

THEOREM 1.1. Let m = 〈l1 + 1, l2 + 1, · · · , lk + 1〉 and l0 = −1. Then we have

m =

k∑
i=1

3k−i · 2
∑i−1

j=0(lj+1)

2n − 3k
.

Theorem 1.1 was proved in [1].

THEOREM 1.2. Suppose m = 〈1, · · · , 1, lk +1〉 is a cycle-number, then m = 1 = 〈2〉.
Theorem 1.2 was proved in [2]. We call 〈1, · · · , 1, lk + 1〉 “circuit”.

THEOREM 1.3. The total number of positive integer of m1 = 〈1, · · · , 1, l+1, · · · , l+
1〉 is finite.

Theorem 1.3 was proved in [3]. This theorem has necessary condition n < 22033, where
n is cycle-sequence.

The conjectuer has been verified with a computer up to m = 240 � 1.1 × 1012 by N. Yoneda
(Stated in [7]).

THEOREM 1.4. Let m be a positive cycle-number, min{m1,m2, · · · mk} > 240, n be
cycle-sequence of m1. We have

n = 301994a + 17087915b + 85137581c ,

where a, b, c are nonnegative integers, b > 0, ac = 0. In particular, the smallest admissible
values for n is 17087915.

Combining Theorem 1.3, Theorem 1.4 and computing check, we have

COROLLARY 1.5. l ≥ 1,m1 = 〈1, · · · , 1, l + 1, · · · , l + 1〉 is not a positive integer.

We shall prove the next theorem in Section 3.
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THEOREM 1.6. l ≥ 1,m = 〈1, · · · , 1, l1+1, 1, · · · , 1, l2+1〉 is not a positive integer.

This theorem is a generalization of Theorem 1.2.
We call m = 〈1, · · · , 1, l1 + 1, 1, · · · , 1, l2 + 1〉 “crossing-circuit”.

2. Some lemmas

Let 1/2 < 3k/2n < 1, then we have

(n − 1) log3 2 < k < n log3 2

k log2 3 < n < k log2 3 + 1 .

LEMMA 2.1. Let 1/2 < 3k/2n < 1, then

k = �n log3 2� = n log3 2 + c1 (− log3 2 < c1 < 0)

n = 	k log2 3
 = k log2 3 + c2 (0 < c2 < 1)

�x� means the greatest integer not exceeding x, and 	x
 means the smallest integer exceeding
x.

THEOREM 2.2. Let α1, α2 > 1 be multiplicatively independent real algebraic num-
bers, and D = [Q(α1, α2) : Q]. Let A1, A2 denote real numbers > 1 such that

log Aj ≥ max

{
h(αj ),

log αj

D
,

1

D

}
, (j = 1, 2) ,

where h(α) is absolute logarithmic height of α. Let b1, b2 be positive integers, and put

Λ = b1 log α1 − b2 log α2 .

Then

log |Λ| ≥ −32.31D4
(

max

{
log B + 0.18,

10

D
,

1

2

})2

(log A1)(log A2) ,

where

B = b1

D log A2
+ b2

D log A1
.

Theorem 2.2 was proved in [6]. Let 1/2 < 3k/2n < 1, then

Λ = b1 log α1 − b2 log α2 = n log 2 − k log 3 ,

by putting α1 = 2, α2 = 3, b1 = n, b2 = k. Using the inequality

| log x|
2

< 1 − x ,
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for 1/2 < x < 1, we have

|Λ|
2

= 1

2
|k log 3 − n log 2| = 1

2

∣∣∣∣log
3k

2n

∣∣∣∣ < 1 − 3k

2n
.

And, it follows from Theorem 2.2 that

log |Λ| ≥ −32.31H 2 log 3 .

Hence we have ∣∣∣∣1 − 3k

2n

∣∣∣∣ > 2−32.31H 2 log2 3−1

where H = max{log B + 0.18, 10}, and

B = n

log 3
+ k >

n

log 3
+ (n − 1) log3 2 = n

1 + log 2

log 3
− log3 2

for Lemma 2.1. We assume H = 10. Then 9.82 > log B. The inequality

9.82 > log B > log

(
n

1 + log 2

log 3
− log3 2

)

says

n ≤ 11938 .

