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π1-Equivalent Weak Zariski Pairs
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Abstract. Consider a moduli space M(Σ, d) of reduced curves in CP2 with a given degree d and having

a prescribed configuration of singularities Σ . Let C,C′ ∈ M(Σ, d). The pair of curves (C,C′) is called a weak

Zariski pair if the pairs of spaces (CP2, C) and (CP2, C′) are not homeomorphic. There exists two classical ways

to detect weak Zariski pairs: (i) showing that the generic Alexander polynomials ∆C(t) and ∆C′ (t) of C and C′

are different; (ii) showing that the fundamental groups π1(CP2 − C) and π1(CP2 − C′) are not isomorphic. In

this paper, we give the first example of a weak Zariski pair (C,C′) such that π1(CP2 − C) and π1(CP2 − C′) are
isomorphic (notice that such an isomorphism automatically implies ∆C(t) = ∆C′ (t)). We shall call such a pair

a π1-equivalent weak Zariski pair. The members C and C′ of our pair are reducible sextics with the following

configuration of singularities {D10 + A5 + A4}. By the way, we determine the fundamental group π1(CP2 − D) for
any curve D in the moduli space M({D10 + A5 + A4}, 6). As an application, we give a new weak Zariski 4-ple (we
recall that a 4-ple (D1,D2,D3,D4) of curves in M(Σ, d) is called a weak Zariski 4-ple if for any 1 ≤ i < j ≤ 4

the pairs of spaces (CP2,Di) and (CP2,Dj ) are not homeomorphic).

Introduction

Consider a moduli space M(Σ, d) of reduced curves in CP2 with a given degree d

and having a prescribed configuration of singularities Σ . In general, it is not easy to see if
M(Σ, d) can be endowed with an algebraic structure and, in the case where it has such a
structure, if it is irreducible or not. There are very few examples for which the irreducibility
or the numbers of irreducible components is known (for examples see [H]). If M(Σ, d) has
a weak Zariski pair (C,C′), then it is not irreducible since in this case the curves C and C′ of
the pair necessarily belong to different irreducible components.

The notion of weak Zariski pair is used, in particular, in [P] and [O7]. The precise
definition is as follows.

DEFINITION 0.1. Let C,C′ be two curves in M(Σ, d). One says that the pair (C,C′)
is a weak Zariski pair if the pairs of spaces (CP2, C) and (CP2, C′) are not homeomorphic.
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This definition is weaker than the definition of Zariski pairs introduced by Artal Bartolo
in [A]: a pair (C,C′) of curves in M(Σ, d) is called a Zariski pair if there exist regular
neighbourhoods T (C) and T (C′) of C and C′, respectively, such that the pairs (T (C),C)

and (T (C′), C′) are homeomorphic while the pairs (CP2, C) and (CP2, C′) are not homeo-
morphic. A Zariski pair is always a weak Zariski pair. In the case of irreducible curves the two
notions coincide. The first example of Zariski pair appears in the works by Zariski [Z1,2,3];
the members C and C′ of the pair are irreducible 6-cuspidal sextics such that the cusps of C

are on a conic while those of C′ are not on a conic. Then, several other examples were found
by Artal Bartolo [A], Artal Bartolo - Carmona Ruber [AC], Oka [O1,2,4,6], Shimada [Sh],
Tokunaga [T], Pho [P] (Pho considered weak Zariski pairs).

Given two curves C and C′ in M(Σ, d), there are two classical ways to detect if
(C,C′) is a weak Zariski pair: (i) showing that the generic Alexander polynomials ∆C(t)

and ∆C ′(t) of C and C′ are different; (ii) showing that the fundamental groups π1(CP2 − C)

and π1(CP2 −C′) are not isomorphic. The computation of the Alexander polynomials is gen-
erally easier than those of the fundamental groups. However, there exist weak Zariski pairs
(C,C′) such that the Alexander polynomials ∆C(t) and ∆C ′(t) coincide. These pairs are
called Alexander-equivalent weak Zariski pairs. The first example of such a pair for reducible
curves was given by Artal Bartolo - Carmona Ruber in [AC] (although they work with re-
ducible curves their example in fact provides an Alexander-equivalent Zariski pair). The first
example with irreducible curves is due to Oka [O4]; the members C and C′ of the pair are
curves of degree 12 with 27 cusps; C is a generic (3, 3)-covering of a 3-cuspidal quartic and
C′ is constructed using a 6-cuspidal non-conical sextic. Another example can be found in
[O6]; here, the members C and C′ of the pair are irreducible curves of degree 8 with 12 cusps.

In this paper, we give the first example of a weak Zariski pair (C,C′) where C and C′

are reducible curves such that π1(CP2 − C) and π1(CP2 − C′) are isomorphic (notice that
such an isomorphism automatically implies ∆C(t) = ∆C ′(t)). We shall call such a pair a
π1-equivalent weak Zariski pair. The members C and C′ of our pair are sextics with the
following configuration of singularities {D10 + A5 + A4} (cf. Theorem 2.1). By the way,

we determine the fundamental group π1(CP2 − D) for any curve D in the moduli space
M({D10 + A5 + A4}, 6) (cf. Theorem 9.1). As an application, we give a new weak Zariski
4-ple (cf. Theorem 6.1); we recall that a weak Zariski k-ple is a k-ple (D1, · · · ,Dk) of curves

in M(Σ, d) such that for any 1 ≤ i < j ≤ k the pairs of spaces (CP2,Di) and (CP2,Dj )

are not homeomorphic (cf. [O7]).
In [GLS], Greuel-Lossen-Shustin gave an example of a moduli M(Σ, d) with at least

two irreducible components such that π1(CP2 − D) � Z/dZ for any curve D ∈ M(Σ, d),

but they do not discuss about the topology of the pair (CP2,D).
This paper is organized as follows. In Section 1, we recall the Zariski-van Kampen pencil

method which we use to compute the fundamental groups. In Section 2, we give an example
of π1-equivalent weak Zariski pair (cf. Theorem 2.1 and Corollary 2.2). In Sections 4, 5, 7,

8 and 9, we compute the fundamental groups π1(CP2 − D) for every curve D in the moduli
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space M({D10 + A5 + A4}, 6) (cf. Theorems 4.1, 5.1, 7.1, 8.1, 9.1 and Corollaries 4.2, 5.2,
7.2, 8.2). Section 9 also contains a discussion about the connected components of M({D10 +
A5 + A4}, 6). In Section 6, we give an example of weak Zariski 4-ple (cf. Theorem 6.1 and
Corollary 6.2). Notice that the proof of Theorem 2.1 (resp. Theorem 6.1) is an immediate
consequence of Theorems 3.1, 4.1 and 5.1 (resp. Theorems 3.1, 4.1, 5.1, 7.1 and 8.1).

1. Zariski-van Kampen pencil method

In this section, we recall the classical Zariski-van Kampen theorem, and we give a non-
generic version of it. We also recall a useful result on the first homology of the complement
of a plane curve.

1.1. Classical Zariski-van Kampen theorem. Let F(X, Y,Z) be a reduced homo-
geneous polynomial of degree d , and let

C := {(X : Y : Z) ∈ CP2 | F(X, Y,Z) = 0}
be the corresponding projective curve in CP2. We consider two independent linear forms

l1(X, Y,Z) and l2(X, Y,Z), and for every point τ := (S : T ) in CP1 we denote by Lτ the

projective line of CP2 defined by

Lτ := {(X : Y : Z) ∈ CP2 | T l1(X, Y,Z) − S l2(X, Y,Z) = 0} .

The family of lines L := (Lτ )τ∈CP1 is called the pencil generated by the linear forms l1 and
l2. The point b0 := L(0 : 1) ∩ L(1 : 0), which belongs to every line of the pencil, is called the
axis of L. The pencil is said generic with respect to C if b0 /∈ C. Hereafter, in Section 1, we
shall assume that L is generic with respect to C.

A member Lτ of L is called a generic line with respect to C if it avoids the singularities
of C and if it is transverse to the non-singular part of C; otherwise, it is called a singular line.
If Lτ is generic, then it intersects C at exactly d points. If it is singular, then it intersects C at
a singular point or it is tangent to C at some simple point. Notice that the set of singular lines
is finite. If necessary, one may consider some generic lines of L as “singular” ones. Let Ξ

be the set of parameters τ ∈ CP1 corresponding to the singular lines, and let Lτ0 be a generic
line (which we have not decided to consider as “singular”).

