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Abstract. In this paper, we prove the theorems of the Gauss-Bonnet and Chern-Lashof types for low dimen-
sional compact submanifolds in a simply connected symmetric space of compact type. In particular, in the case where
the ambient space is a sphere, we need not to give the restriction for the dimension of the submanifold. Those proofs
are performed by applying the Morse theory to squared distance functions.

1. Introduction

For an n-dimensional compact immersed submanifold M in the m-dimensional Eu-
clidean space R” (m > n), it is well-known that the following Gauss-Bonnet and Chern-
Lashof theorems hold:

(="

1.1 _
(- Vol(§"=1(1)) Jecutm

detAEwuLM = X(M) .

1

n
— detA > br(M,F
VOIS TD) Jeein clog.y = 2 bilM.F)

k=0

(1.2)

(see [1], [2], [3]), where Vol(S™~!(1)) is the volume of the (m — 1)-dimensional unit sphere,
A is the shape tensor of M, w1, is the standard volume element on the unit normal bundle
ULM of M, x (M) is the Euler characteristic of M and by (M, F) is the k-th Betti number
of M with respect to an arbitrary coefficient field F. These relations are proved by applying
the Morse theory to height functions 4, (v € R™). The topology of a submanifold in a
general complete and simply connected Riemannian manifold should be determined by both
the extrinsic curvature A of the submanifold and the curvature R of the ambient space. So we
[5] proposed the following problem:
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PROBLEM. Find functions F/’;’R (i =1,2) on UM determined by both A and R such
that

f FA g@®wyry = x(M)
teULM

and

n
/ Fj p®oyry =) bi(M,F)
EcUM k=0
hold for each n-dimensional compact immersed submanifold M in an arbitrary complete and
simply connected Riemannian manifold N.

It is conjectured that the functions F /’;‘) r (i = 1,2) are rather complex. Hence we will
obtain the equality and the inequality for practical use in some special cases. By applying the
Morse theory to squared distance functions, we [5] proved the theorems of Gauss-Bonnet and
Chern-Lashof types for a compact immersed submanifold in a simply connected symmetric
space of non-positive curvature. As conjectured, the functions corresponding to F /’;‘) g =
1, 2) were rather complex. In this paper, we prove the theorems of such types for a low
dimensional compact immersed submanifold M in a simply connected symmetric space N =
G /K of compact type. We prepare to state those theorems. Define the functions £ and K,
on UM as follows:

_ 1 T & _ M
(1.3) Ri(§) == VOl(N)/O det<prT0tan(s\/Rig) A§>det \/ITE &

1 e
(1.4) R () = /O

det
Vol(N) etlprr ©

VR As) ‘det—sm(s\/R_g) ds
tan(s\/R75) \/R75

(¢ € U+M), where A is the shape tensor of M, ./ R¢ is the positive operator with (, /Rg)2 =
R(-, £)& (R : the curvature tensor of N), r¢ is the first conjugate radius of direction &, Vol(NV)
is the volume of N and pry is the orthogonal projection of 7N |y onto T M.

REMARK 1.1. (i) Incase of N = §™(c) (the m-dimensional sphere of constant cur-
vature c¢), we have

1

o g i s om—1
(1.5) R1(8) := —Vol(S'"(l))/O det(y/ccot s -id — Ag) sin™ ™' sds,

- 1 " id som—1
(1.6) R (&) = Vol(S™ (1)) /0 |det(+/ccot s -id Ag)|sin sds ,
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where id is the identity transformation of 7M. Substituting ¢ = 0 into (1.5) (resp. (1.6))
formally and using fg sin 1 sds = YIS e have R1(¢) = idemg (resp.

Vol(S"™=1(1))’ Vol(§m=1(1))
1
RZ(%—) = Vol(Smfl(l)) |detA§ |)

(ii) The first conjugate radius r¢ is explicitly described as re = (see Lemma

T
lero (g5 6)]
2.1), where g is a representative element of the base point of & and «g is the highest root

in the positive root system with respect to a maximal abelian subspace (equipped with some
lexicographical ordering) containing g, I,

We prove the following theorems of Gauss-Bonnet and Chern-Lashof types for compact
submanifolds in a simply connected symmetric space of compact type.

