Systematic Singular Triangulations of All Orientable Seifert Manifolds

Taiji TANIGUCHI*, Keiko TSUBOI and Masakatsu YAMASHITA

Keio University, Dokkyo Saitama High School and Toyo University
(Communicated by Y. Maeda)

1. Introduction

In this paper, we construct singular triangulations [1] of all orientable Seifert manifolds [2]. Especially, we consider singular triangulations with only one vertex, called *one-vertex triangulation*. Our construction is useful to calculate the state sum type invariant, for example, Turaev-Viro invariant, Turaev-Viro-Ocneanu invariant or Dijkgraaf-Witten invariant; this subject will be seen in forthcoming paper [3]. Also our work is made use of the introduction of a new complexity invariant of closed 3-manifold, see [4].

Let \mathcal{M} be a Seifert manifold and P be a special spine [5] of \mathcal{M} . Considering a dual complex for \mathcal{M} relative to P, we obtain a one-vertex triangulation of \mathcal{M} . Now, how to construct a special spine P of \mathcal{M} ? Our construction is based on the fact that any orientable Seifert manifold is obtained by gluing M_n , J and $V_{p,q}$, which are homeomorphic to $(S^2 - \bigcup_{i=1}^n D_i^2) \times S^1$, $(S^1 \times S^1 - D^2) \times S^1$ and (p,q)-type fibered solid torus respectively.

The first step is to make special spines P_{M_n} , P_J , $P_{V_{p,q}}$ of three compact manifolds M_n , J and $V_{p,q}$ satisfying the following conditions: each connected component of $\partial M_n \cap P_{M_n}$, $\partial J \cap P_J$ and $\partial V_{p,q} \cap P_{V_{p,q}}$ is the theta-curve shown in Figure 1 and the loop $\gamma \bar{\alpha}$ is a fiber, where $\bar{\alpha}$ means the reverse direction of the edge labeled α . As an example, the solid torus $V_{1,1}$

FIGURE 1. A theta-curve θ .

Received May 11, 2004; revised November 10, 2004; revised February 4, 2005

^{*}This work is supported in part by the Ministry of Education, Culture, Sport, Science and Technology in Japan under a grant in Aid of the 21st Century Center of Excellence for Integrative Mathematical Sciences: Progress in Mathematics Motivated by Social and Natural Sciences.

and a special spine $P_{V_{1,1}}$ is shown in Figure 5. The second step is to define fiber preserving homeomorphisms $\varphi_i: \{\partial J, \partial V_{p,q}\} \to \partial M_n$, see § 5.4. Then, we construct any orientable Seifert manifold \mathcal{M} by gluing $J, V_{p,q}$ and M_n . Furthermore, we show that the polyhedron $P_{\mathcal{M}}$ obtained by gluing $P_J, P_{V_{p,q}}$ and P_{M_n} by $\{\varphi_i\}$ is a special spine of \mathcal{M} . Thus, the dual complex for \mathcal{M} concerning $P_{\mathcal{M}}$ is a one-vertex triangulation of \mathcal{M} .

2. Word diagram of a solid torus

Let $w = X_1 X_2 \cdots X_n$ be a sequence of elements $X_i \in \{L, R, \bar{L}, \bar{R}\}, i = 1, 2, \cdots, n$. We call such a sequence w = w(L, R) as a word on the letters $\{L, R\}$. In this section, for a word w(L, R), we will define a word diagram, denoted by w(L, R)-diagram. Then, we show that w(L, R)-diagram induces an identification map $f_{w(L, R)}$ on ∂B^3 such that $B^3/f_{w(L, R)}$ is homeomorphic to a solid torus.

In § 2.1, we consider the case when the word w(L, R) is the empty word. We use the notation ϕ for the empty word. The ϕ -diagram plays a role of a pit of w(L, R)-diagram of a solid torus. In § 2.2, we consider the case when the word w(L, R) is not the empty word.

2.1. The case $w(L, R) = \phi$. Let D_{ϕ} be the 2-disc with labels P, A, Q, α , β , γ , u, v, w shown in Figure 2. We call D_{ϕ} the ϕ -disc. It may become clear for the role of labels in D_{ϕ} , see Remark 2.1.

Suppose the ϕ -disc is embedded in S^2 , see Figure 3. Then, the 2-sphere S^2 is separated into two discs by the circle $\alpha\beta\gamma\overline{\alpha}\overline{\beta}\overline{\gamma}$ (= ∂D_{ϕ}), where \overline{X} means the reverse direction of the edge labeled X. We denote by E_{ϕ} the closed dics $S^2 \setminus \operatorname{Int}(D_{\phi})$.

The ϕ -disc gives a natural pasting information f_{ϕ} on $S^2 (= \partial B^3)$ to obtain a compact 3-manifold B^3/f_{ϕ} . The ϕ -disc consists of Z_0, Z_1 and Z_2 , where Z_0, Z_1 and Z_2 are sets of 0-cells, oriented 1-cells and oriented 2-cells respectively. Now, we will explain Z_0, Z_1 and

FIGURE 2. ϕ - disc D_{ϕ} .

FIGURE 3. E_{ϕ}

 Z_2 and define a pasting information f_{ϕ} on S^2 . Although it is only an example, but it must give a suggestion of a general method to obtain a pasting information.

In the ϕ -disc, there are some 0-cells with the labels u, v, w. We call a 0-cell a *vertex*. Thus, the set Z_0 consists of ten vertices $\{u^{(i)}, v^{(i)}, w^{(j)} | i = 1, 2, 3 \text{ and } j = 1, 2, 3, 4\}$, where $X^{(i)}$ is the vertex with the label X. Then, the map $f_{\phi}|_{Z_0}$ is defined by satisfying the following conditions:

- 1. For any $X \in \{u, v\}$ and $i \in \{1, 2, 3\}$, $f_{\phi}(X^{(i)}) = X$;
- 2. For any $j \in \{1, 2, 3, 4\}$, $f_{\phi}(w^{(j)}) = w$,

Now, we observe Z_1 . In the ϕ -disc, there are some 1-cells with the labels A, P, Q, α , β , γ , where we mean that a 1-cell is an open arcs. We call a 1-cell an *edge*. We denote the edges in the ϕ -disc with the labels A, P, Q, α , β , γ by $A^{(i)}$, $P^{(i)}$, $Q^{(i)}$, $\alpha^{(j)}$, $\beta^{(j)}$, $\gamma^{(j)}$ respectively. Thus, the set Z_1 consists of fifteen edges $\{A^{(i)}, P^{(i)}, Q^{(i)}, \alpha^{(j)}, \beta^{(j)}, \gamma^{(j)} \mid i=1,2,3$ and $j=1,2\}$. Then, the map $f_{\phi}|_{Z_0}$ is extended continuously on $Z_0 \cup Z_1$ satisfying the following conditions.

- 1. For any $X \in \{A, P, Q\}$ and $i \in \{1, 2, 3\}$, $f_{\phi}(X^{(i)}) = X$;
- 2. For any $X \in \{\alpha, \beta, \gamma\}$ and $j \in \{1, 2\}, f_{\phi}(X^{(j)}) = X$;
- 3. f_{ϕ} is a homeomorphism on each cell in $Z_0 \cup Z_1$.

At last, we consider Z_2 . Let ρ_+, σ_+, τ_+ be oriented 2-cells (open 2-discs) in the upper half disc of D_ϕ with the boundary ∂ (cl(ρ_+)) = A, ∂ (cl(σ_+)) = $PQ\overline{\alpha}$, ∂ (cl(τ_+)) = $AQ\overline{\gamma}PA\overline{P}$ $\overline{\beta}$ \overline{Q} respectively, see Figure 2, where cl(X) means the closure of X. Similarly, let ρ_-, σ_-, τ_- be oriented 2-cells in the under half disc in D_ϕ such that ∂ (cl(ρ_-)) = A, ∂ (cl(ρ_-)) = $AQ\overline{\gamma}PA\overline{P}$ $\overline{\beta}$ \overline{Q} respectively. We call a 2-cell a face. Then, the set Z_2 consists of the faces { $\rho_+, \rho_-, \sigma_+, \sigma_-, \tau_+, \tau_-$, Int(E_ϕ)}. Then, the map $f_\phi|_{Z_0 \cup Z_1}$ is extended continuously on $Z_0 \cup Z_1 \cup Z_2$ (\cong S^2) satisfying the following conditions:

- 1. For any $X \in {\rho, \sigma, \tau}, f_{\phi}(X_{+}) = f_{\phi}(X_{-}) = X;$
- 2. f_{ϕ} is a homeomorphism on each cell in $Z_0 \cup Z_1 \cup Z_2$. Thereby, $f_{\phi}: S^2 \to S^2/f_{\phi}$ is determined by the ϕ disc up to isotopy. We call the pasting information an identification map f_{ϕ} of the ϕ disc.

REMARK 2.1. Note that the label X of each cell in ϕ - disc is the name of the cell in S^2/f_{ϕ} .