As the base point for the fundamental group π1(CP2 − C) we take the point b0. It is

well-known that there is a canonical action, called monodromy action, of π1(CP1 − Ξ, τ0)

on π1(Lτ0 − C, b0) (see e.g. [O2,5]). The relations ξ = ξσ , for σ ∈ π1(CP1 − Ξ, τ0) and
ξ ∈ π1(Lτ0 − C, b0), are called the monodromy relations, where ξσ is the image of (σ, ξ) by
the monodromy action. The classical Zariski-van Kampen theorem is as follows.

THEOREM 1.1.1 (cf. [Z1], [vK] and [C]). The inclusion map Lτ0 − C ↪→ CP2 − C

induces an isomorphism

π1(Lτ0 − C, b0) / N
∼→ π1(CP2 − C, b0) ,
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∗
b0

ξ1ξ2ξd ...

FIGURE 1. Generators of π1(Lτ0 − C, b0).

∗

... σ1σ2σs

τ0

FIGURE 2. Generators of π1(CP1 − Ξ, τ0).

where N is the normal subgroup of π1(Lτ0 − C, b0) generated by

{ξ−1ξσ | σ ∈ π1(CP1 − Ξ, τ0), ξ ∈ π1(Lτ0 − C, b0)} .

Theorem 1.1.1 can be rephrased in terms of a presentation by generators and relations

as follows. We give a natural presentation of π1(Lτ0 − C, b0) (resp. π1(CP1 − Ξ, τ0)) by
d generators ξ1, · · · , ξd as in Figure 1 and the relation ξd · · · ξ1 = 1 (resp. by s generators
σ1, · · · , σs as in Figure 2 and the relation σs · · ·σ1 = 1, where s is the cardinality of Ξ );
ξ1, · · · , ξd are lassos around the d intersection points of Lτ0 with C; σ1, · · · , σs are lassos

around the s parameters corresponding to the singular lines of the pencil1. Then, the fun-

damental group π1(CP2 − C, b0) is presented by the generators ξ1, · · · , ξd and the relations

ξd · · · ξ1 = 1 and ξi = ξ
σj

i for all i and j .

1.2. A non-generic version of the Zariski-van Kampen theorem. We still use the
notation and hypotheses of Section 1.1.

Let τe := (Se : Te) ∈ CP1 − {τ0}. We consider the reduced homogeneous polynomial
F ′(X, Y,Z) defined by

F ′(X, Y,Z) := (Te l1(X, Y,Z) − Se l2(X, Y,Z)) F (X, Y,Z) ,

and we denote by

C′ := {(X : Y : Z) ∈ CP2 | F ′(X, Y,Z) = 0}
the corresponding projective curve in CP2. We have C′ = C ∪ Lτe . Obviously, the pencil L
is not generic with respect to C′. A line Lτ of L is called a generic line with respect to C′ if it
is generic with respect to C and different from the line Lτe ; otherwise, it is called a singular

1 In the figures, for simplicity of drawing pictures, we shall denote a lasso oriented counter-clockwise just by a path
ending with a black disk ——• as in [O3,4]. We recall that a lasso is defined as follows. Let D be a reduced curve
in CP2, and let (Di)i be the irreducible components of D. An element ζ ∈ π1(CP2 − D, ∗) is called a lasso
oriented counter-clockwise for Di if it is represented by a loop written as 
 ω
−1, where ω is a loop running once
counter-clockwise around the boundary circle of a small closed normal disk ∆ of D at a simple point such that ∆
does not intersect with Dj for j 
= i, and where 
 is a simple path connecting the base point ∗ and the loop ω such
that im
 ∩ ∆ is reduced to a single point (cf. [O2]).
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∗

b0

ξ1ξ2ξd ...

ρ
b0’

FIGURE 3. Generators of π1(Lτ0 − C′, b′
0).

∗

...
σ1σ2σs

τ0

θτe

τoo

µ

FIGURE 4. Generators of π1(CP1 − Ξ ′, τ0) if τe /∈ Ξ .

∗

...
σ1σ2σs

τ0

τoo

µ

FIGURE 4′. Generators of π1(CP1 − Ξ ′, τ0) if τe ∈ Ξ .

line. As the base point for the fundamental group π1(CP2 − C′) we take a point b′
0 on the

generic line Lτ0 sufficiently close to b0 but b′
0 
= b0.

Let τ∞ ∈ CP1 − (Ξ ∪ {τe, τ0}), and let Ξ ′ := Ξ ∪ {τe, τ∞}. So, Ξ ′ is the set of

parameters τ ∈ CP1 such that Lτ is singular with respect to C′ or τ = τ∞.
We give a natural presentation of the fundamental group π1(Lτ0 −C′, b′

0) by d +1 gener-
ators ρ, ξ1, · · · , ξd as in Figure 3 and the relation ρξd · · · ξ1 = 1. The generators ξ1, · · · , ξd

are lassos around the d intersection points of Lτ0 with C while the generator ρ is a lasso
around the intersection point of Lτ0 with Lτe (i.e., the axis b0 of the pencil). Similarly, we

give a natural presentation of π1(CP1 − Ξ ′, τ0) by s + 2 generators θ, µ, σ1, · · · , σs as in
Figure 4 and the relation µθσs · · ·σ1 = 1, if τe /∈ Ξ , or by s + 1 generators µ, σ1, · · · , σs as
in Figure 4′ and the relation µσs · · ·σ1 = 1, if τe ∈ Ξ . The generators σ1, · · · , σs are lassos
around the s points of Ξ , the generator µ is a lasso around τ∞. If τe /∈ Ξ , then θ is a lasso
around τe. If τe ∈ Ξ , then there is j0, 1 ≤ j0 ≤ s, such that σj0 is a lasso around τe.

There is an action of π1(CP1 − Ξ ′, τ0) on π1(Lτ0 − C′, b′
0). In this action, for each j ,

1 ≤ j ≤ s, and each ξ ∈ π1(Lτ0 − C′, b′
0), the image of (σj , ξ) (resp. (θ, ξ)), denoted by

ξσj (resp. ξθ ), is just the image of ξ by the local monodromy along σj (resp. along θ ), as in
the usual monodromy action. The image of (µ, ξ) is more complicated (it is defined by the
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action of (θσs · · · σ1)
−1 if τe /∈ Ξ or by the action of (σs · · · σ1)

−1 if τe ∈ Ξ ) but we do not
need it for our purpose.

A non-generic version of the Zariski-van Kampen theorem is as follows.

THEOREM 1.2.1. The inclusion map Lτ0 − C′ ↪→ CP2 − C′ induces an isomorphism

π1(Lτ0 − C′, b′
0)/N

′ ∼→ π1(CP2 − C′, b′
0) ,

where N ′ is the normal subgroup of π1(Lτ0 − C′, b′
0) generated by:

• {ξ−1ξσj , ρ−1ξ−1ρ ξθ | j ∈ {1, · · · , s}, ξ ∈ π1(Lτ0 − C′, b′
0)}, if τe /∈ Ξ ;

• {ξ−1ξσj , ρ−1ξ−1ρ ξσj0 | j ∈ {1, · · · , s} − {j0}, ξ ∈ π1(Lτ0 − C′, b′
0)

}
, if τe ∈ Ξ .

In other words, the fundamental group π1(CP2 − C′, b′
0) is presented by the generators

ρ, ξ1, · · · , ξd and the following relations:

• if τe /∈ Ξ ,




ρξd · · · ξ1 = 1,

ξi = ξ
σj

i , for all i and j ,

ρ−1ξiρ = ξθ
i , for all i ;

• if τe ∈ Ξ,




ρξd · · · ξ1 = 1 ,

ξi = ξ
σj

i , for all i and all j 
= j0 ,

ρ−1ξiρ = ξ
σj0
i , for all i .

Theorem 1.2.1 can be proved in the same way as the classical Zariski-van Kampen the-
orem. We thus omit the proof.

