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Abstract. We obtain sufficient conditions for recurrence and sufficient conditions for transience of storage
processes. Applying these results, we give a necessary and sufficient condition for transience in case the input
process is a stable process and the release rate is a power function. This result is extended using Abelian theorem
for Stieltjes transforms. As another application, we refine conditions for recurrence-transience in case the release
rate is non-decreasing and bounded. One of these results corresponds to a recurrence-transience criterion for Bessel
processes. As a by-product, the necessary and sufficient condition for transience of processes of Ornstein-Uhlenbeck
type is simplified in diagonal drift coefficient case.

1. Introduction

In this paper, we deal with storage processes (in some papers these are called dam pro-
cesses). Roughly speaking, storage process is a stochastic process governed by the following
stochastic integral equation:

X(t) = x −
∫ t

0
r(X(s))ds + A(t) (1)

where r is a nonnegative function called release rate and {A(t)} is a subordinator called input
process.

Although many papers are devoted to the investigation of storage processes, there re-
main some interesting problems. One of such problems is to give necessary and sufficient
conditions for positive recurrence, null recurrence and transience, respectively in terms of r
and {A(t)} (or equivalently, its Lévy measure). Storage processes are classified into three
types: positive recurrent, null recurrent and transient processes (Theorem 1. A necessary and
sufficient condition for positive recurrence is given by Brockwell, Resnick and Tweedie ([3])
when r(x) is non-decreasing. However, it seems that a nice criterion for transience-recurrence
is not known so far. One exceptional case is the following:

r(x) = ax , a > 0 . (2)
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Stochastic process with such a special r is the simplest 1-dimensional case of so-called pro-
cesses of Ornstein-Uhlenbeck type on Rd , d ≥ 1 ([8]). A necessary and sufficient condition
for positive recurrence for processes of Ornstein-Uhlenbeck type is given in [8], a neces-
sary and sufficient condition for transience is obtained by Shiga [9] in one dimension and by
Watanabe [11] in higher dimensions.

Our aim is to get sufficient conditions for recurrence and sufficient conditions for tran-
sience (Theorems 3–6). Applying these results, we give, in Section 6, a necessary and suffi-
cient condition for transience in case the input process A is a stable process and the release
rate r is a power function (Theorem 8). This result is extended using Abelian theorem for
Stieltjes transforms (Theorem 9). As another application, we refine conditions for recurrence-
transience in case r is non-decreasing and bounded. One of these results, Theorem 10, cor-
responds to a recurrence-transience criterion for Bessel processes. It should be remarked that
the necessary and sufficient condition for transience of processes of Ornstein-Uhlenbeck type
can be simplified in at least 1-dimensional case (Theorem 7).

We describe the construction of the storage process in Section 2 which gives the precise
definition and is necessary in the successive arguments. This is due to Brockwell, Resnick
and Tweedie ([3]). In section 3, we classify storage processes into three classes: positive
recurrent, null recurrent and transient processes. In Sections 3 and 4, we give preliminary
results.

2. Construction of storage processes

Let us define a storage process following [3] . Let r be a nonnegative function defined
on [0,∞) such that r(0) = 0, r(x) > 0 for x > 0, left continuous on (0,∞) and has right
limits on [0,∞) which are positive on (0,∞). Let {A(t)} be an increasing Lévy process such
that A(0) = 0 and

Ee−θA(t) = exp
∫ ∞

0
t (e−θy − 1)ν(dy) for all θ ≥ 0 ,

where ν is a measure on (0,∞) satisfying

0 <
∫ ∞

0
(x ∧ 1)ν(dx) < ∞ .

This measure ν is called the Lévy measure of {A(t)}. Consider first a simple case λ =
ν((0,∞)) < ∞. Then the number of jumps of A is finite on any finite time intervals. Denote
the number of jumps and jump sizes by Tn and Yn, n = 1, 2, · · · , respectively and set T0 = 0
for convenience. The inter-arrival times are denoted by σn = Tn − Tn−1 for n ≥ 1. Set

R(x, y) =
∫ y

x

1

r(z)
dz

for y > 0 and 0 < x ≤ y. Define R(0, y) := limx↓0R(x, y) ≤ ∞. Since the function

R(x, y) is continuous and strictly decreasing in x ∈ (0, y], it has a continuous inverse R−1
y (t)
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on [0, R(0, y)). Define q(t, y) for y > 0 by

q(t, y) =
{
R−1
y (t) for 0 ≤ t < R(0, y) ,

0 for R(0, y) ≤ t (if R(0, y) < ∞)

and set q(t, 0) = 0 for t ≥ 0. Then, the function q has the following properties:
1. q(R(x, y), y) = x for 0 < x ≤ y < ∞ and R(q(t, y), y) = t for y > 0 and

0 ≤ t < R(0, y).
2. q(t, y) is continuous and decreasing in t and increasing in y.
3. Since R(x, y) is decreasing and left differentiable in x, q(t, y) is right differentiable

in t and it satisfies 

d+

dt
q(t, y)= −r(q(t, y)) ,
q(0, y)= y ,

for y > 0 and 0 ≤ t < R(0, y), where d+
dt
q(x, t) is the right derivative of q(x, t) for fixed x.

Unique solution of (1) is given by

X(0) = x ,

X(Tm) = q(σm,X(Tm−1))+ Ym (m ≥ 1) ,

X(t) = q(t − Tm,X(Tm)) for Tm < t < Tm+1 , m ≥ 0 .

In case λ = ∞, we define {An(t)} by

An(t) =
∑
s≤t
(A(s)− A(s−))1{A(s)−A(s−)> 1

n } .