Let G_{ϕ} be the connected 3-regular graph with labels on S^2 associated with the underling space of $Z_0 \cup Z_1$. Note that each of $S^2 \setminus G_{\phi}$ is an open 2-disc. Thus, D_{ϕ} , E_{ϕ} , D_{ϕ}/f_{ϕ} and E_{ϕ}/f_{ϕ} have cell structure. We call the triple $(S^2, G_{\phi}, f_{\phi})$ as ϕ -diagram.

Since f_{ϕ} is a map on $S^2(=\partial B^3)$, the quotient space $V_{\phi}:=B^3/f_{\phi}$ is defined. We can confirm that the quotient space V_{ϕ} is a compact 3-manifold by examining a neighborhood of each point of B^3 . Note that the boundary of the 3-manifold V_{ϕ} is E_{ϕ}/f_{ϕ} , and the image $f_{\phi}(\partial D_{\phi})=f_{\phi}\left(\partial E_{\phi}\right)$ is the theta-curve θ (Figure 1) embedded in ∂V_{ϕ} such that $\partial V_{\phi}\setminus\theta\cong \mathrm{Int}(E_{\phi})$.

FIGURE 5. The solid torus V_{ϕ} .

Theorem 2.2. The manifold V_{ϕ} is homeomorphic to a solid torus.

PROOF. By the definition of f_{ϕ} , E_{ϕ}/f_{ϕ} is the boundary of the manifold V_{ϕ} , which is a free face of V_{ϕ} . Thus, the manifold V_{ϕ} collapses to the cell complex D_{ϕ}/f_{ϕ} . And the cell complex D_{ϕ}/f_{ϕ} collapses to the cell complex D_{ϕ}'/f_{ϕ} , where D_{ϕ}' is shown in Figure 4.

The cell complex D'_{ϕ}/f_{ϕ} collapses to the loop C/f_{ϕ} , where C is the edge shown in Figure 4. Thus, the manifold V_{ϕ} collapses to S^1 .

Thereby, V_{ϕ} is homeomorphic to either a solid torus or a solid Klein bottle. By the definition of the map f_{ϕ} , the manifold V_{ϕ} is orientable. Thus, it must be homeomorphic to a solid torus.

The solid torus V_{ϕ} is shown in Figure 5. The bold lines α , β and γ are embedded in ∂V_{ϕ} , and the others are embedded in $Int(V_{\phi})$. And shaded faces are D_{ϕ}/f_{ϕ} embedded in $Int(V_{\phi})$.

2.2. The case $w(L, R) \neq \phi$. In the previous subsection, we observed the case when w(L, R) is the empty word. In this subsection, we consider the case when w(L, R) is not the empty word. For a word w, we will define w-disc D_w , and show that B^3/f_w is homeomorphic to a solid torus, where f_w is an identification map on ∂B^3 induced by D_w .

Now, we define the two discs D_w and D_w^* for a word w. Denote by \mathcal{H}_L , $\mathcal{H}_{\bar{L}}$, \mathcal{H}_R , $\mathcal{H}_{\bar{R}}$ the annuli shown in Figure 6, 7, 8, 9 respectively. At first, we consider the case that the length of the word w is 1, that is, w = X, where $X \in \{L, R, \overline{L}, \overline{R}\}$.

DEFINITION 2.3. The disc D_X^* is defined by the following steps.

- Step 1. Rename the label μ of the vertices and the edges in D_{ϕ} into μ_{ϕ} , where μ $u, v, w, A, P, Q, \alpha \beta, \gamma$.
- Step 2. Rename the label μ of the vertices and the edges in \mathcal{H}_X into μ_X , where μ $u, v, w, A, P, B, Q, \alpha \beta, \gamma$.
- Step 3. Rename the label α' , β' and γ' of the edges in \mathcal{H}_X into α_{ϕ} , β_{ϕ} and γ_{ϕ} respectively.

Step 4. Glue the ϕ - disc D_{ϕ} and the annulus \mathcal{H}_X by identifying the corresponding circle $\alpha_{\phi} \beta_{\phi} \gamma_{\phi} \overline{\alpha_{\phi}} \overline{\beta_{\phi}} \overline{\gamma_{\phi}}$.

See, for example, Figure 10 for D_L^* .

DEFINITION 2.4. The disc D_X is obtained by the more two steps in addition to Definition 2.3.

- Step 5. Delete the edges α_{ϕ} , β_{ϕ} and γ_{ϕ} .
- Step 6. Change the label $\mu_{\phi}\nu_{X}$ (or $\nu_{X}\mu_{\phi}$) into ν_{X} . For example, in the case when X=L, there are arcs with label $Q_{\phi}B_{L}$, see Figure 10. Then, rename it into B_{L} . Similarly, change the label $A_{L}P_{\phi}$ into A_{L} .

Figure 6. \mathcal{H}_L .

FIGURE 7. $\mathcal{H}_{\bar{L}}$.

FIGURE 8. \mathcal{H}_R .

FIGURE 9. $\mathcal{H}_{\bar{R}}$.

See, for example, Figure 11 for D_L .

Now, we define two discs D_w^* and D_w in the case when the length of the word w is greater than 1. Our definition is given by the induction with respect to the length of the word w

Suppose that two discs D_w^* and D_w are already defined for $w = X_1 X_2 \cdots X_n$, where $X_i \in \{L, R, \bar{L}, \bar{R}\}$. Then, let wX be the word $X_1 X_2 \cdots X_n X$, where $X \in \{L, R, \bar{L}, \bar{R}\}$.

DEFINITION 2.5. The disc D_{wX}^* is defined by the following steps.

- Step 1. Rename the label μ of the vertices and the edges in \mathcal{H}_X into μ_{wX} , where $\mu = u, v, w, A, P, B, Q, \alpha \beta, \gamma$.
- Step 2. Rename the label α' , β' and γ' of the edges in \mathcal{H}_X into α_w , β_w and γ_w respectively.
- Step 3. Glue the disc D_w^* and the annulus \mathcal{H}_X by identifying the corresponding circle $\alpha_w \beta_w \gamma_w \overline{\alpha_w} \overline{\beta_w} \overline{\gamma_w}$.

DEFINITION 2.6. The disc D_{wX} is defined by the following steps.

- Step 1. The same with Step 1 in Definition 2.5.
- Step 2. The same with Step 2 in Definition 2.5.
- Step 3. Glue the disc D_w and the annulus \mathcal{H}_X by identifying the corresponding circle $\alpha_w \beta_w \gamma_w \overline{\alpha_w} \overline{\beta_w} \overline{\gamma_w}$.
- Step 4. Delete the edges α_w , β_w and γ_w .
- Step 5. Change the label $\mu_w \nu_{wX}$ (or $\nu_{wX} \mu_w$) into ν_{wX} .

Now, we consider an identification map f_w . Assume that the disc D_w is embedded in $S^2 (= \partial B^3)$ as the case $w = \phi$. Denote by E_w the disc $S^2 \setminus \text{Int}(D_w)$. As the case of ϕ -disc, we can define an identification map $f_w : S^2 \to S^2/f_w$ and a 3-manifold $V_w = B^3/f_w$. Then,

FIGURE 10. D_L^* .

FIGURE 11. D_L .

the image $f_w(\partial D_w) = f_w(\partial E_w)$ is the theta-curve θ (Figure 1) embedded in ∂V_w such that $\partial V_w \setminus \theta \cong \text{Int}(E_w)$.

Theorem 2.7. The manifold V_w is a homeomorphic to a solid torus.

PROOF. At first, we prove that the manifold V_w collapses to S^1 inductively. Since the manifold V_ϕ collapses to S^1 by the proof of Theorem 2.2, it is enough to show that if V_w collapses to S^1 then V_{wX} collapses to S^1 for each $X \in \{L, R, \bar{L}, \bar{R}\}$.

We consider the case X=L. Then, the manifold V_{wL} collapses to the cell complex D_{wL}/f_{wL} (Figure 12).

It collapses to the cell complex D'_{wL}/f_{wL} (Figure 13). Furthermore, the cell complex D'_{wL}/f_{wL} collapses to the cell complex D''_{wL}/f_{wL} , (Figure 14). At last, the cell complex D''_{wL}/f_{wL} collapses to the cell complex D'''_{wL}/f_{wL} (Figure 15). By the definition of f_w , the cell complex D'''_{wL}/f_{wL} coincides with the cell complex D'''_{w}/f_w . By the assumption of induction, the cell complex D'''_{w}/f_w collapses to S^1 . So, V_{wL} collapses to S^1 . Thus, for any word w, the 3-manifold V_w collapses to S^1 . In the case X = R, \bar{L} , \bar{R} , we can prove similar to the case X = L. Since the manifold V_w is orientable, we conclude that V_w is homeomorphic to a solid torus.

FIGURE 12. D_L^* .