REMARK. There is also a discussion on non-generic Zariski-van Kampen theorems in
[D, Remark (4.3.19)] but different from our setting.

1.3. Fundamental group and first homology. Let D be a reduced curve in CP2 with
r irreducible components D1, · · · ,Dr of degree d1, · · · , dr respectively. By Lefschetz duality

(cf. [Sp]), it is not difficult to see that the first integral homology group H1(CP2 − D; Z) is
isomorphic to

Zr−1 × (Z/d0Z) ,

where d0 := gcd(d1, · · · , dr ) (cf. [O5]). On the other hand, by the Hurewicz theorem

(cf. [Sp]), H1(CP2 − D; Z) is isomorphic to the quotient of π1(CP2 − D) by the commutator

subgroup. So, in the case where π1(CP2 − D) is abelian, we have the isomorphism

π1(CP2 − D) � Zr−1 × (Z/d0Z) .
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1.4. Notation. For our purpose, we shall use only the pencil LX,Z andLY,Z generated
by the linear forms lX, lZ and lY , lZ , respectively, where

lX(X, Y,Z) = X , lY (X, Y,Z) = Y , lZ(X, Y,Z) = Z .

Let L∞ = {(X : Y : Z) ∈ CP2 | Z = 0} be the line at infinity of CP2. We shall identify

CP2 − L∞ with the affine space C2 and we shall consider on this space the affine coordinates

x := X/Z and y := Y/Z. In C2, the pencils LX,Z and LY,Z are simply given by {x = η}η∈C

and {y = η}η∈C respectively.

For any given parameter τ = (S : T ) ∈ CP1 − {τ∞} � C, we shall also denote the line

Lτ by Lη where η = S/T . In C2, the line Lη is simply defined by x = η for the pencil LX,Z

and by y = η for the pencil LY,Z.

If G(X, Y,Z) is a reduced homogeneous polynomial defining a curve D in CP2, then
the affine equation of D is the equation G(x, y, 1) = 0.

Hereafter, we shall always assume that ε is a sufficiently small strictly positive number.

2. A π1-equivalent weak Zariski pair

Consider the sextics C1 and C2 defined by following affine equations:

C1 : f1(x, y) := f ′
1(x, y) f ′′

1 (x, y) = 0 ,

C2 : f2(x, y) := f ′
2(x, y) f ′′

2 (x, y) = 0 ,

where f ′
1, f ′′

1 and f ′
2, f ′′

2 are given by

f ′
1(x, y) := x ,

f ′′
1 (x, y) := 26556 y4x + 19932 y2 x3 − 14336 x3 y − 7255 x4 y − 38112 y3x

− 31802 y3x2 + 13632 y2x + 35120 y2 x2 − 8192 x2y − 12167 y5

+ 25392 y4 + 704 x5 + 4096 x4 + 4096 y2 − 17664 y3 ,

and

f ′
2(x, y) := y ,

f ′′
2 (x, y) := 34600

1331
y5 +

(
−6421

121
x − 81300

1331

)
y4

+
(

−96402

1331
x2 + 12963

121
x + 58800

1331

)
y3

+
(

20127

121
x3 + 116004

1331
x2 − 6663

121
x − 100

11

)
y2

+
(

65536

1331
x4 − 20127

121
x3 − 162

11
x2 + x

)
y − 16000

121
x5 .
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The curve C1 has two irreducible components: a line C′
1 defined by the equation

f ′
1(x, y) = 0 and a quintic C′′

1 defined by the equation f ′′
1 (x, y) = 0. The configuration

of singularities of C1 is {D10 + A5 + A4}: D10 at the origin, A5 at (0, 16/23) and A4 at

(1, 1)1. We show the real plane section of C1 in Figure 5 below (in the figures, we do not
respect the numerical scale).

The curve C2 has also two irreducible components: a line C′
2 defined by the equation

f ′
2(x, y) = 0 and a quintic C′′

2 defined by the equation f ′′
2 (x, y) = 0. The configuration of

singularities of C2 is also {D10 +A5+A4}: D10 at the origin, A5 at (0, 1) and A4 at (1, 2). We
show the real plane section of C2 in Figure 12 below. Observe that, after the analytic change

of coordinates (x, y) �→ (x, y + 1 + 128
75 x2), the equation of C2 near (0, 1) takes the form

22500

1331
y2 − 1377

121
x3y + 425984

185625
x6 + higher terms = 0 .

So, as the leading term 22500
1331 y2 − 1377

121 x3y + 425984
185625 x6 has no real factorization, the point

(0, 1) is an isolated point of the real plane section of C2.
Notice that the curves C1 and C2 are not of torus type (for the definition, see e.g. [O3]).

THEOREM 2.1. The pair (C1, C2) is a π1-equivalent weak Zariski pair.

The proof of Theorem 2.1 follows immediately from Theorems 3.1, 4.1 and 5.1 below.

Let M := M({D10 + A5 + A4}, 6) be the moduli space of reduced sextics in CP2 with
the configuration of singularities {D10 + A5 + A4}. Let M1 (resp. M2) be the connected

component of M containing the curve C1 (resp. C2). Since the topology of the pair (CP2,D)

is independent on the choice of D in M1 (resp. in M2) (cf. [Z4,5] and [LR]), Theorem 2.1
implies the following result.

COROLLARY 2.2. Any pair (D1,D2), where D1 ∈ M1 and D2 ∈ M2, is a π1-
equivalent weak Zariski pair.

3. Topology of C1 and C2

The notation is as in Section 2.

THEOREM 3.1. The curves C1 and C2 are not homeomorphic. In particular (C1, C2)

is a weak Zariski pair.

PROOF. First, we observe that the quintics C′′
1 and C′′

2 are rational curves (i.e., curves
with genus 0). This follows immediately from the genus formula which can be stated as
follows. Given an irreducible curve D with degree d and singular locus Σ(D), the genus

1 We recall that a point p of a curve C is called a singularity of type An, where n is an integer ≥ 1, if the germ (C, p)

is topologically equivalent to the germ ({x2 + yn+1 = 0},O) as embedded germs (for the definition of “topologically
equivalent”, see e.g. [Di, Definition (1.4)]). It is called a singularity of type D10 if (C, p) is topologically equivalent
to ({x2y + y9 = 0},O).
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g(D) of D is given by the formula:

2g(D) = (d − 1)(d − 2) −
∑

p∈Σ(D)

(µ(D,p) + r(D, p) − 1) ,

where µ(D,p) and r(D, p) are the Milnor number of D at p and the number of local irre-
ducible components of D at p respectively (cf. [M] and [BK]). In our case, notice that the
configuration of singularities Σ(C′′

1 ) of C′′
1 is {A7 + A4} (A7 at the origin, A4 at (1, 1)) while

the configuration Σ(C′′
2 ) of C′′

2 is {A1 +A5 +A4} (A1 at the origin, A5 at (0, 1), A4 at (1, 2)).

The line C′
1 intersects with C′′

1 at two points: at the origin, transversally with the tangent cone

of C′′
1 at O so that the singularity of C1 at O is D10, and at (0, 16/23) where C′

1 is tangent to

C′′
1 with intersection multiplicity 3 so that the singularity of C1 at this point is A5. The line C′

2

intersects C′′
2 only at the origin and it is tangent to one of the branches of A1 with intersection

multiplicity 5 so that the singularity of C2 at O is D10.

So, topologically, C′′
1 is the sphere S2 with two points identified while C′′

2 is S2 with two
pairs of points identified.

Now, observe that the line C′
1 intersects C′′

1 at the (unique) exceptional point of C′′
1 (i.e.,

the point where C′′
1 is not a topological manifold) and at an “ordinary” point (i.e., a point

where one has a structure of topological manifold), while the line C′
2 intersects C′′

2 at only
one point which is exceptional. So, the set of ordinary points of C1 is homeomorphic to the
disjoint union

(S2 − 2 points) � (S2 − 3 points) ,

while the set of ordinary points of C2 is homeomorphic to the disjoint union

(S2 − 1 point) � (S2 − 4 points) .

So, if there was a homeomorphism from C1 onto C2, then (for example) the connected

component S2−{2 points} of the set of ordinary points of C1 would be sent homeomorphically

onto one of the two connected components, S2 − {1 point} or S2 − {4 points}, of the set of
ordinary points of C2. Of course, this is impossible.