THEOREM A. Let M be an n-dimensional compact immersed submanifold in a simply
connected symmetric space N of compact type. If Cpp := U cps Cx (Cx : the cut locus of x
in N) is of measure zero, then we have

(L.7) / RiGoyry = x(M),
EcU+M

n
(18) [ S@opi = Y bonm,
tcULM =0
In particular, if M is taut in the sense of this paper (see §3) , then the equality sign holds in
the inequality (1.8).

REMARK 1.2. Let my be the maximal dimension of the cut locus Cy in N. If
dimM < dimN — my — 1, then Cy is of measure zero. See Table 1 about mp and
dimN — my — 1 for irreducible simply connected symmetric space N’s of compact type,
where we note that dimN — my — 1 is equal to the multiplicity of the highest root in the

root system associated with N (see Lemma 2.1). For the product N := Nj X --- x Nj of
TABLE 1.
N my dimN —mpy — 1
S™(c) 0 m—1
Sp(m)/Sp(l) x Sp(m —1) | 4l(m —1) — 4 3
(I <I1<[%])
or? 8 7
SU(2m)/Sp(m) 2m?—m—6 4
Eg/F4 17 8
G — 2
other — 1

(G :an irreducible simply connected compact Lie group)
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irreducible simply connected symmetric space N;’s (i = 1, --- , [) of compact type, we have
dimN —my — 1 = minj<;</(dimN; — my; — 1).

In the case where the ambient space is the m-dimensional sphere S (c) of constant
curvature ¢, we obtain the following result.

THEOREM B. (i) Let M be a 2n-dimensional compact immersed submanifold in
S™(c), where 1 <n <m — 1. Then we have

1 f(i—l)k(z”)(”"') Un—2n42i42k )
Um © 2i k Um—2n+42i+2k—1

(1.9 i=0 k=0

i /E gy = x(M),
eU-M

where Hy;i(§) is the 2i-th mean curvature of direction & of M and v; := Vol(S'(1)) G > 1)
and vy = 2.

(ii) Let M be an n-dimensional compact immersed submanifold in S™(c). Then we
have

1 & .
Ly / |21 (®)log .
Um tcULM
(1.10)
2 2i+1 "
+= ) bive 1y [ Hr2im ©loy iy = > bi(M.F),

moi—o §e k=0
where Hy_2;(§) and Hy_2;—1(§) are as in (1), a; = Zf{:o(—l)k@.)(l )xM and
1

k Um—2i+2k—1
_ v k(N i 1
bi =3 == (2i+1>(k>m'

REMARK 1.3. The relation (1.9) for ¢ = 1 coincides with the relation (1.7) of [4]
i+1
(i+hm 2
r(%)

The proof of T. Ishihara is entirely different from the proof in this paper.

obtained by T. Ishihara because v; = (i = 1), where I' is the Gamma function.
In particular, when dimM = 2, we obtain the following relations.

COROLLARY C. Let M be a 2-dimensional compact immersed submanifold in S™ (c).
Then we have

Um—2 Um—-3

1
/ K(f)wULM-F( - )cVol(M) =2-2g,
Um—1 JeeUtMm Um Um—1

(1.11)
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NG

] /
|K (§)lwy 1y + [H (&) |wy -
Un—-1 JeeULM utM (m — vy, teUtM umM

+<”’“ = vm3>cVol(M) >2+2g,

Um Um—1

(1.12)

where K (§) (resp. H(§)) is the Gaussian curvature (resp. the mean curvature) of direction &
of M and g is the genus of M.

Also, we have the following inequality for closed curves in S (c).

COROLLARY D. Let y : [0,]] — 8™(c) be a closed curve in S"(c) (m > 2)
parametrized by the arclength s and « : [0,I] — R4 U {0} be the curvature of y. Then
we have

1
_ Y
Un—3 /de+ CUm—2 Sl =)
(m —2)vm-1 Jo (m — Doy

and

I
ol
/de+7‘/zv’"2 >1 (m=2).
0

Um—1 (m— v, —

REMARK 1.4. These inequalities are different from the inequality of Proposition 1 in
[6] proved by E. Teufel.