Figure 13. D'_{wL}

3. Meridian, longitude and fiber structure of $V_{w(L,R)}$

In this section, we consider a meridian-longitude system (m_w, l_w) of the solid torus V_w , where a meridian-longitude system (m_w, l_w) is a pair of loops m_w and l_w satisfying the following conditions:

- 1. m_w and l_w are essential loops embedded in ∂V_w
- 2. m_w and l_w intersect at a point.
- 3. $\ll m_w \gg = 1$ and $\ll l_w \gg \neq 1$ in $\pi_1(V_w)$, where $\ll \gg$ is a homotopy class.

In § 3.1, we give a presentation of loops embedded in ∂V_w , that is, we define two generators $\ll x_w \gg$ and $\ll y_w \gg$ of $\pi_1(\partial V_w)$ for each word w. Then, any loop embedded in ∂V_w is presented by an element $a_w[x_w] + b_w[y_w]$ in $H_1(\partial V_w)$ uniquely, where a_w and b_w are coprime integers and [] is the homology class. In § 3.2 and § 3.3, we consider the coefficients a_w and b_w of the meridian and a longitude of V_w .

3.1. Loops embedded in $\partial V_{w(L,R)}$. In § 2, we showed that E_w/f_w is the boundary of the solid torus V_w . Thus, three loops $\overline{\alpha_w\beta_w}$, $\gamma_w\beta_w$ and $\gamma_w\overline{\alpha_w}$ are embedded in ∂V_w . We denote them by x_w , y_w and z_w respectively.

PROPOSITION 3.1. For any word w, the two elements $\ll x_w \gg$ and $\ll y_w \gg$ forms a basis of the fundamental group $\pi_1(\partial V_w)$, where $\ll x_w \gg$ and $\ll y_w \gg$ are the homotopy classes of the loops x_w and y_w respectively.

PROOF. Consider the loop A_w embedded in ∂V_w , where the loop A_w is shown in Figure 16.

Two loops A_w and $\gamma_w \beta_w$ are homotopic in ∂V_w . By the method of cut and paste, we know two loops A_w and $\overline{\alpha_w \beta_w}$ are essential loops and intersect at one point in ∂V_w .

By Proposition 3.1, any loop embedded in ∂V_w is presented by an element $a_w[x_w] + b_w[y_w]$ in $H_1(\partial V_w)$ uniquely, where a_w and b_w is coprime integers.

3.2. The case $w(L, R) = \phi$. In this subsection, we consider a meridian-longitude system of the solid torus V_{ϕ} .

FIGURE 16. E_w .

THEOREM 3.2. A pair of the loops (y_{ϕ}, x_{ϕ}) is a meridian-longitude system of the solid torus V_{ϕ} .

PROOF. According to the proof of Proposition 3.1, loops x_{ϕ} and y_{ϕ} are essential loops in ∂V_{ϕ} . Furthermore, we can regard x_{ϕ} and y_{ϕ} as loops intersecting at a point with the argument of general position. Thus, all we have to do is to show that $\langle x_{\phi} \rangle \neq 1$ and $\langle y_{\phi} \rangle = 1$ in $\pi_1(V_{\phi})$. We consider the fundamental group $\pi_1(V_{\phi})$. Since V_{ϕ} collapses to D_{ϕ}/f_{ϕ} , the fundamental group $\pi_1(V_{\phi})$ is isomorphic to $\pi_1(D_{\phi}/f_{\phi})$. So, we consider $\pi_1(D_{\phi}/f_{\phi})$. We choose a base point of D_{ϕ}/f_{ϕ} as the vertex $u = f_{\phi}(u^{(i)})$, see Figure 2.

The fundamental group $\pi_1(D_\phi/f_\phi)$ is obtained by the following two steps. First, we consider a maximal tree $Q\beta$ of G_ϕ , where $G_\phi:=|Z_0\cup Z_1|$ and Z_0 and Z_1 was defined in § 2.1. Then, any loop embedded in D_ϕ/f_ϕ is homotopic to some loop which is a finite product of the loops $\alpha\beta$, $\gamma\beta$, $PQ\beta$ and $\overline{\beta}$ $\overline{Q}AQ\beta$. That is, $\pi_1(D_\phi/f_\phi)$ is generated by the homotopy classes of the loops $\alpha\beta$, $\gamma\beta$, $PQ\beta$ and $\overline{\beta}$ $\overline{Q}AQ\beta$. We denote them by $\hat{\alpha}$, $\hat{\gamma}$, \hat{P} , \hat{A} respectively. And, any relator of $\pi_1(D_\phi/f_\phi)$ is a sequence of $\{\hat{P}\hat{\alpha}^{-1}, \hat{A}\hat{\gamma}^{-1}, \hat{A}\}$ which are homotopy classes of the loops each of which bounds a face of D_ϕ/f_ϕ . Thus, we get

$$\begin{split} \pi_1(V_\phi) &= \pi_1(D_\phi/f_\phi, \, u) \\ &= < \, \hat{\alpha}, \, \hat{\gamma}, \, \hat{P}, \, \hat{A} \mid \hat{P} \hat{\alpha}^{-1}, \, \hat{A} \hat{\gamma}^{-1}, \, \hat{A} > \\ &= < \, \hat{\alpha}, \, \hat{\gamma}, \, \hat{P} \mid \hat{P} \hat{\alpha}^{-1}, \, \hat{\gamma}^{-1} > \\ &= < \, \hat{\alpha}, \, \hat{P} \mid \hat{P} \hat{\alpha}^{-1} > \\ &= < \, \hat{\alpha} \mid -> \, . \end{split}$$

And the generator of $\pi_1(V_\phi)$ is $\hat{\alpha}$. Since $\hat{\alpha}$ is the homotopy class of the loop $x_\phi = \overline{\alpha_\phi \beta_\phi}$, we get $\ll x_\phi \gg \neq 1$. And $\hat{\gamma}^{-1}$ is a relator of $\pi_1(V_\phi)$. Since $\hat{\gamma}$ is the homotopy class of a loop $y_\phi = \gamma_\phi \beta_\phi$, we have $\ll y_\phi \gg = 1$.

Now, we consider the loop $z_{\phi} = \gamma_{\phi} \overline{\alpha_{\phi}}$ in ∂V_{ϕ} .

DEFINITION 3.3. Let V be a solid torus with the meridian-longitude system (m, l). Then, a loop λ in ∂V is the (p,q)-type if the condition $[\lambda] = p[l] + q[m]$ holds in $H_1(\partial V)$. Then, we consider the type of the loop z_{ϕ} for a solid torus V_{ϕ} with the meridian-longitude system (y_{ϕ}, x_{ϕ}) given in Theorem 3.2.

THEOREM 3.4. The loop z_{ϕ} is the (1, 1)-type.

PROOF. By the definition, the homotopy class of the loops x_{ϕ} , y_{ϕ} and x_{ϕ} satisfy the following condition in $\pi_1(\partial V_{\phi})$.

Thus, the loop z_{ϕ} satisfies the condition $[z_{\phi}] = [x_{\phi}] + [y_{\phi}]$ in $H_1(\partial V_{\phi})$.

- **3.3.** The case w(L, R) is not the empty. In this subsection, we consider a meridian-longitude system of the solid torus V_w is the case when the word w is not the empty word. In §3.3.1, we give two theorems about meridian-longitude systems of the solid torus V_w . In §3.3.2, we prepare lemmas. In §3.3.3, we give the proofs of the theorems.
- **3.3.1. Theorems.** For a word $w = X_1 X_2 \dots X_n$, where $X_i \in \{L, R, \bar{L}, \bar{R}\}$, we define the matrix $M_w = U_{X_1} U_{X_2} \cdots U_{X_n}$, where $U_L = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $U_R = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$, $U_{\bar{L}} = U_L^{-1}$ and $U_{\bar{R}} = U_R^{-1}$.

THEOREM 3.5. There is a meridian-longitude system (m_w, l_w) of V_w satisfying the following equations in $H_1(\partial V_w)$:

$$[m_w] = -M_{1,2}[x_w] + M_{1,1}[y_w];$$

$$[l_w] = M_{2,2}[x_w] - M_{2,1}[y_w],$$

where $M_{i,j}$ is the (i, j)-element of the matrix M_w .

Now, we will see another theorem. We use the following notation for the expansion into continued fraction:

$$[a_1, a_2, \cdots, a_{n-1}, a_n] := \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_n}}}.$$

For a pair of natural numbers p, q such that p > q, we define an *alternative word* A(p, q) as follows:

$$A(p,q) = \begin{cases} L^{a_1} R^{a_2} L^{a_3} \cdots L^{a_{n-2}} R^{a_{n-1}} L^{a_n} & (n : \text{odd}) \\ L^{a_1} R^{a_2} L^{a_3} \cdots R^{a_{n-2}} L^{a_{n-1}} R^{a_n} & (n : \text{even}) \end{cases},$$

where the natural numbers a_i are defined by $q/p = [a_1, a_2, \dots, a_n, 1]$.

THEOREM 3.6. For the solid torus $V_{A(p,q)}$ with the meridian-longitude system $(m_{A(p,q)}, l_{A(p,q)})$ given by Theorem 3.5, the loop $z_{A(p,q)}$ is the (p,q)-type.