REMARK. Notice that C1 and C2 have the same integral reduced homology:

H̃q(Ci; Z) =
{

Z2 if q = 1 or 2

0 otherwise
(i = 1, 2) .

4. Fundamental group of CP2 − C1

Again, the notation is as in Section 2.

THEOREM 4.1. The fundamental group π1(CP2 − C1) is isomorphic to Z.
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We still denote by M the moduli space of reduced sextics in CP2 with the configuration
of singularities {D10 + A5 + A4}, and by M1 the connected component of M containing the
curve C1. Theorem 4.1 (together with [Z4,5] and [LR] as above) implies the following result.

COROLLARY 4.2. For any curve D ∈ M1, we have π1(CP2 − D) � Z.

PROOF OF THEOREM 4.1. We use the classical Zariski-van Kampen theorem

(cf. Theorem 1.1.1) with the pencil LY,Z (cf. Notation 1.4). We recall that in C2 := CP2−L∞
this pencil is given by {y = η}η∈C. Observe that the point b0 (i.e., the axis of the pencil) does
not belong to the curve C1. To prove Theorem 4.1, it suffices (cf. Section 1.3) to show that

π1(CP2 − C1, b0) is abelian.
The discriminant ∆x(f1) of f1 as a polynomial in x, which describes the singular lines

of the pencil LY,Z (with respect to C1), is a polynomial in y given by

∆x(f1)(y) = a1y
14(a2y

3 + a3y
2 + a4y + a5)(23y − 16)6(y − 1)7 .

Of course, we know the numbers ai (1 ≤ i ≤ 5) but we do not write them here because they
are too big; we observe, nevertheless, that ∆x(f1) has six distinct real roots:

η1 = 0 , η2 = 0.683 · · · , η3 = 0.695 · · · , η4 = 0.754 · · · , η5 = 1 , η6 = 1.085 · · ·
The singular lines of the pencil are the lines Lη1 , · · · , Lη6 corresponding to these six roots.

We take generators ξ1, · · · , ξ6 of the fundamental group π1(Lη5+ε − C1, b0) (which are

also generators of π1(CP2 − C1, b0)) as in Figure 6; ξ1, · · · , ξ5 are lassos for C′′
1 and ξ6 is a

lasso for the line component C′
1.

We first look at the monodromy relations around Lη6 (obtained when y moves on the real
axis from y := η5 + ε → η6 − ε, then runs once counter-clockwise on the circle |y −η6| = ε,
and then comes back on the real axis from y := η6 − ε → η5 + ε). In Figure 7 we show how
the generators at y = η5 +ε are deformed when y moves on the real axis from y := η5 +ε →
η6 − ε. Then, to read the monodromy relations around Lη6 , it suffices to observe that the
line Lη6 is tangent to the curve at the simple point p0 (cf. Figure 5) and that the intersection
multiplicity I (Lη6 , C1; p0) of Lη6 with C1 at p0 is equal to 2. Thus, by the implicit functions

y=η1

y=η2

y=η4

y=η5
y=η6

y=η3

p0

C1’’

C1’

FIGURE 5. Real plane section of C1.

ξ5ξ6

1

ξ3ξ4 ξ1ξ2

FIGURE 6. Generators at y = η5 + ε.
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theorem, the germ (C1, p0) is topologically equivalent to the germ ({y = −x2},O). The
monodromy relations around Lη6 thus give the relation

(4.3) ξ5 = ξ3ξ2ξ
−1
3 .

To read the monodromy relations around Lη5 , we look at the Puiseux parametrization
of C1 at (1, 1): {

y = 1 + t4

x = 1 + 2
19

√
38 t2 + 162

361 38(1/4)
√

3 t3 + higher terms .

When y = 1 + ε exp(iθ) moves around η5 = 1 ∈ (C, y) once counter-clockwise, the topo-
logical behavior of the four points near 1 ∈ (C, x) (cf. Figure 6) looks like the movement of
four satellites accompanying two planets, two satellites around each planet corresponding to
t = ε1/4 exp(iν), ν = θ/4, θ/4+π/2, θ/4+π, θ/4+(3π)/2. The movement of the planets

is described by the term 2
19

√
38 t2; each of them do (1/2)-turn counter-clockwise around the

sun (≈ 1 ∈ (C, x)). The movement of each satellite around its planet is described by the term
162
361 38(1/4)

√
3 t3; each of them does (3/4)-turn counter-clockwise around its planet. So, the

monodromy relations around Lη5 give the relations

ξ1 = ξ4,

ξ2 = ξ4ξ3ξ
−1
4 ,

ξ3 = (ξ4ξ3ξ2)ξ1(ξ4ξ3ξ2)
−1

= (ξ1ξ3)
2ξ1(ξ1ξ3)

−2 (by the two previous relations) .

(4.4)

In order to read the monodromy relations around Lη4 , we first show in Figure 8 how the
generators at y = η5 + ε are deformed when y does half-turn counter-clockwise on the circle
|y − η5| = ε. Now, we also need to know how the generators at y = η5 − ε are deformed
when y moves on the real axis from y := η5 −ε → η4 +ε. This is described by the following
lemma.

ξ1ξ2ξ3ξ4ξ5ξ6

FIGURE 7. Generators at y = η6 − ε.

ξ1ξ2

ξ3

ξ6 ξ5

ξ1

FIGURE 8. Generators at y = η5 − ε.
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LEMMA 4.5. When y moves on the real axis from y := η5−ε → η4+ε, the generators
at y = η5 − ε (cf. Figure 8) are deformed as in Figure 9.

PROOF. We consider the polynomial

h(u, v, y) := f1(u + iv, y)

for u, v, y real. We denote by f1e(u, v, y) and f1o(u, v, y) the real and the imaginary part of
h(u, v, y) respectively. They have degree 6 and 5 respectively in v. Suppose that there exists
an y0 ∈ [η4 + ε, η5 − ε] such that four complex solutions of the equation (in x) f1(x, y0) = 0
are on a same vertical line u = u0 in the complex plane (C, x = u + iv). This implies that
the equations (in v)

f1e(u0, v, y0) = f1o(u0, v, y0) = 0

have four common real solutions v1, v2, v3, v4. These solutions are not 0 since the equation
(in y) ∆x(f1)(y) = 0 has no solution on [η4 + ε, η5 − ε]. Thus, the equations (in v)

f1e(u0, v, y0) = f1oo(u0, v, y0) = 0 ,

where f1oo(u, v, y) := f1o(u, v, y)/v (notice that v divides f1o(u, v, y), and thus
f1oo(u, v, y) is a polynomial), have also v1, v2, v3, v4 as common solutions. As f1oo has
degree 4 in v, this implies that f1oo(u0, v, y0) divides f1e(u0, v, y0). Thus, the remainder
R(u, v, y) of f1e by f1oo, as a polynomial of v, must be identically 0 for u = u0 and
y = y0 (of course, R is written as R = R′/R′′, where R′ is a polynomial in u, v, y,
while R′′ is a polynomial just depending on u and y). By an easy computation, we see that

R = (R′
2/R

′′
2 ) v2 + (R′

0/R
′′
0 ), where R′

2, R′′
2 , R′

0 and R′′
0 are polynomials in u and y. Thus,

(u0, y0) is a common real solution of the equations

(4.6) R′
2(u, y) = R′

0(u, y) = 0 .

This implies that y0 is a root of the resultant Res(y) of the polynomials u �→ R′
2(u, y) and

u �→ R′
0(u, y). Note that the condition Res(y0) = 0 is necessary to have a real partner u0

such that R′
2(u0, y0) = R′

0(u0, y0) = 0, but it is not sufficient since the possible partner u0

might be not real. There are three real solutions y01, y02, y03 of the equation Res(y) = 0 on
the interval [η4 + ε, η5 − ε]. Each of them gives a real number, say u0j for y0j (1 ≤ j ≤ 3),
such that (u0j , y0j ) (1 ≤ j ≤ 3) are three solutions of (4.6). But none of these three solutions
gives four real roots v of the polynomial v �→ f1oo(u0, v, y0). Thus, we cannot have an
overcrossing of the four (purely) complex roots on [η4 + ε, η5 − ε]. This completes the proof
of Lemma (4.5).

