On Generalized Circuit of the Collatz Conjecture

Tomoaki MIMURO

Hosei University

(Communicated by K. Shinoda)

Abstract. The Collatz conjecture is that there exists a positive integer n which satisfies $f^n(m) = 1$ for any integer $m \ge 3$, where f is the function on the rational number field defined by f(m) = m/2 if the numerator of m is even and f(m) = (3m+1)/2 if the numerator of m is odd. Let m be a rational number such that $f^n(m) = m > 1$. Then we show that, if m has some simple sequences, then the total number of positive integer m is finite, by estimating f(m) - m.

1. Introduction

We define a function f on the set of the rational numbers by

$$f(m) = \begin{cases} \frac{m}{2} & \text{if } m \text{ is even,} \\ \frac{3m+1}{2} & \text{if } m \text{ is odd,} \end{cases}$$

where m is a positive integer. We denote by $f^n = f \circ f^{n-1}$ the n-fold iterate of f, for each positive integer n. The Collatz conjecture is that there exists a positive integer n which satisfies $f^n(m) = 1$ for any integer $m \ge 2$. We call m the "starting-number" and the smallest n the "total-sequence".

This conjecture is equivalent to the next two conditions for every odd integer m > 1:

- (1) $f^n(m) \neq m$ for any $n \geq 1$. (If $f^n(m) = m$ holds, then we call m "cycle-number".)
- (2) m has total-sequence. ($f^n(m)$ dose not diverge.)

We consider the condition, (1) and assume that m is odd, since even number is mapped to an odd number by iterating f. We know only one cycle-number: m = 1. We call it the "trivial-cycle".

Let m be a cycle-number. We define the numbers l_i $(i \ge 0)$ and m_i $(i \ge 1)$ by the following rules:

- (i) We put $l_0 = -1$ and $m_1 = m$.
- (ii) For $i \ge 1$, l_i is the least positive integer such that $f^{l_i+1}(m_i)$ is odd.
- (iii) We put $m_{i+1} = f^{l_i+1}(m_i)$.

If $m = m_1 = m_{k+1}$, then we call k "odd-cycle-sequence". We write

$$m_1 = \langle l_1 + 1, l_2 + 1, \dots, l_k + 1 \rangle \quad (l_i \ge 0)$$

We can easily see that

$$m_i = \langle l_i + 1, l_{i+1} + 1, \dots, l_k + 1, l_1 + 1, \dots, l_{i-1} + 1 \rangle$$
. $(i = 1, \dots, k)$

We can write trivial-cycle

$$1 = \langle 2 \rangle$$
.

If m is a cycle-number, and $f^n(m) = m$, then we call n a "cycle-sequence". We can easily see that

$$n = \sum_{i=1}^{k} (l_i + 1) \, .$$

THEOREM 1.1. Let $m = \langle l_1 + 1, l_2 + 1, \dots, l_k + 1 \rangle$ and $l_0 = -1$. Then we have

$$m = \frac{\sum_{i=1}^{k} 3^{k-i} \cdot 2^{\sum_{j=0}^{i-1} (l_j+1)}}{2^n - 3^k}.$$

Theorem 1.1 was proved in [1].

THEOREM 1.2. Suppose $m = \langle 1, \dots, 1, l_k + 1 \rangle$ is a cycle-number, then $m = 1 = \langle 2 \rangle$. Theorem 1.2 was proved in [2]. We call $\langle 1, \dots, 1, l_k + 1 \rangle$ "circuit".

THEOREM 1.3. The total number of positive integer of $m_1 = \langle 1, \dots, 1, l+1, \dots, l+1 \rangle$ is finite.

Theorem 1.3 was proved in [3]. This theorem has necessary condition n < 22033, where n is cycle-sequence.

The conjectuer has been verified with a computer up to $m = 2^{40} \simeq 1.1 \times 10^{12}$ by N. Yoneda (Stated in [7]).

THEOREM 1.4. Let m be a positive cycle-number, $min\{m_1, m_2, \cdots m_k\} > 2^{40}$, n be cycle-sequence of m_1 . We have

$$n = 301994a + 17087915b + 85137581c$$
,

where a, b, c are nonnegative integers, b > 0, ac = 0. In particular, the smallest admissible values for n is 17087915.

Combining Theorem 1.3, Theorem 1.4 and computing check, we have

COROLLARY 1.5. $l \ge 1, m_1 = \langle 1, \dots, 1, l+1, \dots, l+1 \rangle$ is not a positive integer.

We shall prove the next theorem in Section 3.

THEOREM 1.6. $l \ge 1, m = \langle 1, \dots, 1, l_1+1, 1, \dots, 1, l_2+1 \rangle$ is not a positive integer.

This theorem is a generalization of Theorem 1.2.