Also, we have the following inequality for closed curves in a simply connected rank one
symmetric space F P (¢) of compact type, where F implies the complex number field C, the
quaternion algebra Q or the Cayley algebra O, m = 2 when F = O and c is the maximal
sectional curvature of the space.

COROLLARY E. Lety :[0,I] — FP™(c) be a closed curve in ¥ P" (c) parametrized
by the arclength s and « : [0, [] — R4 U {0} be the curvature of y. Then we have

4aqm71 ,q—1Vgm—1Vgm—3

!
/ kds + N/qu—Zqu—q—l(a,Bm,q + bagm-2.4)1
Vgm—2 0

1 qgm+1
2 Sms YOI(FP” )V
where g = 2 (whenF = C), 4 (when F = Q) or 8 (when F = 0), a; ; = [, tsin’ t cos’ tdt,
Vgm—q+2k—1 ’

T q q
bl . — — 7 5\ Vgm—qg+2k
Bmg = Jo tlcos2t|sin?™" 2rcos?2tdt, a = §kz:0(—1)k(li>M b =

q-2 q=2
> (—1)k< Ii >M and v; is as in Theorem B.

Vgm—q+2k+1
k=0 qm—q
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2. Basic notions and facts

In this section, we recall the basic notions and facts. Let N = G/K be a simply con-
nected symmetric space of compact type. Let w € U,N, where U, N is the unit tangent
sphere of N at p. Denote by y,, the (non-extendable) geodesic in N with y,,(0) = w and
denote by exp the exponential map of N. If there exists a non-zero Jacobi field J along yy,
with J(0) = 0 and J(so) = O (so > 0), then we call so a conjugate radius of direction w
and call exp(sow) (= yw(s0)) a conjugate point of direction w. Also, we call the minimum
of conjugate radii of direction w the first conjugate radius of direction w and denote it by ry,.
We call exp(ryw) the first conjugate point of direction w. Set C’p = {ryw|w € Up,N} and
Cp = exp(ép). This set C), is called the first conjugate locus of p, which coincides with
the cut locus of p because N is a simply connected symmetric space of compact type. For
w € TN with ||w]|| < ry, We set

: sin /R VR
D :=cos\/Ry, D :=-——" D=1 _

Ry tan o/ Ry,
for simplicity, where v/ Ry, is the positive operator with / sz = R(-, w)w (R : the curvature
tensor of ). Note that D(S)i = D§ = id. A Jacobi field J along a geodesic y in N is described
as

@2.1) J(8) = Py (D207 (0) + s Dl ) 7' (0))

where Py, is the parallel translation along y [[0,s] With respect to the Levi-Civita connection

Vof N, y(0) is the velocity vector of ¥ at 0 and J’'(0) = @,;(O)J. Let g (resp. f) be the Lie
algebra of G (resp. K) and g = f+p be the Cartan decomposition. The subspace p is identified
with the tangent space T,x N of N at eK, where e is the identity element of G. Denote by ad
the adjoint representation of g. Take a maximal abelian subspace h of p. For each @ € h* (the
dual space of ), we set py := {X € p| ad(a)2(X) = —a(a)?X forall a € h}. If po # {0},
then the linear function « is called a root for ). Let A be the positive root system with respect
to some lexicographical ordering of h. Then we have p = h+ )", . Pa. Note that DY =
sinh(ad(g; 'w))
ad(gs"w)
(w € Tyx N) because of mz = —gx o ad(g;'w)? o g;!. From (2.1), we can show the
following fact for the first conjugate radius.

ad(g, 'w) —1

—1 ct __
©gx and Dy, = gyo tanh(ad(gs 'w)) © 9«

gsocosh(ad(g; 'w)) o g !, DS = gy o

LEMMA 2.1. Take w € Uyx N, Ay be the positive root system with respect to a

maximal abelian subspace by (equipped with some lexicographical ordering) containing g, Tw

and o be the highest root in Ay. Then we have ry, = and rank(exp |Tg1<N)*rww =

I S
o (g ' w)]
dimN — ZaeAw dimpgy, where Ay, = {o € Ay | |oz(g;1w)| = ,%}. In particular, if w is a
point of a Weyl chamber, then we have rank(exp |Tg kN )srpw = dimN — dimpg,,.
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PROOF. Let 59 be a conjugate radius of direction w. Then there exists a non-trivial
Jacobi field J along y,, with J(0) = 0 and J(s9) = 0. From (2.1), we have sng'éwJ/(O) =0.