The monodromy relations around Lη4 thus give the relation

ξ1 = (ξ6ξ5)ξ3(ξ6ξ5)
−1 .

We shall not need the monodromy relations around Lη3 but in order to read the mon-
odromy relations around Lη2 , we need to know how the generators at y = η4+ε are deformed
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ξ1ξ5ξ6

(ξ6ξ5)ξ3(ξ6ξ5) −1

ξ3

(ξ3ξ1ξ3)    ξ1 (ξ3ξ1ξ3)−1

FIGURE 9. Generators at y = η4 + ε.

ξ1

(ξ6ξ1) . ξ1 ξ6ξ1 . (ξ6ξ1)−1 −1

(ξ6ξ1)  ξ1 (ξ6ξ1)
−2 2

ξ1  ξ5ξ1
−1

ξ3

(ξ3ξ1ξ3)  ξ1(ξ3ξ1ξ3)
−1

FIGURE 10. Generators at y = η2 + ε.

ξ1 ζ1ζ2ζ3ζ4 ξ3

0

FIGURE 11. Generators at y = η1 + ε.

when y moves as follows: half-turn counter-clockwise on the circle |y − η4| = ε; on the real
axis from y := η4 − ε → η3 + ε; half-turn counter-clockwise on the circle |y − η3| = ε;
on the real axis from y := η3 − ε → η2 + ε. This deformation is shown in Figure 10. To
see the movement of the generators when y does half-turn counter-clockwise on the circle
|y − η3| = ε, just observe that near the A5-singularity (0, 16/23) the curve has two branches
K1 and K2, corresponding to the line C′

1 and the quintic C′′
1 respectively, given by

K1 : x = 0 ,

K2 : x = −6436343

15552

(
y − 16

23

)3

+ higher terms .

The monodromy relations around Lη2 give the relations

ξ−1
1 ξ5ξ1 = (ξ6ξ1)

−2ξ1(ξ6ξ1)
2 .

To read the monodromy relations around Lη1 , we first need to know how the generators
at y = η2+ε are deformed when y does half-turn counter-clockwise on the circle |y−η2| = ε,
then moves on the real axis from y := η2 − ε → η1 + ε. This deformation is shown in Figure
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11, where (use the previous relation)

ζ1 := (ξ3ξ1ξ3)
−1ξ1(ξ3ξ1ξ3) ,

ζ2 := (ξ6ξ1)
−2ξ−1

1 (ξ6ξ1)
3 ,

ζ3 := (ξ6ξ1)
−2ξ1(ξ6ξ1)

2 ,

ζ4 := (ξ6ξ1)
−1ξ1(ξ6ξ1) .

To see the deformation when y moves on the real axis from y := η2 − ε → η1 + ε, just
proceed as in Lemma 4.5.

Now, we observe that near the origin the curve has three branches K3, K4 and K5 given
by

K3 : y = x2 − 101

64
x3 + 3

256

(11011

32
+ 27

32
i
√

15
)

x4 + higher terms ,

K4 : y = x2 − 101

64
x3 + 3

256

(11011

32
− 27

32
i
√

15
)

x4 + higher terms ,

K5 : x = 0 .

An easy computation shows that the Puiseux parametrizations of K3 and K4 at the origin are
given by

K3 : y = t2 , x = b1 t + b2 t2 + b3 t3 + higher terms ,

K4 : y = t2 , x = b′
1 t + b′

2 t2 + b′
3 t3 + higher terms ,

for some complex numbers bi and b′
i such that bi = b′

i for 1 ≤ i ≤ 2, the number b1 = b′
1 is

non-zero, and b3 
= b′
3. Put

ω = ξ3ζ1 , ω′ = ζ4ζ3 , Ω = ω′ζ2ω .

The equations above show that the monodromy relations around Lη1 give the relations

ζ1 = ζ4ζ3ζ
−1
4 ,

ξ3 = ω′ζ4ω
′−1

,

ζ2 = ω′ζ2ω
′−1

,

ζ3 = Ωξ3ζ1ξ
−1
3 Ω−1 ,

ζ4 = (Ωω)ξ3(Ωω)−1 .

(4.7)

Now, we have enough relations to conclude that the fundamental group π1(CP2−C1, b0)

is abelian. The first and the second relations of (4.7) imply

ω = ω′ .
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The vanishing relation at infinity, ξ1Ω = 1, thus implies ωξ1 = (ωζ2)
−1. Since ωζ2 = ζ2ω

(third relation of (4.7)), one deduces

ξ1ω = ωξ1 .

In other words, ξ−1
3 (ξ1ξ3)

2 = ξ−1
1 ξ−1

3 (ξ1ξ3)
2ξ1. Now, by the third relation of (4.4), we have

ξ3(ξ1ξ3)
2 = (ξ1ξ3)

2ξ1. So, the previous relation implies ξ1 = ξ3. Then, the first and the
second relations of (4.4) imply ξ1 = ξ2, the relation (4.3) shows ξ1 = ξ5, and the vanishing

relation at infinity gives ξ6 = ξ−5
1 .

The fundamental group π1(CP2 − C1, b0) is thus generated by a single generator, and
consequently it is abelian.

5. Fundamental group of CP2 − C2

Again, the notation is as in Section 2.

THEOREM 5.1. The fundamental group π1(CP2 − C2) is isomorphic to Z.

We still denote by M the moduli space of reduced sextics in CP2 with the configuration
of singularities {D10 + A5 + A4}, and by M2 the connected component of M containing the
curve C2. As above, Theorem 5.1 implies the following result.

COROLLARY 5.2. For any curve D ∈ M2, we have π1(CP2 − D) � Z.

PROOF OF THEOREM 5.1. We use the non-generic version of the Zariski-van Kampen

theorem (cf. Theorem 1.2.1) with the pencil LY,Z (cf. Notation 1.4). We recall that in C2 :=
CP2 − L∞ this pencil is given by {y = η}η∈C. Pencil LY,Z is not generic with respect to the
curve C2. Notice, nevertheless, that b0 does not belong to the quintic C′′

2 . To prove Theorem

5.1, it suffices (cf. Section 1.3) to show that the fundamental group π1(CP2 − C2) is abelian.

We recall that as the base point for π1(CP2 − C2) we take a point b′
0 on a generic line such

that b′
0 is sufficiently close to b0 but b′

0 
= b0 (cf. Section 1.2 and below).
The discriminant ∆x(f2) of f2 as a polynomial in x, which describes the singular lines

of the pencil LY,Z (with respect to C2), is a polynomial in y given by

∆x(f2)(y) = a1y
13(y − 2)5(y − 1)8(a2y

2 + a3y + a4) .

Again, of course, we know the numbers ai (1 ≤ i ≤ 4) but we do not write them here because
they are too big; we observe, nevertheless, that ∆x(f2) has five distinct real roots:

η1 = 0 , η2 = 0.001 · · · , η3 = 1 , η4 = 1.954 · · · , η5 = 2 .

The singular lines of the pencil are the lines Lη1, · · · , Lη5 corresponding to these five roots.
We take generators ρ, ξ1, · · · , ξ5 of the fundamental group π1(Lη2−ε − C2, b

′
0) as in

Figure 13; ξ1, · · · , ξ5 are lassos for C′′
2 , while ρ is a lasso for the line component C′

2.
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ξ1 ζ1ζ2ζ3ζ4 ξ3

0

FIGURE 12. Real plane section of C2.

∗

ξ1ξ2ξ3ξ4ξ5

ρ

b0’
b0

FIGURE 13. Generators at y = η2 − ε.

∗

ξ1ξ1
ξ3

ξ4

ξ5

ρ

b0’
b0

0

FIGURE 14. Generators at y = η1 + ε.

As above, the monodromy relations around Lη2 give the relation

ξ2 = ξ1 .