NOTATION 3.7. We call $V_{A(p,q)}$ as (p,q)-type solid torus and denote it by $V_{p,q}$.

3.3.2. Lemmas. In this subsection, we show two lemmas. The first one is concerned with the fundamental group of the solid torus V_w . The second one is the calculation of the matrices U_L , U_R , $U_{\bar{L}}$ and $U_{\bar{R}}$.

Now, we see the first one. At first, we consider the solid torus V_L , where V_L is the solid torus V_w in the case w = L. Since the solid torus V_L collapses to D_L/f_L , the fundamental group $\pi_1(V_L)$ is isomorphic to $\pi_1(D_L/f_L)$. By the definition, the fundamental group $\pi_1(D_L/f_L)$ is isomorphic to $\pi_1(D_L^*/f_L)$. Thereby, the fundamental group $\pi_1(V_L)$ is isomorphic to $\pi_1(D_L^*/f_L)$.

Thus, we consider $\pi_1(D_L^*/f_L)$. We take a base point u_L of D_L^*/f_L and a maximal tree $\beta_L P_L A_L \beta_\phi P_\phi$ of D_L^*/f_L , see Figure 10, where $\beta_L P_L A_L \beta_\phi P_\phi$ means the union of the edges β_L , P_L , A_L , β_ϕ and P_ϕ . And we consider the generators and relators similar to the case $w = \phi$. Also we use the same notations \hat{X} in § 3.2. For convenience, we denote X_L and X_ϕ by X and X' respectively. Then, we have

$$\begin{split} &\pi_{1}(V_{L}) \\ &= \pi_{1}(D_{L}^{*}/f_{L}, u_{L}) \\ &= <\hat{\alpha'}, \ \hat{\gamma'}, \ \hat{Q'}, \ \hat{A'}, \ \hat{B}^{-1}, \ \hat{Q}, \ \hat{\alpha}, \ \hat{\gamma} \\ &\qquad \qquad | \ \hat{Q'}\hat{\alpha'}^{-1}, \ \hat{Q'}^{-1}\hat{A'}\hat{Q'}\hat{\gamma'}^{-1}\hat{A'}, \ \hat{A'}, \ \hat{\alpha'}\hat{B}, \ \hat{Q}\hat{\alpha}^{-1}\hat{B}^{-1}, \ \hat{Q}, \ \hat{\gamma'}\hat{B}\hat{Q}\hat{\gamma}^{-1} > \\ &= <\hat{\alpha'}, \ \hat{\gamma'}, \ \hat{Q'}, \ \hat{B}^{-1}, \ \hat{Q}, \ \hat{\alpha}, \ \hat{\gamma} \ | \ \hat{Q'}\hat{\alpha'}^{-1}, \ \hat{\gamma'}^{-1}, \ \hat{\alpha'}\hat{B}, \ \hat{Q}\hat{\alpha}^{-1}\hat{B}^{-1}, \ \hat{Q}, \ \hat{\gamma'}\hat{B}\hat{Q}\hat{\gamma}^{-1} > \\ &= <\hat{\alpha'}, \ \hat{\gamma'}, \ \hat{B}^{-1}, \ \hat{Q}, \ \hat{\alpha}, \ \hat{\gamma} \ | \ \hat{\gamma'}, \ \hat{\alpha'}\hat{B}, \ \hat{Q}\hat{\alpha}^{-1}\hat{B}^{-1}, \ \hat{Q}, \ \hat{\gamma'}\hat{B}\hat{Q}\hat{\gamma}^{-1} > \\ &= <\hat{\alpha'}, \ \hat{\gamma'}, \ \hat{Q}, \ \hat{\alpha}, \ \hat{\gamma} \ | \ \hat{\gamma'}, \ \hat{Q}\hat{\alpha}^{-1}\hat{\alpha'}, \ \hat{Q}, \ \hat{\gamma'}\hat{\alpha'}^{-1}\hat{Q}\hat{\gamma}^{-1} > \\ &= <\hat{\alpha'}, \ \hat{\gamma'}, \ \hat{\alpha}, \ \hat{\gamma} \ | \ \hat{\gamma'}, \ \hat{\alpha}^{-1}\hat{\alpha'}, \ \hat{\gamma'}\hat{\alpha'}^{-1}\hat{\gamma}^{-1} > \\ &= <\hat{\alpha'} \ | \ -> \ . \end{split}$$

And we get the two relations $\hat{\alpha}^{-1}\hat{\alpha'}=1$ and $\hat{\gamma'}\hat{\alpha'}^{-1}\hat{\gamma}^{-1}=1$ in $\pi_1(V_L)$. Since, the homology class of the loops x_{ϕ} , y_{ϕ} , x_L and y_L are $\hat{\alpha'}^{-1}$, $\hat{\gamma'}$, $\hat{\alpha}^{-1}$ and $\hat{\gamma}$ respectively, we get the following relations in $H_1(V_L)$:

$$\begin{cases} [x_L] = [x_{\phi}] \\ [y_L] = [x_{\phi}] + [y_{\phi}] \end{cases} \iff {}^t \begin{pmatrix} [x_L] \\ [y_L] \end{pmatrix} = {}^t \begin{pmatrix} [x_{\phi}] \\ [y_{\phi}] \end{pmatrix} U_L,$$

where $^t($) means the transposition and [] means the homology class and U_L is defined in § 3.3.1. Since the generator of $\pi_1(V_L)$ is $\hat{\alpha'}$, we get $[x_{\phi}] \neq 0$ in $H_1(V_L)$. And by the relation of $\pi_1(V_L)$, we have $[y_{\phi}] = 0$ in $H_1(V_L)$.

In the case $X = \bar{L}$, R, \bar{R} , we take a base point u_X of $\pi_1(D_X^*/f_X)$ and a maximal tree $\beta_{\bar{L}}P_{\bar{L}}A_{\bar{L}}\beta_{\phi}P_{\phi}$, $\beta_RQ_RA_R\beta_{\phi}P_{\phi}$ and $\beta_{\bar{R}}Q_{\bar{R}}A_{\bar{R}}\beta_{\phi}P_{\phi}$ respectively. Then, we get the relations

$${t \choose [y_X]} = {t \choose [x_{\phi}]} U_X$$
, $[x_{\phi}] \neq 0$ and $[y_{\phi}] = 0$ in $H_1(V_X)$, where the matrix $U_{\bar{L}}$, U_R and $U_{\bar{R}}$ are defined in § 3.3.1.

At last, for any word $w = X_1 X_2 \cdots X_n$, where $X_i \in \{L, R, \bar{L}, \bar{R}\}$, we consider $H_1(V_w)$. We take a base point u_w of D_w^*/f_w and a maximal tree $(\beta_\phi D_\phi) \cup (\coprod_{i=1}^n m_i)$, where $m_i = 0$

$$\begin{cases} \beta_{X_i} P_{X_i} A_{X_i} & (X_i = L, \bar{L}); \\ \beta_{X_i} Q_{X_i} A_{X_i} & (X_i = R, \bar{R}). \end{cases}$$
 Then, we get the equation $\begin{bmatrix} t \\ y_w x \end{bmatrix} = \begin{bmatrix} t \\ y_w x \end{bmatrix} U_X$ for

any $X = L, R, \bar{L}, \bar{R}$. Thus, we have the following lemma.

LEMMA 3.8. The following two relations 1 and 2 hold in $H_1(V_w)$, where the loops x_w and y_w are embedded in ∂V_w and the loops x_ϕ and y_ϕ are embedded in Int (V_w) .

- 1. $\binom{[x_w]}{[y_w]} = \binom{[x_\phi]}{[y_\phi]} M_w$, where the matrix M_w is defined in Theorem 3.5 and [] means a homology class.
- 2. $[x_{\phi}] \neq 0$ and $[y_{\phi}] = 0$.

Now, we observe another lemma. For *n* natural numbers a_i $(1 \le i \le n)$, two matrices \mathcal{A} and \mathcal{B} are defined as follows:

$$\mathcal{A} = \begin{cases} U_L^{a_1} \ U_R^{a_2} \ U_L^{a_3} \ \cdots \ U_L^{a_{n-2}} \ U_R^{a_{n-1}} \ U_L^{a_n} & (n:odd) \\ U_L^{a_1} \ U_R^{a_2} \ U_L^{a_3} \ \cdots \ U_R^{a_{n-2}} \ U_L^{a_{n-1}} \ U_R^{a_n} & (n:even) \end{cases} ,$$

$$\mathcal{B} = \begin{cases} U_L^{a_1} \ U_L^{a_2} \ U_R^{a_3} \ \cdots \ U_R^{a_{n-2}} \ U_L^{a_{n-1}} \ U_R^{a_n} & (n:odd) \\ U_R^{a_1} \ U_L^{a_2} \ U_R^{a_3} \ \cdots \ U_L^{a_{n-2}} \ U_R^{a_{n-1}} \ U_L^{a_n} & (n:even) \end{cases} .$$

We denote by $A_{i,j}$ and $B_{i,j}$ the (i,j)-element of the matrix \mathcal{A} and \mathcal{B} respectively.