On the other hand, we have soDSi

sow

rey / sin(spar (g 'w)) _
J'0) = 507" (0 + X gen, T J'(0)q =0,

where J'(0)y (resp. J'(0)y) is the g«h-component (resp. gip-component of J'(0)). Hence
we see that soozo(g*_lw) = 0 (mod 7) and J'(0)s, # O for some ag € A4 because J'(0)q
vanishes for each « € A4 with soa(g*_lw) # 0 (mod ) and J'(0)y = 0. It follows from

this fact that r,, = r__ = “— and that rank(exp |7, x N )sr,w = dimN —
maxgen, |o(gs w)l leeg(gs W)l

Y e a,, dimpg. In particular, if w is a point of a Weyl chamber, then we have Ay, = {ao}.

Hence the last part of the statement follows. q.e.d.

From this lemma, the fact of Table 1 is deduced.

3. Squared distance functions

In this section, we prepare some lemmas for squared distance functions. Let M be an
n-dimensional compact immersed submanifold in an m-dimensional symmetric space N =
G/K of compact type. We omit the notation of the immersion. For two points p and g
of N with g ¢ C,, we denote the shortest geodesic from p to g by y,q (€., ¥pq(0) =
Py Ypa(D) =q, llvpqll =d(p, g)). Also, we denote y,,(0) by 7§ . For the squared distance
function dlz7 (x e M — d(p,x)?) (p € N), we have the following fact.

LEMMA 3.1. Let x be a critical point of df, with x & Cp. Then the following state-
ments (1) and (ii) hold.

(1) x_])a is normal to M,

(i1) The Hessian (Hess di)x ofd,% at x is given by

(3.1) (Hessd2)«(X.Y) = 2(X, (pry o DL — Am)Y),

where X, Y € T, M.

PROOF. The statement (i) is trivial. We shall show the statement (ii). Take tangent
vectors X and Y to M at x. Take a two-parameter map 5 to M with S*(%Iu:;:o) =X
and S*(%h,:,:o) = Y, where u (resp. t) is the first (resp. the second) parameter of 5.

We may assume that Imé N C p» = ¥ by restricting the domain of 8 to a neighborhood

of (0, 0) if necessary. Define a three-parameter map § into N by §(u,t,s) = yS(u—r); (s).

% %, respectively. Set
Ji(s) = %M:o, which is a Jacobi field along Vsorop From (2.1), we have J;(s) =

co si / : : _
Pym‘“"” (D.S'~8(0,l‘,0)pJI(O)+SDS~5(O,T)]>7JI (0)). This together with J;(1) = 0 deduces

DL J,(0) + DY__J'(0) = 0. Since 8(0,£,0) ¢ C, (ie., |150,7,0pl <
s0.n0p " 500" . ,t, » (e, ot

For simplicity, we denote 8*(%), 5*(%) and 5*(5%) by Ba_u’ and
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r———  ———— ) we have max |o( _18(0 t,0)p)| < m in terms of Lemma 2.1, where
8(0,£,0)p/118(0,2,0)pl|”> aely G« LEIP o

8(0,¢,0) = g¢gK. This implies that DEEOW, is non-singular. Hence we obtain J/(0) =
1,0)p
_ et

D¢ ____, J;(0). Also, since x is a critical point of d
5(0,1,0)p

facts deduce

2

o %luztzszo is normal to M. These

0
(Hessdlz,)x(X, Y)= —2<X, VY<—|u=s=O) >,
as T

where V is the Levi-Civita connection of M and (-)7 is the tangent component of - (see the
proof of Lemma 3.1 in [5]). On the other hand, we can show Vy(%lu:szo)r = —(pry o
D)% — Azp)Y (see the proof of Lemma 3.1 in [5]). Therefore, we obtain the relation (3.1).

qg.e.d.
Let B := UseuLM{Sé | s € [0, r¢)}, which is an open potion of T+ M. Denote by expfg

the restriction of the normal exponential map exp™ of M to B. Also, denote by @& (resp. wp)

the volume element of N (resp. B induced from the volume element of 7+ M). Then we have
the following relation.