To read the monodromy relations around Lη1 , we first show in Figure 14 how the gener-
ators at y = η2 − ε are deformed when y moves on the real axis from y := η2 − ε → η1 + ε.
Then we observe that, at the origin, the curve has three branches K1, K2 and K3 given by

K1 : y = 0 ,

K2 : y = t , x = 100

11
t + higher terms ,

K3 : y = t4 , x =
(

121

16000

)(1/4)

t + higher terms .
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One deduces that the monodromy relations around Lη1 give the relations

ρ−1ξ1ρ = ξ3ξ1ξ
−1
3 ,

ρ−1ξ1ρ = ξ3 ,

ρ−1ξ3ρ = ξ4 ,

ρ−1ξ4ρ = ξ5 ,

ρ−1ξ5ρ = (ξ5ξ4ξ3ξ1)ξ1(ξ5ξ4ξ3ξ1)
−1 .

(5.3)

We can already conclude that the fundamental group π1(CP2−C2, b
′
0) is abelian. Indeed,

the two first relations in (5.3) immediately imply ξ3 = ξ1. By the third relation, we then have
ξ4 = ξ3. The fourth relation thus shows ξ4 = ξ5. And the big circle relation ρξ5ξ4ξ3ξ2ξ1 = 1

then gives ρ = ξ−5
1 . So, the fundamental group π1(CP2 − C2, b

′
0) is generated by a single

generator, and consequently it is abelian.

6. A weak Zariski 4-ple

Consider the sextics C3 and C4 defined by following affine equations:

C3 : f3(x, y) := f ′
3(x, y) f ′′

3 (x, y) = 0 ,

C4 : f4(x, y) := f ′
4(x, y) f ′′

4 (x, y) f ′′′
4 (x, y) = 0 ,

where f ′
3, f ′′

3 and f ′
4, f ′′

4 , f ′′′
4 are given by

f ′
3(x, y) := y2 + y + 128

11
x2 ,

f ′′
3 (x, y) := −184

33
y4 +

(
347

11
x − 272

33

)
y3 +

(
−24124

363
x2 + 358

11
x − 8

3

)
y2

+
(

6916

121
x3 − 1076

33
x2 + x

)
y − 6656

363
x4 + 128

11
x3 ,

and

f ′
4(x, y) := x ,

f ′′
4 (x, y) := y ,

f ′′′
4 (x, y) := −x4 − 8y + 36y2 − 54y3 + 27y4 + 3xy − 8xy3 − 6yx2

+ 6y2x2 + 4yx3 .

The curve C3 has two irreducible components: a conic C′
3 defined by the equation

f ′
3(x, y) = 0 and a quartic C′′

3 defined by the equation f ′′
3 (x, y) = 0. The configuration

of singularities of C3 is {D10 + A5 + A4}: D10 at the origin, A5 at (0,−1) and A4 at (1, 1).
We show the real plane section of C3 in Figure 15 below.



516 CHRISTOPHE EYRAL AND MUTSUO OKA

The curve C4 has three irreducible components: two lines C′
4 and C′′

4 defined by the

equations x = 0 and y = 0 respectively, and a quartic C′′′
4 defined by the equation f ′′′

4 (x, y) =
0. The configuration of singularities of C4 is also {D10 + A5 + A4}: D10 at the origin, A5 at
(0, 2/3) and A4 at (1/2, 1/2). We show the real plane section of C4 in Figure 21 below.

Notice that the curves C3 and C4 are not of torus type.

THEOREM 6.1. The 4-ple (C1, C2, C3, C4), where C1, C2 are the sextics given in Sec-
tion 2 and C3, C4 the sextics defined above, is a weak Zariski 4-ple.

The proof of Theorem 6.1 follows immediately from Theorems 3.1, 4.1 and 5.1 above
and Theorems 7.1 and 8.1 below.

We still denote by M the moduli space of reduced sextics in CP2 with the configuration
of singularities {D10 + A5 + A4}, and by M1 and M2 the connected component of M
containing the curves C1 and C2 respectively. Let M3 and M4 be the connected component
of M containing the curves C3 and C4 respectively. Theorem 6.1 has the following immediate
corollary.

COROLLARY 6.2. Any 4-ple (D1,D2,D3,D4), where Di ∈ Mi for 1 ≤ i ≤ 4, is a
weak Zariski 4-ple.

7. Fundamental group of CP2 − C3

The notation is as in Section 6.

THEOREM 7.1. The fundamental group π1(CP2 − C3) is isomorphic to Z × (Z/2Z).

We still denote by M the moduli space of reduced sextics in CP2 with the configuration
of singularities {D10 + A5 + A4}, and by M3 the connected component of M containing the
curve C3. Theorem 7.1 implies the following result.

COROLLARY 7.2. For any curve D ∈ M3, we have the following isomorphism:
π1(CP2 − D) � Z × (Z/2Z).

PROOF OF THEOREM 7.1. We use the classical Zariski-van Kampen theorem

(cf. Theorem 1.1.1) with the pencil LX,Z (cf. Notation 1.4). We recall that in C2 := CP2−L∞
this pencil is given by {x = η}η∈C. Observe that b0 does not belong to the curve C3. To prove

Theorem 7.1, it suffices (cf. Section 1.3) to show that π1(CP2 − C3, b0) is abelian.
The discriminant ∆y(f3) of f3 as a polynomial in y, which describes the singular lines

of the pencil LX,Z (with respect to C3), is a polynomial in x given by

∆y(f3)(x) = a1x
18(a2x

2 + a3)(a4x
5 + a5x

4 + a6x
3 + a7x

2 + a8x + a9)(x − 1)5 .

The numbers ai (1 ≤ i ≤ 9) above are such that ∆y(f3) has seven distinct real roots:

η1 = −0.146 · · · , η2 = −0.053 · · · , η3 = −0.015 · · · , η4 = 0 ,

η5 = 0.054 · · · , η6 = 0.146 · · · , η7 = 1 .
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x=η1 

x=η2 

x=η3 

x=η4 
x=η5 

x=η6 
x=η7 

C3’
C3’’

FIGURE 15. Real plane section of C3.

ξ1ξ2ξ3ξ4

ξ5

ξ6

FIGURE 16. Generators at x = η1 + ε.

The lines Lη1, · · · , Lη7 corresponding to these seven roots are thus some singular lines
of the pencil.

We take generators ξ1, · · · , ξ6 of the fundamental group π1(Lη1+ε −C1, b0) as in Figure
16; ξ1, ξ2, ξ5, ξ6 are lassos for the quartic C′′

3 and ξ3, ξ4 are lassos for the conic component

C′
3.

As above, the monodromy relations around Lη1 give the relation

(7.3) ξ4 = ξ3.

To read the monodromy relations around Lη2 , we first show in Figure 17 how the gener-
ators at x = η1 + ε are deformed when x moves on the real axis from x := η1 + ε → η2 − ε

(the proof is similar to Lemma 4.5). Then, as above, the monodromy relations around Lη2

give the relation

(7.4) ξ6 = (ξ5ξ3)ξ5(ξ5ξ3)
−1 .

ξ1ξ2ξ3ξ5ξ6
ξ5ξ3ξ5

−1

FIGURE 17. Generators at x = η2 − ε.

ξ1ξ2ξ3ξ5ξ6

ξ5ξ3ξ5
−1

FIGURE 18. Generators at x = η3 − ε.
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To read the monodromy relations around Lη3 , we first show in Figure 18 how the gen-
erators at x = η2 − ε are deformed when x does half-turn counter-clockwise on the circle
|x − η2| = ε, then moves on the real axis from x := η2 + ε → η3 − ε. Then, as above, it is
easy to see that the monodromy relations around Lη3 give the relation

(7.5) ξ1 = (ξ3ξ2)
−1ξ2(ξ3ξ2) .

Now, we look at the monodromy relations around Lη4 . For this purpose, we show in
Figure 19 how the generators at x = η3 − ε are deformed when x does half-turn counter-
clockwise on the circle |x − η3| = ε, then moves on the real axis from x := η3 + ε → η4 − ε.
We look at the contribution of the origin. At (0, 0), the curve C3 has three branches: two
branches K1 and K2 corresponding to the quartic C′′

3 , and another one K3 corresponding to

the conic C′
3:

K1 : y = −128

11
x2 − 4980224

1331
x4 + higher terms ,

K2 : y = 3

8
x + higher terms ,

K3 : y = −128

11
x2 − 16384

121
x4 + higher terms .