LEMMA 3.9. Two matrices A and B satisfy the following conditions:

- 1. $\frac{A_{2,1} + A_{2,2}}{A_{1,1} + A_{1,2}} = \frac{B_{1,1} + B_{1,2}}{B_{2,1} + B_{2,2}} = [a_1, a_2, \dots, a_n, 1], where [] means the expansion into continued fraction defined in § 3.3.1;$
- 2. (a) Two natural numbers $A_{1,1}$ and $A_{1,2}$ are coprime, and two non-negative integers $A_{2,1}$ and $A_{2,2}$ are coprime.
 - (b) Two natural numbers $A_{1,1} + A_{1,2}$ and $A_{2,1} + A_{2,2}$ are coprime;

PROOF

1. Let us consider a proof by induction on the *length* of the matrix \mathcal{A} and \mathcal{B} , where the *length* is the natural number n in the matrix $U_{X_1}^{a_1} U_{X_2}^{a_2} U_{X_3}^{a_3} \cdots U_{X_n}^{a_n}$.

If
$$n=1$$
, then $\mathcal{A}=\begin{pmatrix}1&a_1\\0&1\end{pmatrix}$ and $\mathcal{B}=\begin{pmatrix}1&0\\a_1&1\end{pmatrix}$. So, we have $\frac{A_{2,1}+A_{2,2}}{A_{1,1}+A_{1,2}}=\frac{B_{1,1}+B_{1,2}}{B_{2,1}+B_{2,2}}=\frac{1}{a_1+1}=[a_1,\ 1]$. Now, assume that the statement holds in the case $n-1$. Then, we will consider the case n .

(i) In the case n is odd

$$\begin{split} \mathcal{A} &= U_L^{a_1} \, U_R^{a_2} \, U_L^{a_3} \, \cdots \, U_L^{a_n} = U_L^{a_1} \, \mathcal{B} \\ &= \begin{pmatrix} 1 & a_1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} B_{1,1} \, B_{1,2} \\ B_{2,1} \, B_{2,2} \end{pmatrix} \\ &= \begin{pmatrix} B_{1,1} + a_1 B_{2,1} \, B_{1,2} + a_1 B_{2,2} \\ B_{2,1} & B_{2,2} \end{pmatrix}, \end{split}$$

where \mathcal{B} is the matrix with respect to n-1 natural numbers a_2, a_3, \dots, a_n , that is, $\mathcal{B} = U_R^{a_2} U_L^{a_3} \cdots U_L^{a_n}$. Then, we obtain

$$\frac{A_{2,1} + A_{2,2}}{A_{1,1} + A_{1,2}} = \frac{B_{2,1} + B_{2,2}}{B_{1,1} + a_1 B_{2,1} + (B_{1,2} + a_1 B_{2,2})}$$
$$= \frac{1}{a_1 + \frac{B_{1,1} + B_{1,2}}{B_{2,1} + B_{2,2}}}.$$

By the assumption of the induction, we have the following equation about the matrix \mathcal{B} .

$$\frac{B_{1,1}+B_{1,2}}{B_{2,1}+B_{2,2}}=[a_2, a_3, \cdots, a_n, 1].$$

Thus, we have

$$\frac{1}{a_1 + \frac{B_{1,1} + B_{1,2}}{B_{2,1} + B_{2,2}}} = [a_1, a_2, \dots, a_n, 1].$$

Also, we have that

$$\mathcal{B} = U_R^{a_1} U_L^{a_2} U_R^{a_3} \cdots U_R^{a_n} = U_R^{a_1} \mathcal{A}$$

$$= \begin{pmatrix} 1 & 0 \\ a_1 & 1 \end{pmatrix} \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix}$$

$$= \begin{pmatrix} A_{1,1} & A_{1,2} \\ a_1 A_{1,1} + A_{2,1} & a_1 A_{1,2} + A_{2,2} \end{pmatrix}$$

and

$$\frac{B_{1,1} + B_{1,2}}{B_{2,1} + B_{2,2}} = \frac{A_{1,1} + A_{1,2}}{a_1 A_{1,1} + A_{2,1} + (a_1 A_{1,2} + A_{2,2})}$$

$$= \frac{1}{a_1 + \frac{A_{2,1} + A_{2,2}}{A_{1,1} + A_{1,2}}} = [a_1, a_2, \dots, a_n, 1].$$

- (ii) In the case *n* is even
 We can prove similar to the case (i).
- 2. (a) We have $\det U_X = 1$ for all $X \in \{L, R, \bar{L}, \bar{R}\}$ by the definition of the matrix U_X . Since the property of the determinant: $\det AB = \det A \det B$, we get $\det A=1$. It completes the proof.
- 2. (b) By the property of the determinant, we have $\det A = \det \begin{pmatrix} A_{1,1} + A_{1,2} & A_{1,2} \\ A_{2,1} + A_{2,2} & A_{2,2} \end{pmatrix}$. Since $A_{1,1} + A_{1,2}$, $A_{1,2}$, $A_{2,1} + A_{2,2}$ and $A_{2,2}$ are natural numbers and $\det A = 1$, we get $A_{1,1} + A_{1,2}$ and $A_{2,1} + A_{2,2}$ are coprime.

3.3.3. Proof of main theorems.

PROOF OF THEOREM 3.5. There is a representative y of homology class $[y_w]$ such that y is an essential loop on a solid torus V_w and y intersect with x_w at one point each other, where x_w and y_w are defined in § 3.1. Since $\det M_w = 1$ and two non-negative integers $M_{i,1}$ and $M_{i,2}$ are coprime for i = 1, 2, there are two essential loops m_w and l_w on ∂V_w with one common point such that

$$[m_w] = -M_1 \, 2[x_w] + M_1 \, 1[y_w]; \quad [l_w] = M_2 \, 2[x_w] - M_2 \, 1[y_w].$$

Thus, the rest of the proof is to show $[l_w] \neq 0$ and $[m_w] = 0$ in $H_1(V_w)$. By Lemma 3.8, we get the following equation in $H_1(V_w)$:

$${}^{t} {\begin{bmatrix} [x_{w}] \\ [y_{w}] \end{bmatrix}} = {}^{t} {\begin{bmatrix} [x_{\phi}] \\ [y_{\phi}] \end{bmatrix}} M_{w}$$

$$\iff {}^{t} {\begin{bmatrix} [x_{w}] \\ [y_{w}] \end{bmatrix}} {\begin{pmatrix} M_{2,2} & -M_{1,2} \\ -M_{2,1} & M_{1,1} \end{pmatrix}} = {}^{t} {\begin{bmatrix} [x_{\phi}] \\ [y_{\phi}] \end{pmatrix}}$$

$$\iff {\begin{bmatrix} [x_{\phi}] = M_{2,2}[x_{w}] - M_{2,1}[y_{w}] \\ [y_{\phi}] = -M_{1,2}[x_{w}] + M_{1,1}[y_{w}]}.$$

And we have $[x_{\phi}] \neq 0$ and $[y_{\phi}] = 0$ in $H_1(V_w)$ by Lemma 3.8. Also we get $[m_w] = [y_{\phi}]$ and $[l_w] = [x_{\phi}]$ in $H_1(V_w)$. It completes the proof.

PROOF OF THEOREM 3.6. Recall that a_i is defined by the equation $q/p = [a_1, a_2, \dots, a_n, 1]$. Then, we define the matrix $\mathcal{A}^{(p,q)}$ as follows:

$$\mathcal{A}^{(p,q)} \ = \ \begin{cases} U_L^{a_1} \, U_R^{a_2} \, U_L^{a_3} \, \cdots \, U_L^{a_{n-2}} \, U_R^{a_{n-1}} \, U_L^{a_n} & (n:odd) \\ U_L^{a_1} \, U_R^{a_2} \, U_L^{a_3} \, \cdots \, U_R^{a_{n-2}} \, U_L^{a_{n-1}} \, U_R^{a_n} & (n:even) \end{cases} \; .$$

For convenience, we denote the word A(p, q) by A. By Theorem 3.5, we have the following relations in $H_1(\partial T_A)$:

$$[m_A] = -A_{1,2}[x_A] + A_{1,1}[y_A];$$
 $[l_A] = A_{2,2}[x_A] - A_{2,1}[y_A],$

where $A_{i,j}$ is the (i, j)-element of the matrix $\mathcal{A}^{(p,q)}$. Thus, we have

$$[x_A] = A_{1,1}[l_A] + A_{2,1}[m_A];$$
 $[y_A] = A_{1,2}[l_A] + A_{2,2}[m_A].$

Then, the following equation holds in $H_1(\partial T_A)$:

$$[z_A] = [x_A] + [y_A]$$

$$= A_{1,1}[l_A] + A_{2,1}[m_A] + A_{1,2}[l_A] + A_{2,2}[m_A]$$

$$= (A_{1,1} + A_{1,2})[l_A] + (A_{2,1} + A_{2,2})[m_A].$$

By Lemma 3.9 and the definition of a_i , we have

$$\frac{A_{2,1}+A_{2,2}}{A_{1,1}+A_{1,2}}=[a_1, a_2, \cdots, a_n, 1]=\frac{q}{p}.$$

And, two natural numbers $A_{2,1} + A_{2,2}$ and $A_{1,1} + A_{1,2}$ are coprime by Lemma 3.9. Thus, we have $A_{1,1} + A_{1,2} = p$ and $A_{2,1} + A_{2,2} = q$.