We call $m = \langle 1, \dots, 1, l_1 + 1, 1, \dots, 1, l_2 + 1 \rangle$ "crossing-circuit".

2. Some lemmas

Let $1/2 < 3^k/2^n < 1$, then we have

$$(n-1)\log_3 2 < k < n\log_3 2$$

 $k\log_2 3 < n < k\log_2 3 + 1$.

LEMMA 2.1. Let
$$1/2 < 3^k/2^n < 1$$
, then

$$k = \lfloor n \log_3 2 \rfloor = n \log_3 2 + c_1 \quad (-\log_3 2 < c_1 < 0)$$

 $n = \lceil k \log_2 3 \rceil = k \log_2 3 + c_2 \quad (0 < c_2 < 1)$

 $\lfloor x \rfloor$ means the greatest integer not exceeding x, and $\lceil x \rceil$ means the smallest integer exceeding x.

THEOREM 2.2. Let $\alpha_1, \alpha_2 > 1$ be multiplicatively independent real algebraic numbers, and $D = [\mathbf{Q}(\alpha_1, \alpha_2) : \mathbf{Q}]$. Let A_1, A_2 denote real numbers > 1 such that

$$\log A_j \ge \max \left\{ h(\alpha_j), \frac{\log \alpha_j}{D}, \frac{1}{D} \right\}, \quad (j = 1, 2),$$

where $h(\alpha)$ is absolute logarithmic height of α . Let b_1, b_2 be positive integers, and put

$$\Lambda = b_1 \log \alpha_1 - b_2 \log \alpha_2.$$

Then

$$\log |A| \ge -32.31 D^4 \left(\max \left\{ \log B + 0.18, \frac{10}{D}, \frac{1}{2} \right\} \right)^2 (\log A_1) (\log A_2),$$

where

$$B = \frac{b_1}{D\log A_2} + \frac{b_2}{D\log A_1}.$$

Theorem 2.2 was proved in [6]. Let $1/2 < 3^k/2^n < 1$, then

$$\Lambda = b_1 \log \alpha_1 - b_2 \log \alpha_2 = n \log 2 - k \log 3,$$

by putting $\alpha_1 = 2$, $\alpha_2 = 3$, $b_1 = n$, $b_2 = k$. Using the inequality

$$\frac{|\log x|}{2} < 1 - x \,,$$

for 1/2 < x < 1, we have

$$\frac{|A|}{2} = \frac{1}{2} |k \log 3 - n \log 2| = \frac{1}{2} \left| \log \frac{3^k}{2^n} \right| < 1 - \frac{3^k}{2^n}.$$

And, it follows from Theorem 2.2 that

$$\log |A| > -32.31 H^2 \log 3$$
.

Hence we have

$$\left|1 - \frac{3^k}{2^n}\right| > 2^{-32.31H^2 \log_2 3 - 1}$$

where $H = \max\{\log B + 0.18, 10\}$, and

$$B = \frac{n}{\log 3} + k > \frac{n}{\log 3} + (n-1)\log_3 2 = n\frac{1 + \log 2}{\log 3} - \log_3 2$$

for Lemma 2.1. We assume H = 10. Then $9.82 > \log B$. The inequality

$$9.82 > \log B > \log \left(n \frac{1 + \log 2}{\log 3} - \log_3 2 \right)$$

says

$$n \le 11938$$
.

LEMMA 2.3. Let $1/2 < 3^k/2^n < 1$, n > 11938. Then,

$$2^{-51.2102H^2 - 1} < \left| 1 - \frac{3^k}{2^n} \right|$$

where H is $\log B + 0.18$.

We consider the denominator of Theorem 1.1. Let $n \ge 3$, then $2^n - 3^k \equiv -3^k \equiv -3$ or $-1 \not\equiv 1 \pmod{8}$. It follows that;

LEMMA 2.4. The exponential indeterminate equation $2^n - 3^k = 1$ has only one positive integral solution (n, k) = (2, 1).

$$(n, k) = (2, 1)$$
 means trivial-cycle $m = 1 = \langle 2 \rangle$.

3. Proof of Theorem 1.6

Let $m_1 = \langle 1, \dots, 1, l_1 + 1, 1, \dots, 1, l_2 + 1 \rangle$ be positive crossing-circuit, $m_2 = f(m_1) = \langle 1, \dots, 1, l_1 + 1, 1, \dots, 1, l_2 + 1, 1 \rangle$. x_1, x_2 satisfy $f^{x_1 + l_1}(m_1) = \langle 1, \dots, 1, l_2 + 1, 1, \dots, 1, l_1 + 1 \rangle$, $x_2 = k - x_1$. Hence we have $n = x_1 + l_1 + x_2 + l_2$. Let $l_1 \geq 1, l_2 \geq 1$ for corollary 1.5, and without loss of generality, $x_1 \geq x_2$. Let $n \geq 8$. Then, since Theorem 1.1,