The monodromy relations around Lη4 (contribution of the origin) thus give the relation

ξ2 = (ξ3ξ2ξ1)ξ2(ξ3ξ2ξ1)
−1 .

The latter, together with (7.5), implies ξ1 = ξ2. Notice that we thus have

(7.6) ξ1ξ3 = ξ3ξ1 .

We shall not use the contribution of (0,−1).
Now, in order to read the monodromy relations around Lη5 , we first show in Figure 20

how the generators at x = η4 − ε are deformed when x does half-turn counter-clockwise

0-1

ξ5ξ6

ξ5ξ3ξ5

ξ2  ξ3ξ2

ξ2  ξ3ξ2 . ξ1 . (ξ2  ξ3ξ2)

−1

−1 −1 −1−1

ξ2

FIGURE 19. Generators at x = η4 − ε.

(ξ5ξ3)  ξ5 (ξ5ξ3)
−1

(ξ5ξ3)  ξ3 (ξ5ξ3)
−1

(ξ5ξ3)  ξ6 (ξ5ξ3)
−1

ξ1ξ3ξ1

FIGURE 20. Generators at x = η5 − ε.
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on the circle |x − η4| = ε, then moves on the real axis from x := η4 + ε → η5 − ε. To
see the movement of the generators near −1, when x does half-turn counter-clockwise on the
circle |x − η4| = ε, just observe that near (0,−1) the curve has two branches K4 and K5,
corresponding to the quartic C′′

3 and the conic C′
3 respectively, given by

K4 : y = −1 + 128

11
x2 − 9375

88
x3 + higher terms ,

K5 : y = −1 + 128

11
x2 + 16384

121
x4 + higher terms .

The monodromy relations around Lη5 thus give the relation

ξ1 = (ξ5ξ3)
−1ξ6(ξ5ξ3) ,

that is ξ1 = ξ5 by (7.4). One deduces immediately ξ1 = ξ6.

We can now conclude that the fundamental group π1(CP2 − C3, b0) is abelian. Indeed,
we have seen that ξ1 = ξ2 = ξ5 = ξ6 and ξ4 = ξ3, that is that there is only two generators ξ1

and ξ3. Theorem 7.1 thus follows immediately from the relation (7.6) which asserts that these
generators commute.

8. Fundamental group of CP2 − C4

We still use the notation of Section 6.

THEOREM 8.1. The fundamental group π1(CP2 − C4) is isomorphic to Z2.

We still denote by M the moduli space of reduced sextics in CP2 with the configuration
of singularities {D10 + A5 + A4}, and by M4 the connected component of M containing the
curve C4. Theorem 8.1 implies the following result.

COROLLARY 8.2. For any curve D ∈ M4, we have: π1(CP2 − D) � Z2.

PROOF OF THEOREM 8.1. We use the non-generic version of the Zariski-van Kampen

theorem (cf. Theorem 1.2.1) with the pencil LY,Z (cf. Notation 1.4). We recall that in C2 :=
CP2 − L∞ this pencil is given by {y = η}η∈C. Pencil LY,Z is not generic with respect to
the curve C4. Notice, nevertheless, that b0 does not belong to the curve C′

4 ∪ C′′′
4 . To prove

Theorem 8.1, it suffices (cf. Section 1.3) to show that the fundamental group π1(CP2 − C4)

is abelian. We recall that as the base point for π1(CP2 − C4) we take a point b′
0 on a generic

line such that b′
0 is sufficiently close to b0 but b′

0 
= b0 (cf. Section 1.2 and below).
The discriminant ∆x(f4) of f4 as a polynomial in x, which describes the singular lines

of the pencil LY,Z (with respect to C4), is a polynomial in y given by

∆x(f4)(y) = −y13(171542 y2 − 316811 y + 131072)(3y − 2)6(2y − 1)7 .

This polynomial has five distinct real roots:

η1 = 0 , η2 = 0.5 , η3 = 0.625 · · · , η4 = 0.666 · · · , η5 = 1.221 · · ·
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y=η1

y=η2

y=η3
y=η4

y=η5

C4’

C4’’

C4’’’

C4’’’

FIGURE 21. Real plane section of C4.

1/2

*
b0’

b0

ξ1

ξ2

ξ3

ξ4

ξ5

ρ

0

FIGURE 22. Generators at y = η2 + ε.

The singular lines of the pencil are the lines Lη1 , · · · , Lη5 corresponding to these five roots.
We take generators ρ, ξ1, · · · , ξ5 of the fundamental group π1(Lη2+ε − C4, b

′
0) as in

Figure 22; ξ1, · · · , ξ5 are lassos around the intersection points of the generic line Lη2+ε with
C′

4 ∪ C′′′
4 , while ρ is a lasso around the intersection point of Lη2+ε with C′′

4 (i.e., around the
axis b0 of the pencil).

To read the monodromy relations around Lη2 , we look at the Puiseux parametrization of
C4 at (1/2, 1/2): 


y = 1

2
+ t4

x = 1

2
+ √

3 t2 − 1

2

√
2 3(1/4) t3 + higher terms .

As above, these equations show that the monodromy relations around Lη2 give the relations

ξ1 = ξ4 ,

ξ2 = ξ3 ,

ξ3 = (ξ4ξ3ξ1ξ2)ξ1(ξ4ξ3ξ1ξ2)
−1

= (ξ1ξ2)
2ξ1(ξ1ξ2)

−2 .

(8.3)

To read the monodromy relations around Lη3 , we first show in Figure 23 how the gener-
ators at y = η2 + ε are deformed when y moves on the real axis from y := η2 + ε → η3 − ε.
The monodromy relations around Lη3 thus give the relation

(8.4) ξ2 = ξ5ξ1ξ
−1
5 .

To read the monodromy relations around Lη4 , we first show in Figure 24 how the gen-
erators at y = η3 − ε are deformed when y does half-turn counter-clockwise on the circle
|y − η3| = ε, then moves on the real axis from y := η3 + ε → η4 − ε. Then, we observe that
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*
b0 b0’

ξ1ξ2

ξ2ξ5

ξ5ξ1ξ5
-1

ρ

0

FIGURE 23. Generators at y = η3 − ε.

*

b0
b0’

ξ2
ξ2ξ2 ξ1

ρ

ξ2  ξ5ξ2
-1

0

FIGURE 24. Generators at y = η4 − ε.

0

*
b0

b0’

ξ1 ξ2

ξ5

ρ
ξ5ξ1ξ5

ξ5ξ2ξ5
-1

-1

FIGURE 25. Generators at y = η1 + ε

near the point (0, 2/3) the curve has two branches K1 and K2 given by

K1 : x = 0 ,

K2 : x = 243

5

(
y − 2

3

)3

+ higher terms .

The monodromy relations around Lη4 thus give the relation

(8.5) ξ2 = (ξ5ξ2)
3ξ2(ξ5ξ2)

−3 .

We shall not need the monodromy relations around Lη5 , but we shall use the monodromy
relations around Lη1 . To determine them, we first show in Figure 25 how the generators at
y = η2 + ε are deformed when y does half-turn counter-clockwise on the circle |y − η2| = ε,
then moves on the real axis from y := η2 − ε → η1 + ε (the proof is similar to Lemma 4.5).
Then, we observe that near the origin the curve has three branches K3, K4 and K5 given by

K3 : x = 0 ,

K4 : y = 0 ,
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K5 : y = −1

8
x4 + higher terms .

The monodromy relations around Lη1 thus give the relations

ρ−1ξ2ρ = ξ1 ,

ρ−1ξ1ρ = ξ5ξ2ξ
−1
5 ,

ρ−1ξ5ρ = (ξ5ξ2)ξ5(ξ5ξ2)
−1 ,

ρ−1ξ5ξ2ξ
−1
5 ρ = ξ5ξ1ξ

−1
5 ,

ρ−1ξ5ξ1ξ
−1
5 ρ = (ξ5ξ1ξ2ξ1)ξ2(ξ5ξ1ξ2ξ1)

−1 .