3.4. b-type solid torus. In this subsection, we define the b-type solid torus for an integer b. In § 5, it will be appeared that b-type solid torus corresponds to an obstruction class of Seifert manifold.

For an integer b, the word w(b) is defined as $LR^b\bar{L}$. Then, we consider a meridian-longitude system of the solid torus $V_{w(b)}$.

COROLLARY 3.10. For the solid torus $V_{w(b)}$, there is a meridian-longitude system $(m_{w(b)}, l_{w(b)})$ satisfying the following conditions in $H_1(\partial V_{w(b)})$:

$$[m_{w(b)}] = b[x_{w(b)}] + (b+1)[y_{w(b)}];$$

$$[l_{w(b)}] = (-b+1)[x_{w(b)}] - b[y_{w(b)}].$$

PROOF. We have $U_L U_R^b U_{\bar{L}} = \begin{pmatrix} -b+1 & b \\ -b & 1+b \end{pmatrix}$. Theorem 3.5 completes the proof.

THEOREM 3.11. For the solid torus $V_{w(b)}$ with the meridian-longitude system $(m_{w(b)}, l_{w(b)})$ given by Corollary 3.10, the loop $z_{w(b)}$ is the (1, 1)-type.

PROOF. The following relation holds in $H_1(\partial V_{w(b)})$:

$$\begin{aligned} [z_{w(b)}] &= [y_{w(b)}] + [x_{w(b)}] \\ &= \{b + (-b+1)\}[x_{w(b)}] + \{(b+1) + (-b)\}[y_{w(b)}] \\ &= b[x_{w(b)}] + (b+1)[y_{w(b)}] + (-b+1)[x_{w(b)}] + (-b)[y_{w(b)}] \end{aligned}$$

$$= [m_{w(b)}] + [l_{w(b)}].$$

NOTATION 3.12. We call $V_{w(b)}$ as the *b-type solid torus* and denote it by $V_{1,b}$.

4. One-vertex triangulation of Lens spaces

In this section, we construct systematically one-vertex triangulations of lens spaces. In § 4.1, we will define a homeomorphism $\varphi = \varphi(w,w'): \partial V_w \to \partial V_{w'}$ for two words w and w', and consider the manifold obtained by gluing two solid tori V_w and $V_{w'}$ by φ , denoted by $V_w \cup_{\varphi} V_{w'}$. In § 4.2, we will show the following fact: for any pair of coprime natural numbers p and q such that p > q, we can choose two words w and w' such that the lens space L(p,q) is homeomorphic to the manifold $V_w \cup_{\varphi} V_{w'}$. Then, we will consider a one-vertex triangulation of the lens space L(p,q).

4.1. Gluing map φ . For i = 1, 2, we denote by U_i the boundary tori $S^1 \times S^1$. Let h_i be an embedding such that $U_i \setminus h_i(\theta) \cong \operatorname{Int}(D^2)$, where θ is a theta-curve shown in Figure 1.

LEMMA 4.1. Two embedding h_1 and h_2 induces a homeomorphism $\varphi_{1,2}: U_1 \to U_2$ such that $\varphi_{1,2}(h_1(X)) = h_2(X)$ for any edge $X \in \{\alpha, \beta, \gamma\}$ of θ .

PROOF. We define the map $\varphi'': h_1(\theta) \to h_2(\theta)$ by identifying $h_1(X)$ and $h_2(X)$, where $X = \alpha, \beta, \gamma$. Denote by $N(h_i(\theta))$ a regular neighborhood of $h_i(\theta)$ in U_i . Then, the map φ'' can be extended to a homeomorphism $\varphi': N(h_1(\theta)) \to N(h_2(\theta))$ such that $\varphi'(h_1(X)) = h_2(X)$, where $X = \alpha, \beta, \gamma$. Since $U_i \setminus \varphi_i(\theta) \cong \operatorname{Int}(D^2)$, the homeomorphism φ' can be extended to a homeomorphism $\varphi: U_1 \to U_2$ such that $\varphi(h_1(X)) = h_2(X)$, where $X = \alpha, \beta, \gamma$.

Now, we define a gluing map φ of solid torus V_w and $V_{w'}$. Recall that for any solid torus V_w , a theta-curve θ (Figure 1) is embedded in ∂V_w such that $\partial V_w \setminus \theta \cong \operatorname{Int}(D^2)$. Thus, for two words w and w', a homeomorphism $\varphi(w,w'): \partial V_w \to \partial V_{w'}$ is given by Lemma 4.1. So, we define the manifold obtained by gluing V_w and $V_{w'}$ by $\varphi(w,w')$, denoted by $V_w \cup_{\varphi} V_{w'}$. In the following subsection, we consider the manifold $V_w \cup_{\varphi} V_{w'}$.

4.2. The manifold obtained by gluing 0 V_w and $V_{w'}$ by φ . Let p,q be a pair of coprime natural numbers such that p > q. There are many pairs of two words (w, w') such that $V_w \cup_{\varphi} V_{w'} \cong L(p,q)$, where L(p,q) is a lens space. Then, the following theorem gives us a pair (w,w'), say $w=\bar{L}$ and w'=A(p,q), where the word A(p,q) is defined in Theorem 3.6.

THEOREM 4.2. The manifold $V_{\bar{L}} \cup_{\varphi} V_{A(p,q)}$ is homeomorphic to the lens space L(p,q). In particular, $V_{\bar{L}} \cup_{\varphi} V_{\varphi} \cong S^3$ and $V_{\bar{L}} \cup_{\varphi} V_{\bar{L}} \cong S^2 \times S^1$.

PROOF. For convenience, we denote the word A(p,q) by A. By Theorem 3.5, there are meridian-longitude systems $(m_{\bar{L}}, l_{\bar{L}})$ and (m_A, l_A) of the solid tori $V_{\bar{L}}$ and V_A satisfying the following relations in $H_1(\partial V_A)$ and $H_1(\partial V_A)$ respectively:

$$[m_{\bar{I}}] = -[x_{\bar{I}}] + [y_{\bar{I}}]; \tag{1}$$

$$[m_A] = -A_{1,2}[x_A] + A_{1,1}[y_A]; (2)$$

$$[l_A] = A_{2,2}[x_A] - A_{2,1}[y_A], \tag{3}$$

where $A_{i,j}$ is the (i, j)-element of the matrix $\mathcal{A}^{(p,q)}$, where $\mathcal{A}^{(p,q)}$ is defined in the proof of Theorem 3.6. According to the definition of the gluing map $\varphi: \partial V_{\bar{L}} \to \partial V_A$, we obtain

$$\varphi(x_{\bar{L}}) = x_A; \quad \varphi(y_{\bar{L}}) = y_A. \tag{4}$$

Let $\varphi^{\#}: H_1(\partial V_{\bar{L}}) \to H_1(\partial V_A)$ be the isomorphism induced from the homeomorphism φ . Using the equations (1), (2), (3) and (4), we have the following relation in $H_1(\partial V_A)$.

$$[\varphi(m_{\bar{L}})] = \varphi^{\#}([m_{\bar{L}}]) = \varphi^{\#}([y_{\bar{L}}]) + \varphi^{\#}([x_{\bar{L}}]) = [\varphi(y_{\bar{L}})] + [\varphi(x_{\bar{L}})]$$

$$= [y_A] + [x_A] = A_{1,1}[l_A] + A_{2,1}[m_A] + (A_{1,2}[l_A] + A_{2,2}[m_A])$$

$$= (A_{1,1} + A_{1,2})[l_A] + (A_{2,1} + A_{2,2})[m_A].$$

By Lemma 3.9, two natural numbers $A_{1,1} + A_{1,2}$ and $A_{2,1} + A_{2,2}$ are coprime and

$$\frac{A_{2,1}+A_{2,2}}{A_{1,1}+A_{1,2}}=[a_1, a_2, \cdots, a_n, 1]=\frac{q}{p}.$$

Thereby, the manifold $V_{\bar{L}} \cup_{\varphi} V_A$ is homeomorphic to the lens space L(p,q).

At last, we will show $V_{\bar{L}} \cup_{\varphi} V_{\phi} \cong S^3$ and $V_{\bar{L}} \cup_{\varphi} V_{\bar{L}} \cong S^2 \times S^1$. By theorem 3.5, we get $[\varphi(m_{\bar{L}})] = [m_{\phi}] + [l_{\phi}]$ and $[\varphi(m_{\bar{L}})] = [m_{\bar{L}}]$. It completes the proof.