LEMMA 2.3. Let 1/2 < 3k/2n < 1, n > 11938. Then,

2−51.2102H 2−1 <

∣∣∣∣1 − 3k

2n

∣∣∣∣
where H is log B + 0.18.

We consider the denominator of Theorem 1.1. Let n ≥ 3, then 2n − 3k ≡ −3k ≡
−3 or − 1 �≡ 1 (mod.8). It follows that;

LEMMA 2.4. The exponential indeterminate equation 2n − 3k = 1 has only one posi-
tive integral solution (n, k) = (2, 1).

(n, k) = (2, 1) means trivial-cycle m = 1 = 〈2〉.

3. Proof of Theorem 1.6

Let m1 = 〈1, · · · , 1, l1 + 1, 1, · · · , 1, l2 + 1〉 be positive crossing-circuit, m2 =
f (m1) = 〈1, · · · , 1, l1 + 1, 1, · · · , 1, l2 + 1, 1〉. x1, x2 satisfy f x1+l1(m1) = 〈1, · · · , 1, l2 +
1, 1, · · · , 1, l1 + 1〉, x2 = k − x1. Hence we have n = x1 + l1 + x2 + l2. Let l1 ≥ 1, l2 ≥ 1 for
corollary 1.5, and without loss of generality, x1 ≥ x2. Let n ≥ 8. Then, since Theorem 1.1,

〈l1 + 1, l2 + 1〉 = 3 + 2n−l2−1

2n − 9
, 〈1, l1 + 1, 1, l2 + 1〉 = 5 · 2n−l2−2 + 45

2n − 81
,
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〈1, l1 + 1, l2 + 1〉 = 2n−l2−1 + 15

2n − 27

are not positive integers. Hence we have x1 ≥ 3, and

m1 =
3k−1 + · · · + 2x1−2 · 3k−x1+1 + 2x1−1 · 3k−x1 + 2x1+l1 · 3k−x1−1 + · · · + 2x1+x2+l1−1

2n − 3k

m2 =
3k−1 + · · · + 2x1−2 · 3k−x1+1 + 2x1+l1−1 · 3k−x1 + 2x1+l1 · 3k−x1−1 + · · · + 2x1+x2+l1+l2−1

2n − 3k

for Theorem 1.1. Since m2 > m1,

m2 − m1 = 2x1−1{3k−x1(2l1 − 1) + 2x2+l1(2l2 − 1)}
2n − 3k

Now, m2 − m1 is integral, 2n − 3k > 1 and (2n − 3k, 2x1−1) = 1. It follows that

(2n − 3k)|{3k−x1(2l1 − 1) + 2x2+l1(2l2 − 1)} .

We consider the right hand. Since n = x1 + l1 + x2 + l2, k − x1 = x2, x1 ≥ x2,

1 ≤ 3k−x1(2l1 − 1) + 2x2+l1(2l2 − 1)

2n − 3k
<

2−x1 log2(4/3)−l2 + 2−x1

1 − 3k/2n
<

2−x1 log2(4/3)

1 − 3k/2n
. (∗)

First, we assume 3k/2n ≤ 1/2. Then, m2 − m1 is not a positive integer for (∗) and
x1 ≥ 3.

Next, we assume 1/2 < 3k/2n < 1. Since Lemma 2.1 and x1 ≥ k/2 (for x1 ≥ x2 and
k = x1 + x2), then x1 > (n − 1)(log3 2)/2. It follows that

2−x1 log2(4/3) < 2−(n−1) log3(2/
√

3) .

Hence we have

2−51.2102H 2−1 < 2−(n−1) log3(2/
√

3)

for (∗) and Lemma 2.3. It means

n < 51371 .

It is a contradiction to Theorem 1.4.
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