LEMMA 3.2. Foreach§ € B, the following relation holds:
((expp)*®); = det(pry o D' |1, m — Ag)detD} (wp)e .

where 7 is the bundle projection of B.

PROOF. Fromé € B (i.e, [|§]| < re/jg)), we see that Dgi is non-singular. By noticing
this fact and imitating the proof of Lemma 3.2 in [5], we obtain the desired relation.  q.e.d.

Denote by S(¢) the number of non-degenerate critical points of a function ¢ and by
Beven (@) (resp. Bodq(¢)) the number of non-degenerate critical points of even (resp. odd)
index of a function ¢. Denote by F the focal set of M. For p € N \ F, we set

(expﬁ)*l(p)Jr ={£e (expé)*1 ) (expé)*g preserves the orientation}

(expé)_l(p)_ ={£e (expé)_l(p) | (expé)*g reverses the orientation} .
Further we prepare the following lemma.

LEMMA 3.3. Let p € N\ (F U Cy). Then we have the following relations:

(3.2) B(d;) = ti(expp) " (p),
(3.3) Beven(d3) = t(expp) " (p)+ ,

(3.4) Boaa(dy) = t(expp) ™" (p)-,
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where (%) is the number of elements of a set *.

PROOF. The relation (3.2) is directly deduced from (i) of Lemma 3.1. The relations
(3.3) and (3.4) are directly deduced from (3.1) and Lemma 3.2, where we use dethi >0
(£ € B). q.e.d.

At the end of this section, we define the tautness of a compact submanifold M with
N\ (F UCpy) # in a complete Riemannian manifold N, where F is the focal set of M
and Cy = UxeM C, (Cy : the cut locus of x). If dlz, is a perfect Morse function for each
p € N\ (FUCy), then we say that M is taut.

4. Proofs of Theorems A, B and Corollaries

In this section, we first prove Theorem A in terms of Lemmas 3.2 and 3.3.

PROOF OF THEOREM A. First we prove the relation (1.7) in Theorem A. According
to Lemma 3.2, we have

/S B((expé)*@)f :_/; Bdet(prT ° DgtlTn@M - Af)dethin
€ €

rg 1. .
4.1) = / </ det(prT o =D |1, M — Ag)detD;’E osmlds)a)UiM
teUtM 0 s

Vol(N)

= VoIS (D) ey T E O

On the other hand, since Cj; is of measure zero, we have

/ ((expg)* @) = / ((expp)*®)¢
£eB geB\expy | (F)

= f (t(expp) " (p)+ — dexpp) " (p)2)d,
PEN\F

4.2)

(t(expp) " (p)+ — texpp) " (p))d,

—/PEN\(FUCM)

/ (,Beven (dlzg) - ,Bodd(dlzg))(;)p
PEN\(FUCy)
= x (M)Vol(N).

Therefore, we obtain the equality (1.7). In similar to (4.1) and (4.2), we can show

/ |((expp)*@)e|
EeB

€ 1 ct si m—1
= v \ |det{ pry o ;DS&'|T71($)M — Ag ||detD5; - s ds |oyLy
€
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Vol(N)

= Vol($7 (1) Jyeyy 2 E M

and

/ |(exph)*@)e| = / B(d2)dp = 3 be(M.F)VI(N) .
teB PEN\(FUCp) k=0

Therefore, we obtain the inequality (1.8). In particular, if M is taut, then we have
fpeN\(FUCM) ,B(dlz,)(bp = Y j_obk(M,F)Vol(N). Hence the equality sign holds in (1.8).
q.e.d.