$$\langle l_1+1, l_2+1 \rangle = \frac{3+2^{n-l_2-1}}{2^n-9}, \quad \langle 1, l_1+1, 1, l_2+1 \rangle = \frac{5 \cdot 2^{n-l_2-2}+45}{2^n-81},$$

$$\langle 1, l_1 + 1, l_2 + 1 \rangle = \frac{2^{n-l_2-1} + 15}{2^n - 27}$$

are not positive integers. Hence we have $x_1 \ge 3$, and

$$m_1 = \frac{3^{k-1} + \dots + 2^{x_1-2} \cdot 3^{k-x_1+1} + 2^{x_1-1} \cdot 3^{k-x_1} + 2^{x_1+l_1} \cdot 3^{k-x_1-1} + \dots + 2^{x_1+x_2+l_1-1}}{2^n - 3^k}$$

 $m_2 =$

$$\frac{3^{k-1} + \dots + 2^{x_1-2} \cdot 3^{k-x_1+1} + 2^{x_1+l_1-1} \cdot 3^{k-x_1} + 2^{x_1+l_1} \cdot 3^{k-x_1-1} + \dots + 2^{x_1+x_2+l_1+l_2-1}}{2^n - 3^k}$$

for Theorem 1.1. Since $m_2 > m_1$,

$$m_2 - m_1 = \frac{2^{x_1 - 1} \{3^{k - x_1} (2^{l_1} - 1) + 2^{x_2 + l_1} (2^{l_2} - 1)\}}{2^n - 3^k}$$

Now, $m_2 - m_1$ is integral, $2^n - 3^k > 1$ and $(2^n - 3^k, 2^{x_1 - 1}) = 1$. It follows that

$$(2^{n}-3^{k})|\{3^{k-x_1}(2^{l_1}-1)+2^{x_2+l_1}(2^{l_2}-1)\}.$$

We consider the right hand. Since $n = x_1 + l_1 + x_2 + l_2$, $k - x_1 = x_2$, $x_1 \ge x_2$,

$$1 \le \frac{3^{k-x_1}(2^{l_1}-1) + 2^{x_2+l_1}(2^{l_2}-1)}{2^n - 3^k} < \frac{2^{-x_1\log_2(4/3) - l_2} + 2^{-x_1}}{1 - 3^k/2^n} < \frac{2^{-x_1\log_2(4/3)}}{1 - 3^k/2^n} \,. \tag{*}$$

First, we assume $3^k/2^n \le 1/2$. Then, $m_2 - m_1$ is not a positive integer for (*) and $x_1 \ge 3$.

Next, we assume $1/2 < 3^k/2^n < 1$. Since Lemma 2.1 and $x_1 \ge k/2$ (for $x_1 \ge x_2$ and $k = x_1 + x_2$), then $x_1 > (n-1)(\log_3 2)/2$. It follows that

$$2^{-x_1 \log_2(4/3)} < 2^{-(n-1) \log_3(2/\sqrt{3})}$$

Hence we have

$$2^{-51.2102H^2-1} < 2^{-(n-1)\log_3(2/\sqrt{3})}$$

for (*) and Lemma 2.3. It means

$$n < 51371$$
.

It is a contradiction to Theorem 1.4.

References

[1] C. BOHM and G. SONTACCHI, On the existence of cycles of given length in integer sequence like $x_{n+1} = x_n/2$ if x_n even, and $x_{n+1} = 3x_n + 1$ otherwise, Atti Accad. Naz Lincei Rend. Sci. Fis. Mat. Natur. (8) **64** (1978), 260–264.

- [2] R. P. STEINER, A Thorem on the Syracuse Problem, Proc. 7th Manitoba Conf. Numerical Mathematics and Computing 1977 Winnipeg (1978), 553–559.
- [3] T. MIMURO, On certain simple cycles of the Collatz conjecture, SUT. J. Math. 37 (2001), 79–89.
- [4] S. ELIAHOU, The 3x + 1 problem: new lower bounds on nontrivial cycle lengths, Discrete Math. 118 (1993), 45-56
- [5] M. LAURENT, M. Mignotte et Y. Nesterenko, Formes linéairies en deux logarithmes et déterminante d'interpolation, J. Number Theory 55 (1995), 258–321.
- [6] G. J. WIRSCHING, The Dynamical System Generated by the 3n + 1 Function, Lecture Notes in Mathematics **1681**, Springer-Verlag (1998).
- [7] S. WAGON, The Collatz Problem, Math. Intelligencer 7 (1985) 72–76.

Present Address:

Department of System Engineering, Hosei University, Koganei, Tokyo, 184–8584 Japan.

e-mail: mimuro@cc9.ne.jp