Recall the definition D_w , see § 2.1 and 2.2. Let P be the 2-manifold obtained by gluing $(D_{\bar{L}}/f_{\bar{L}})$ and $(D_{A(p,q)}/f_{A(p,q)})$ with φ . Then, P is a special spine of the lens space $L(p,q) \cong V_{\bar{L}} \cup_{\varphi} V_{A(p,q)}$, Thus, the dual complex of P in $V_{\bar{L}} \cup_{\varphi} V_{A(p,q)}$ is a one-vertex triangulation of L(p,q).

5. One-vertex triangulation of Seifert manifolds

In this section, we construct systematically one-vertex triangulations of all orientable Seifert manifolds with orientable base. Our construction is based on the following fact: any orientable Seifert manifold is obtained by gluing the compact manifolds M_n , J and $V_{p,q}$ which are homeomorphic to $(S^2 - \coprod_{i=1}^n \operatorname{Int}(D_i^2)) \times S^1$, $(S^1 \times S^1 - \operatorname{Int}(D^2)) \times S^1$ and (p,q)-type fibered solid torus.

In § 5.2 and 5.3, we consider the manifolds J and M_n respectively. In § 5.4, we define the manifold \mathcal{M} obtained by gluing V_{p_i,q_i} , V_b , J and M_n , see Notation 3.7 and 3.12 about V_{p_i,q_i} and V_b , and consider a fiber structure and a one-vertex triangulation of \mathcal{M} .

FIGURE 17. \mathcal{K} .

Figure 18. $E := \partial B^3 \cap \{z = 0\}, S := \partial B^3 \cap \{z = \frac{1}{\sqrt{2}}\}, N := \partial B^3 \cap \{z = -\frac{1}{\sqrt{2}}\}.$

5.1. $(S^2 - \coprod_{i=1}^3 \operatorname{Int}(D_i^2)) \times S^1$. We use the notation $\mathcal K$ for the labeled 3-regular graph shown in Figure 17. Suppose that $\mathcal K$ is embedded in ∂B^3 . We denote by D_i the 2-disc bounded by the circle $\alpha_i \beta_i \gamma_i \overline{\alpha_i} \overline{\beta_i} \overline{\gamma_i}$ in $S^2 (= \partial B^3)$. Then, by removing D_1 , D_2 and D_3 from $S^2 (= \partial B^3)$, we get a 2-sphere with three holes. We denote it by $D_{\mathcal K}$. Analyzing the notion of an identification map for a word diagram in § 2, we can consider an identification map $f_{\mathcal K}$ on ∂B^3 and a compact 3-manifold $K = B^3/f_{\mathcal K}$.

Proposition 5.1. The manifold K is homeomorphic to $(S^2 - \coprod_{i=1}^3 Int(D_i^2)) \times S^1$.

PROOF. Without loss of generality, we assume the following three conditions (a),(b),(c) about the embedding of the graph K in S^2 (= ∂B^3):

- (a) $B^3 = \{(x, y, z) \in \mathbf{R}^3 \mid x^2 + y^2 + z^2 \le 1\};$
- (b) $\partial B^3 \cap \{z = 0\}$, $\partial B^3 \cap \{z = \frac{1}{\sqrt{2}}\}$ and $\partial B^3 \cap \{z = -\frac{1}{\sqrt{2}}\}$ are the bold circles E, N and S shown in Figure 18 respectively.

We denote by $A_N(a, b)$, $A_S(a, b)$ the arcs in ∂B^3 defined by

$$A_{+}(a,b) := \left\{ (x,y,z) \mid x = \frac{1}{\sqrt{2}}\cos\theta, \ y = \frac{1}{\sqrt{2}}\sin\theta, \ z = \frac{1}{\sqrt{2}}, \ a < \theta < b \right\}$$

$$A_{-}(a,b) := \left\{ (x,y,z) \mid x = \frac{1}{\sqrt{2}}\cos\theta, \ y = \frac{1}{\sqrt{2}}\sin\theta, \ z = -\frac{1}{\sqrt{2}}, \ a < \theta < b \right\}.$$

(c) The edges in the circles S and N satisfy the following conditions:

$$Y_{1} = A_{\pm} \left(0, \frac{2}{9}\pi\right); \qquad Z_{3} = A_{\pm} \left(\frac{2}{9}\pi, \frac{4}{9}\pi\right); \qquad \beta_{3} = A_{\pm} \left(\frac{4}{9}\pi, \frac{6}{9}\pi\right);$$

$$X_{1} = A_{\pm} \left(\frac{6}{9}\pi, \frac{8}{9}\pi\right); \qquad Y_{3} = A_{\pm} \left(\frac{8}{9}\pi, \frac{10}{9}\pi\right); \qquad \beta_{2} = A_{\pm} \left(\frac{10}{9}\pi, \frac{12}{9}\pi\right);$$

$$Z_{1} = A_{\pm} \left(\frac{12}{9}\pi, \frac{14}{9}\pi\right); \qquad X_{3} = A_{\pm} \left(\frac{14}{9}\pi, \frac{16}{9}\pi\right); \qquad \beta_{1} = E_{\pm} \left(\frac{16}{9}\pi, 2\pi\right).$$

Consider the flow generated by the vector field $\partial/\partial z$ on B^3 . A point a_0 in Figure 19 is mapped by the identification map $f_{\mathcal{K}}$ to a_1 . And it is moved by the flow $\partial/\partial z$ and arrives at a_2 . After that, it is mapped to a_3 by $f_{\mathcal{K}}$ and it turns back to the same point a by the flow $\partial/\partial z$. Also, any point in $Int(A_1)$ turns back to the same point. Similarly, any point in $Int(B_1)$, $Int(C_1)$, $Int(D_1)$ and $Int(E_1)$ turns back to the same point respectively.

Then, by the method shown in § 4 in [6], we know that $D_{\mathcal{K}}'/f_{\mathcal{K}}$ is the orbit space obtained by $f_{\mathcal{K}}$ and $\partial/\partial z$, see Figure 20, and it is embedded in K. Since $D_{\mathcal{K}}'/f_{\mathcal{K}}$ is homeomorphic to $S^2 - \coprod_{i=1}^3 \operatorname{Int}(D_i^2)$, we get the manifold $(S^2 - \coprod_{i=1}^3 \operatorname{Int}(D_i^2)) \times I$ by cutting K along $D_{\mathcal{K}}'/f_{\mathcal{K}}$, Thus, the manifold K is homeomorphic to $(S^2 - \coprod_{i=1}^3 \operatorname{Int}(D_i^2)) \times S^1$.

We define a fiber structure of K by the vector field $\partial/\partial z$. Thus, the loop $\{(x, y, z) \mid x = y = 0, -1 \le z \le 1\}/f_K$ is a fiber of K. So, the loops $\gamma_k \overline{\alpha_k}$ are homotopic to fibers of K, where k = 1, 2, 3.

5.2. $(S^1 \times S^1 - \operatorname{Int}(D^2)) \times S^1$. We consider the manifold $(S^1 \times S^1 - \operatorname{Int}(D^2)) \times S^1$. We use the notation $D_{\mathcal{J}}$ for the disc shown in Figure 21. Assume that $D_{\mathcal{J}}$ is embedded in $S^2 (= \partial B^3)$. Then, an identification map $f_{\mathcal{J}}$ on $S^2 (= \partial B^3)$ is induced by identifying the directed labeled edges of the $D_{\mathcal{J}}$ similar to § 5.1. Then, we consider a compact 3-manifold $J = B^3/f_{\mathcal{J}}$.

PROPOSITION 5.2. The manifold J is homeomorphic to $(S^1 \times S^1 - Int(D^2)) \times S^1$.

FIGURE 21. $D_{\mathcal{J}}$.

β

PROOF. The proof is similar to Proposition 5.1. Suppose that the $D_{\mathcal{J}}$ is embedded in the boundary of the unit ball. We consider the orbit space generated by the flow $\partial/\partial z$. Then, we have $D'_{\mathcal{J}}/f_{\mathcal{J}}$ is homeomorphic to $S^1 \times S^1 - \operatorname{Int}(D^2)$. Thus, J is homeomorphic to $(S^1 \times S^1 - \operatorname{Int}(D^2)) \times S^1$.

5.3. $(S^2-\coprod_{i=1}^n \operatorname{Int}(D_i^2))\times S^1$. For a natural number $n\geq 3$, we define the manifold M_n . We prepare (n-2)-copies $K^{(3)}$, $K^{(4)}$, \cdots , $K^{(n)}$ of K, where K is homeomorphic to $(S^2-\coprod_{i=1}^3\operatorname{Int}(D_i^2))\times S^1$ defined in § 5.1. For $j=3,4,\cdots,n$, $(C_1^{(j)},\theta_1)$, $(C_2^{(j)},\theta_2)$ and $(C_3^{(j)},\theta_3)$ are pairs of a boundary component $C_i^{(j)}$ of $K^{(j)}$ and the theta-curve θ_i (Figure 22) embedded in $C_i^{(j)}$, where $C_i^{(j)}$ is homeomorphic to $S^1\times S^1$. Since the theta-curve θ_i is embedded in $C_i^{(j)}$ such that $C_i^{(j)}\setminus\theta_i\cong\operatorname{Int}(D^2)$, we can define homeomorphisms $\varphi^{(j)}:C_3^{(j)}\to C_1^{(j+1)}$ by Lemma 4.1 for $j=3,4,\cdots,n-1$. By using $\varphi^{(j)}$, M_n is defined as $K^{(3)}\cup_{\varphi^{(3)}}K^{(4)}\cup_{\varphi^{(4)}}\cdots\cup_{\varphi^{(n-1)}}K^{(n)}$.