Next we prove Theorem B.
PROOF OF THEOREM B. Since the ambient space is S (c), we have rg = %, D;é =
J/cs cot(y/cs)id and Dji = %id. Also, since the cut locus Cy consists of one point for

each x € M and dim M < m — 1, the set Cy; is of measure zero. Hence the relations (1.7)
and (1.8) in Theorem A hold. The left-hand side of the relation (1.7) in Theorem 1 is written
as

1 NG , sin(y/cs)\" !
VoI5 (@) v (/0 det(s/c cot(/cs)id — A‘f)<—\/g ) ds)a)UlM,

which is further written as

1 /” . . m—1
_ det(x/ccots - id — Ag) sin™ sds)a) Ly
Vol (5™ (1)) seuLM( 0 ¢ v

Hence we have

. . m— _
(43) Wm(l)) ccuim (/0 det(\/ECOtS -id — Ag:) NI SdS)(,()ULM = X(M) .

Similarly we have
1 T 1
i s om—
Vol (S (1)) Jecvia </0 |det(+/c cots -id — Ag)|sin sds)a)ULM

SN AT

k=0

(4.4)

Let £ be the fixed unit normal vector field of M. First we show the statement (i). From the
definitions of the i-th mean curvature H; (&) of direction & (i =0, --- , 2n), we have

2n

det(v/ccots - id — Ag) = Y (—1)'(v/ecots) > ( 2ln )H,- &).

i=0
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Hence we have

T
/ (det(v/ccots - id — Ag) + det(v/ccots - id — A(_g))) sin” ' sds
0

n
2n i [T men2ic1 2n—2i
=2 Hy; (&)™ / sin™ "2 =1 g cos? T sds
@) > (5 e |
" 2n ot n—i v 2i 42k
-2 Ho;i (§) < (_1)k< )u) ,
; < 2i ) ’ g k Umn—n+2i+2k—1

where we also use fg sin/ sds = % From this relation and (4.3), we obtain (1.9). Next

we show the statement (ii). In similar way to get (4.5), we have

T
/ (Idet(v/c cots - id — Ag)| + |det(v/c cots - id — A_g))|) sin™ " sds
0

- [z : _
=4 Z n |H: (&)1 sin™ "=l g cos ™ sds
i=0 ! 0
- 13 : _
= 42 n |Hy—i ()| sin” =1 s cos’ sds
i=0 ! 0

(5] (5]
] 2i+1
=2 aic'|Hy i) +4 Y biv/e  [Hpai1 (),
i=0 i=0

x . . . o z . .
where we use [ sin’ s cos?/ sds = %Zi_o(—l)k(i)%—’;l and [? sin’ scos¥*lsds =
- 1

>} (= DX ({) 7ok - From this relation and (4.4), we obtain (1.10). ge.d.
Next we prove Corollary C in terms of Theorem B.
PROOF OF COROLLARY C. From dimM = 2, the relations (1.9) (resp. (1.10)) of
Theorem B is as follows:

1 c [ vp- v
/ K@ wyiy + — ( m2_ >Vo1(ULM> = x(M)
Um—1 JeeUtM Um \Um-3 Um—1

1 4./c
resp. IK&)|wyLpy + —— |Hi (&) |wyLy
Um—1 Jeeutm (m — Doy Jeevim
c (v v 2
+— <"—‘2 - —") Vol(U*+M) > Zbk(M, F)) )
Un \Um-3 Um—1

k=0



494 NAOYUKI KOIKE

Hence we obtain the relations (1.11) and (1.12) in terms of Vol(UtM) =
Um—3Vol(M), x(M)=2—2g and Zi:o br(M,F) =2+ 2g. q.e.d.
Next we prove Corollary D in terms of Theorem B.
PROOF OF COROLLARY D. We show the statement in the case where « has no zero
point. Let v be the unit principal normal vector of y. Clearly we have Agy = k(7w (£))(v, &)y

for& € Uty, where y = ‘% and 7 is the projection of the unit normal bundle U1y of y. So
we have |H(§)| = k(7w (§))|{v, &)|. Hence, from (1.10) of Theorem B, we have

\/Evmf2l > 1

(40 oy =

/ k(T ENNv, Eloyr, +
geULy

2up-1

where we also use Vol(ULy) = v,,_»[. The first term of the left-hand side of (4.6) is rewritten
as

1 1 !
20 LeU yK(n(é))I(v E)loyL,= 2Umil/0 <K(S) EeUslj/l(v’g)leSLy)ds
i
L/ s (m=3)
h !
/ Kk (s)ds (m=2).
Um—1 Jo

Hence we obtain the desired relations. Similarly we can show the statement in the case where
k has zero points. g.e.d.