(8.6)

Now we are ready to prove that π1(CP2 −C4, b
′
0) is abelian. By the second and the third

relation of (8.6), we have:

ρ−1ξ5ξ1ξ
−1
5 ρ = ρ−1ξ5ρ · ρ−1ξ1ρ · (ρ−1ξ5ρ)−1

= (ξ5ξ2)ξ5(ξ5ξ2)
−1 · ξ5ξ2ξ

−1
5 · ((ξ5ξ2)ξ5(ξ5ξ2)

−1)−1

= (ξ5ξ2)
2ξ−1

5 (ξ5ξ2)
−1

= (ξ5ξ2)
2ξ2(ξ5ξ2)

−2 .

But, by (8.4), ξ5ξ1ξ
−1
5 = ξ2. We thus have

ρ−1ξ2ρ = (ξ5ξ2)
2ξ2(ξ5ξ2)

−2 ,

that is, using the first relation of (8.6),

ξ1 = (ξ5ξ2)
2ξ2(ξ5ξ2)

−2 .

This relation is equivalent to the following one:

(ξ5ξ2)ξ1(ξ5ξ2)
−1 = (ξ5ξ2)

3ξ2(ξ5ξ2)
−3 .

The relation (8.5) thus implies

(ξ5ξ2)ξ1(ξ5ξ2)
−1 = ξ2 ,

that is ξ5ξ2ξ1 = ξ2ξ5ξ2. But, by (8.4), ξ2ξ5 = ξ5ξ1. So, we have ξ5ξ2ξ1 = ξ5ξ1ξ2, that is

(8.7) ξ2ξ1 = ξ1ξ2 .

Now, by (8.3), ξ2 = (ξ1ξ2)
2ξ1(ξ1ξ2)

−2. So, the relation (8.7) implies ξ1 = ξ2. The big circle

relation ρξ5ξ4ξ3ξ1ξ2 = 1 is thus written as ρ = (ξ5ξ
4
1 )−1.

So, we have proved that ξ1 = ξ2 = ξ3 = ξ4 and ρ = (ξ5ξ
4
1 )−1, that is there is only two

generators ξ1 and ξ5, and since they commute, by (8.4), the fundamental group π1(CP2 −
C4, b

′
0) is abelian.
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9. On the moduli space M := M({D10 + A5 + A4}, 6) and concluding remarks

We still denote by M the moduli space of reduced sextics in CP2 with the configuration
of singularities {D10 + A5 + A4}. It is known that the moduli of sub-lattices with this con-
figuration in K3 surfaces has four irreducible components (cf. [Y]). We shall see below that
each of them gives exactly one irreducible component in M (in general, this is not true for
arbitrary moduli !) so that M has exactly four connected components which are necessarily
(by Theorem 6.1 or Corollary 6.2) the connected components Mi (1 ≤ i ≤ 4) defined above.
So, in view of our previous results (cf. Corollaries 4.2, 5.2, 7.2 and 8.2), we have the following
theorem.

THEOREM 9.1. Let D be a curve in M. Then,

π1(CP2 − D) �



Z if D ∈ M1orM2,

Z × (Z/2Z) if D ∈ M3,

Z2 if D ∈ M4 .

Let us now explain why each irreducible component of the moduli of sub-lattices in
K3 surfaces gives exactly one irreducible component in M. Consider a curve C ∈ M. First,
using the genus formula mentioned in Section 3, we can see that C cannot be irreducible as the
right side of the formula is −2. As A4 is an irreducible singularity, and thus can appear only
on curves of degree greater than or equal to 4, the possible component types of C (cf. [O7])
are:

(a) a quintic and a line;
(b) a quartic and a conic;
(c) a quartic and two lines.
On the other hand, the configuration of singularities {D10 + A4} cannot appear on an

irreducible component of degree less than or equal to 5. Thus, for our curve C, the singular-
ity D10 must be an intersection singularity (see [O7] for definition). Suppose that the origin
O ∈ C is a D10-singularity. A D10-singularity locally consists of three smooth branches,
say K1, K2, K3, so that their local intersection numbers are given by I (K1,K2; O) =
I (K1,K3; O) = 1 and I (K2,K3; O) = 4 (if C is defined by the normal form y2x − x9 = 0,

K1 is just the line x = 0, and K2, K3 are defined by y ± x4 = 0). Thus, if D10 is an
intersection singularity of two irreducible components, the possibilities are:

(d-1) one smooth component and one component with an A1-singularity intersecting
with intersection number 5 and so that the smooth component is tangent to one of the branch
of A1;

(d-2) one smooth component and one component with an A7-singularity intersecting
with intersection number 2 and so that the smooth component is transverse to the tangent cone
direction of A7.
If D10 is not an intersection singularity of two components, then:

(d-3) D10 is given as an intersection singularity of three irreducible components.
In the case (d-1), the possibilities for the component types are the following:
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(�1) C is a union of a line L and a quintic B5 such that the configuration of singularities
of B5 is Σ(B5) := {A4 + A5 + A1} and the line L is passing at the A1-singularity. Let us
denote by M′

2 the subspace of sextics in M corresponding to this possibility;
(�2) C is a union of a quartic B4 and a conic B2 such that: Σ(B4) = {A4 + A1};

B2 ∩ B4 = {O,P }; the singularity of B4 at O is A1; B2, B4 are non-singular at P and
tangent with intersection multiplicity 3. We denote by M′

3 the subspace of sextics in M
corresponding to this possibility.

The case (d-2) is possible if and only if the components of C are a line L and a quintic
B5 such that: Σ(B5) = {A7 + A4}; L ∩ B5 = {O,P }; the singularity of B5 at O is A7, and
at this point L intersects transversely the tangent cone of the singularity; B5 is non-singular at
P and I (L,B5; P) = 3 (to make A5). Notice that P is a flex point of B5. We denote by M′

1
the subspace of M consisting of sextics which correspond to this possibility.

The case (d-3) takes place when C has two line components L1, L2 and a quartic com-
ponent B4 such that: Σ(B4) = {A4}; L1 is the tangent line of a flex point O of B4 of order 2
(i.e., I (L1, B4; O) = 4); L2 is transverse to B4 at O and intersects B4 at another flex point P

to make A5. Let us denote by M′
4 the subspace of M consisting of sextics which correspond

to this possibility.
By definition of M′

1, · · · ,M′
4, we see that:

M =
4⋃

i=1

M′
i and Mi ⊂ M′

i (i = 1, · · · , 4) .

We assert that, for each 1 ≤ i ≤ 4, the subspace M′
i is irreducible, and thus M′

i = Mi .
The proof is done by a direct computation using a suitable slice condition as in [OP]. For
example, consider the case of M′

2. Take a sextic C = L ∪ B5 ∈ M′
2. The quintic B5

has the configuration of singularities {A1 + A5 + A4}. First, it is not difficult to see that
the three singularities are not colinear and strongly generic in the sense that the line defined
by the tangent cone (or cones) at any one of the singular points does not pass through the
other singularities. Thus, by the action of PGL(3, C), we may consider the following slice
condition:

(S2) A5 is at (0, 1) with the tangent cone defined by y = 1; A4 is at (1, 0) with tangent
cone x = 1; A1 is at the origin O and one of the tangent lines at A1 intersects the line L with
intersection number 5 at O .

Under this slice condition, the computation using Maple can be carried out exactly as
in [OP], and we can show that, in fact, the quintic (and the line component tangent at A1) is
uniquely determined by this slice condition. As the computation in detail is boring and heavy,
we omit the proof.

The irreducibility of the other M′
i (i = 1, 3 and 4) can be shown using the following

slice conditions:
Slice condition for M′

1: the quintic B5 has A7 at O with y = 0 as the tangent cone,
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A4 at (0, 1) with y = 1 as the tangent cone, and (1,−1) is a flex point with the tangent line
y + x = 0;

Slice condition forM′
3: the quartic B4 has A1 at O , A4 at (1, 0) with x = 1 as the tangent

line. The conic B2 passes through O and P := (0, 1) so that the singularity of B2 ∪ B4 at O

is D10, I (B2, B4; P) = 3 and the singularity of B2 ∪ B4 at P is A5.
Slice condition for M′

4: the quartic B4 has A4 at (1, 0) with x = 1 as the tangent line,
the two line components are x = 0 and y − x = 0, the origin is a flex point of B4 of order 2
with y − x = 0 the flex tangent, and the line x = 0 intersects B4 at another flex point P so
that x = 0 is the flex tangent line at P .
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