FIGURE 22. θ_i .

FIGURE 23. Gluing maps $\{\varphi_i\}$.

Note that the homeomorphisms $\varphi^{(j)}$ satisfy the conditions $\varphi^{(j)}(\alpha_3) = \alpha_1$, $\varphi^{(j)}(\beta_3) = \beta_1$ and $\varphi^{(j)}(\gamma_3) = \gamma_1$, where $\theta_i = \alpha_i \cup \beta_i \cup \gamma_i$. Thus, the homeomorphism $\varphi^{(j)}$ is a fiber preserving, and the manifold M_n is homeomorphic to $(S^2 - \coprod_{i=1}^n \operatorname{Int}(D_i^2)) \times S^1$.

5.4. The manifold obtained by gluing J, V_b , $V_{p,q}$ and M_n . Let g and n be integers such that $g \ge 0$ and $n \ge 3$. Then, we consider the manifold M_{n+g} . As shown in § 5.3, a thetacurve θ_i (Figure 22) is embedded in each boundary component C_i of M_{n+g} such that $C_i \setminus \theta_i \cong \text{Int}(D^2)$, where $i = 1, 2, \dots, n+g$. Recall the manifold J, V_b and $V_{p,q}$ defined in § 5.2, § 3.4 and § 3.3 respectively. The boundary of each manifolds J, V_b and $V_{p,q}$ is homeomorphic to $S^1 \times S^1$ and the theta-curve θ (Figure 1) is embedded in such that $\partial X \setminus \theta \cong \text{Int}(D_i^2)$, where X = J, V_b , $V_{p,q}$. Thus, by Lemma 4.1 there are n + g homeomorphisms $\{\varphi_i\}_{i=1}^{n+g}$

$$\varphi_i := \begin{cases} \partial V_{p_i, q_i} \to C_i & (1 \le i \le n), \\ \partial J \to C_i & (n+1 \le i \le n+g), \end{cases}$$

see Figure 23. Thus, we define the manifold obtained by gluing $\coprod_{i=1}^{n} V_{p_i,q_i}$, $\coprod_{i=n+1}^{n+g} J$ and M_{n+g} , denoted by $M(F_g,(p_1,q_1),\cdots,(p_n,q_n))$. Then, we consider fiber structure of it.

1. In the case $1 \le i \le n$

(a)
$$p_i \neq 1$$

Recall V_{p_i,q_i} , see Notation 3.7. By the definition of the gluing map φ_i , we get $\varphi_i^{-1}(\gamma_i\overline{\alpha_i}) = \gamma\overline{\alpha}$. Since the loop $\gamma_i\overline{\alpha_i}$ is a fiber of the manifold M_{n+g} , we regard the loop $\gamma\overline{\alpha}$ in $\partial V_{p_i,q_i}$ as a fiber of the solid torus V_{p_i,q_i} . That is, we decide a fiber structure of V_{p_i,q_i} by the loop $\gamma\overline{\alpha}$. By Theorem 3.6, we have $[\gamma\overline{\alpha}] = p_i[l_i] + q_i[m_i]$ in $H_1(\partial V_{p_i,q_i})$. So, V_{p_i,q_i} is (p_i,q_i) -type fibered solid torus. Thus, the core of the solid torus V_{p_i,q_i} is the (p_i,q_i) -type singular fiber.

(b) $p_i = 1$

Recall $V_{1,b}$, see Notation 3.12. We get the following equation in $H_1(C_i)$ by Corollary 3.10, where C_i is a boundary component of the manifold K_{n+q} .

$$\begin{split} [\varphi_{i} \; (m_{w(b)})] &= \varphi_{i}^{\#} \; ([m_{w(b)}]) \\ &= \varphi_{i}^{\#} (b \; [x_{w(b)}] + (b+1) \; [y_{w(b)}]) \\ &= b \; \varphi^{\#} ([x_{w(b)}]) + (b+1) \; \varphi^{\#} ([\; y_{w(b)}]) \\ &= b \; \varphi^{\#} \; ([\overline{\alpha} \; \overline{\beta}]) + (b+1) \; \varphi^{\#} \; ([\gamma \; \beta]) \\ &= b \; \varphi^{\#} \; ([\overline{\beta} \; \overline{\gamma} \gamma \overline{\alpha}]) + (b+1) \; \varphi^{\#} \; ([\gamma \; \beta]) \\ &= \varphi^{\#} \; ([\gamma \; \beta]) + b \; \varphi^{\#} \; ([\gamma \; \overline{\alpha}]) \\ &= [\gamma_{i} \; \beta_{i}] + b \; [\gamma_{i} \; \overline{\alpha_{i}}] \; . \end{split}$$

Recall the following fact shown in the proof of Proposition 5.1: the loop $\gamma_i \beta_i$ is the intersection of C_i and a cross section of M_{n+g} . Since the loop $\gamma_i \bar{\alpha}_i$ is a fiber of M_{n+g} , the core of V_b is a regular fiber corresponding to the obstruction class b.

2. In the case $n + 1 \le i \le n + g$

The intersection of cross sections of J and M_{n+g} and ∂J and ∂M_{n+g} are the loops $\beta \gamma$ and $\beta_i \gamma_i$ respectively. Since the conditions $\varphi_i(\gamma \beta) = \gamma_i \beta_i$ holds, the genus of base space of $M(F_g, (p_1, q_1), \dots, (p_n, q_n))$ is equal to g.

A one-vertex triangulation of $M:=M(F_g,(p_1,q_1),\cdots,(p_n,q_n))$ is constructed similar to the lens space in § 4.2. That is, a one-vertex triangulation of M is the dual complex of the 2-manifold obtained by gluing $\coprod_{i=1}^n D_{w(p_i,q_i)}/f_{w(p_i,q_i)}, \coprod_{i=1}^g D_{\mathcal{J}}/f_{\mathcal{J}}$ and $\coprod_{i=3}^{n+g} D_{\mathcal{K}}^{(i)}/f_{\mathcal{K}}$.

EXAMPLE.

1. Quaternionic space

$$S(S^2, -1; (2, 1), (2, 1), (2, 1)) \cong M(F_0, (2, 1), (2, 1), (2, 1))$$

2. Brieskorn manifold $\Sigma(2, 3, 5)$

$$S(S^2, -1; (2, 1), (3, 1), (5, 1)) \cong M(F_0, (2, 1), (3, 1), (5, 1))$$

3.
$$S(S^2, -2; (2, 1), (5, 3), (7, 5)) \cong M(F_0, (2, 1), (5, 2), (7, 3))$$

References

- [1] V. G. TURAEV and O. Y. VIRO, State sum invariant of 3-manifolds and quantum 6*j*-symbols, Topology, 31 (1992), 865–902.
- [2] PETER ORLIK, Seifert manifolds, Lecture Notes in Mathematics 291, Springer-Verlag.
- [3] T. TANIGUCHI, Turaev-Viro invariant of Seifert manifolds, preprint.
- [4] M. Endo and I. Ishii, A new complexity for 3-manifolds, to appear in Japanese J. Math. preprint.
- [5] SERGEI MATVEEV, Algorithmic Topology and Classification of 3-manifolds, Springer.
- [6] I. ISHII, Flow-spine and Seifert fibred structure of 3-manifolds, Tokyo J. Math., 11 (1988), 95–104.
- [7] H. IKEDA and Y. INOUE, Invitation to DS-diagrams, Kobe J Math., 2 (1985), 169–186.
- [8] K. YOKOYAMA, On DS-diagrams of lens spaces, Topology and computer science, Edited by S.Suzuki, Kinokuniya Company Ltd., (1987), 171–192.

Present Addresses:

TAIJI TANIGUCHI

Department of Mathematics, Faculty of Science and Technology, Keio University, Kohoku-ku, Yokohama, 223-8522 Japan.

e-mal: taiji@math.keio.ac.jp

KEIKO TSUBOI

Department of Mathematics, Dokkyo Saitama High School / Junior High School, Onmashinden, Koshigaya, Saitama, 343-0037 Japan.

e-mal: tsubokei@hotmail.com

Masakatsu Yamashita

DEPARTMENT OF COMPUTATIONAL SCIENCE AND ENGINEERING, FACULTY OF ENGINEERING, TOYO UNIVERSITY,

KAWAGOE-SHI, SAITAMA, 350–8585 JAPAN.

 $\textit{e-mal}: \ yamasita@eng.toyo.ac.jp$