Next we prove Corollary E.

PROOF OF COROLLARY E. We show the statement in the case where « has no zero
point. Let v be the unit principal normal vector of y. Clearly we have

(4.7) Agy = k(@EN (v, &)y (E eUty),

where y = fl—)s’ and 77 is the projection of the unit normal bundle U1y of y. Fix £ € U SJ(;)/. Let
Weg := Span{Ji§, --- , J;—1&} and Wé := Span{§, J1&,---, Jq_lg}J-, where {Jy, -+, Jy—1}
is the complex structure of C P (¢), the quaternionic structure of Q P (c) or the Cayley struc-
ture of OP?(c). Denote by Pre, Pry, and Pry; the orthogonal projection of T, s, FP™ (c)

: : SR NG ﬁ
onto Span{§}, W and We. respectively. Since s \/_) P+ o P we T = Prw,

and y (so) € We @ W/, we have

<PFT E/;—)

Je

T\/E)(prT o pryy, ) (¥ (50))

)(V(o))—
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T f s (prr © priv) (7 (s0)) .
2 tan

Denote by 6¢ the angle between y (so) and Pry, (v (s0)). Then we have

/R NN
an(s \/7))()/(50)) <tan(sﬁ) cos” e+ 2 tan S“/—

From (4.7) and (4.8), we have

(4.8) (prT sin 95> 7 (s0) .

v Re
det( pry o —— —A
<p re tan(s\/R_g)moy g)‘
Ve 2 ‘ Ve
< |—Y——|cos? O + | —Y——=[sin® O + K |(v, &)].
tan(s/c) J 2tan > */_ :

On the other hand, we have

sin(s,/Rg) —spr, + sin(s\/E)pr N ZSinS‘TEpr /
/—Rg & \/E We «/E WE

and hence

tSiIl(S\/R_S) (Sll‘l(sf))q 1(2511’1 f)t]m q
€ =g

JRe Nz Je
1
(2N S \/_ 057! s“/—
== s sin
Je 2
Also, the first conjugate radius r¢ of direction £ is equal to f Hence we have
2\ 28 20tgm—2
@ Vgm—1 m.q 20 q 4 sin% 0
2(6) = VoIFP7 () \ V2 NG cos” 6z + NG sin” 6z

4otgm—1,9—1
+K|<v,s>|%}.

Therefore, from (1.8) of Theorem A, we obtain

1 2 gm—1 Z,Bm,q/ 29
— [ — cos” Bt w
Vol(FP™(c)) \ \/c Ve Jseuty fwyL,
(4.9) 205qm—2.q .2 4Olqm—1 q—l/
4 4= sin” Otwyy1, + ———— K|{v, §)|oyL
Ve geUty S0ty ¢ geUt vy
> bo(S", F) + bi(S', F) =2.
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On the other hand, we have

and

1
2 2
/seUiy cos” Ozwy 1y, :/0 </§€Uly cos GEwUSL),)ds

=1 / sin?™ =971 g cos? 0 d6
[0,%]><Sqm_q_](l)XSq_z(l)
VAN Q)Sqm—qfl(l) A Q)Sq—Z(l)

2
= Wym—g-1 vq,z/ sin?™ =971 g cos? 6 db
0

q

2
_ lvgm—g-1v4—2 Z(_l)k(%> Vgm—q+2k
2 = k J Ygm—q+2k—1

s

3
/ X sin® w1, = Wgm—g-1 vq,z/ sin?™ =9t g cos?72 6 d6
EeU+y 0

q—2

q—2

2
_ lgm—g-1v4—2 Z(_l)k( 2 )”qm—q+2k+2
2 =0 k / Vgm—q+2k+1

!
Vam—1Vam—
/ kl(v, §)loy 1, = M/ k(s)ds .
geUty 0

Vgm—2

By substituting these relations into (4.9), we obtain the desired relation. Similarly we can
show the statement in the case where « has zero points. g.e.d.
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