Then, {An(t)} is an increasing Lévy process with Lévy measure νn(·) = ν(· ∩ ( 1
n
,∞)).

Clearly, νn((0,∞)) < ∞. For this {An(t)}, we can construct unique process {Xn(t)} satis-
fying (1) as above. Since An(t) is nondecreasing in n, {Xn(t)} is also nondecreasing in n.
Hence, X(t) = limn→∞Xn(t) exists. The convergence is uniform on every finite time inter-
val for each fixed x > 0 since An converges to A uniformly on every finite interval and r is
left continuous ([3]). Hence {X(t)} has cad lag sample paths. The process {X(t)} satisfies (1)
and is a Hunt process ([3]). This process is called storage process starting at x corresponding
to (r, ν). The storage process X(t) starting at x is denoted as X(t, x) if necessary.

3. Recurrence classification

Let τy be the hitting time of {y} and let τ ∗
y be the hitting time of [y,∞] by {X(t)}.

THEOREM 1. Storage process {X(t)} can be classified into the following three types:
(a) For all x > y > 0, 0 < Px(τy < ∞) < 1,
(b) for all x > y > 0, Px(τy < ∞) = 1 and Ex(τy) = ∞,
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(c) for all x > y > 0, Px(τy < ∞) = 1 and Ex(τy) < ∞.
In case (c), there is unique stationary distribution π satisfying

lim
t→∞Px(X(t) ∈ B) = 1

Ex(τx)
Ex[

∫ τx

0
1B(X(t))dt] = π(B)

for every x > 0 and every Borel set B on [0,∞).

Since storage process has no downward jump, we have:

LEMMA 1. Let 0 ≤ z < y < x and α ≥ 0. Then,

Ex[e−ατz ] = Ex[e−ατy ]Ey[e−ατz] . (3)

Letting α = 0 in (3), we have

Px(τz < ∞) = Px(τy < ∞)Py(τz < ∞) for 0 ≤ z < y < x . (4)

LEMMA 2. The following hold.
(a) Px(limy→∞ τ ∗

y = ∞) = 1,

(b) Px(τ
∗
y < ∞) = 1 and Ex(τ ∗

y ) < ∞ for all y > x ≥ 0.

PROOF. (a) Since τ ∗
y is non-decreasing in y, limy→∞ τ ∗

y = τ exists. On {τ < ∞},
X(τ ∗

y ) → X(τ) a.s. as y → ∞ by quasi-left continuity. On the other hand, y ≤ X(τ ∗
y ).

Hence X(τ) = ∞. This is a contradiction. Hence τ = ∞ a.s.
(b) Fix y > 0 arbitrarily. Since X(t, x) ≤ X(t, z) for 0 ≤ x < z,

Px

(
sup

0≤t≤a
X(t) < y

)
≥ Pz

(
sup

0≤t≤a
X(t) < y

)

for 0 ≤ x < z < y. We show that for some a > 0,

p := P0

(
sup

0≤t≤a
X(t) < y

)
< 1. (5)

Then, by the Markov property, we have

P0(τ
∗
y > ma) ≤ pm

for every integer m ≥ 1. This yields (b). Let νn = ν|(1/n,∞) and let λn = νn(R+). Choose
n so that λn > 0. Define An(t) as in Section 2. Let {σk} and {Yk} be sequences of inter
arrival times and jump sizes defined for An(t) in Section 2. Let Xn(t) be a storage process
constructed by r(x) and An(t). Choose c and d so that ν([d,∞)) > 0 and 0 < c < d . Let

t0 = (d − c) inf{ 1
r(u)

: c ≤ u ≤ y}. Choosing an integer k so that d + kc > y, we have

P0(X(t) ≥ y for some t in [0, (k + 1)t0])
≥ P0(Xn(t) ≥ y for some t in [0, (k + 1)t0])
≥ P0(σ1 ≤ t0, · · · , σk+1 ≤ t0, Y1 ≥ d, · · · , Yk+1 ≥ d)



RECURRENCE-TRANSIENCE CRITERIA FOR STORAGE PROCESSES 313

≥ (1 − e−λnt0)k+1{ν([d,∞))/λn}k+1 > 0 .

We have shown (5). �

Let f (x) be a nonnegative and non-increasing measurable function on (0,∞) and inte-
grable near 0 and let F(x) = ∫ x

0 f (y)dy. Let

f 1∗(x) = f (x) for x > 0,

f m∗(x) =
∫ x

0
f (z)f (m−1)∗(x − z)dz for x > 0 and m ≥ 2 .

Then f m∗(x) is finite for almost every x ∈ [0,∞). Since∫ x

0
fm∗(y)dy ≤ eλx

∫ x

0
e−λyf m∗(y)dy ≤ eλx

{∫ ∞

0
e−λyf (y)dy)

}m

for λ > 0, choosing λ0 > 0 so that f̂ (λ0) = ∫ ∞
0 e−λ0yf (y)dy < 1, we have that

∞∑
m=1

∫ x

0
fm∗(y)dy < eλ0x f̂ (λ0)/{1 − f̂ (λ0)} < ∞

and f ∗(x) = ∑∞
m=1 f

m∗(x) is finite for almost every x in (0,∞).

LEMMA 3. Suppose that r(x) = r > 0 for all x > 0. Let f (x) = ν((x,∞))/r . Then

Px(τ
∗
b < τa) =

∫ b−a

b−x
f ∗(y)dy/

{
1 +

∫ b−a

0
f ∗(y)dy

}

for a < x < b and hence 0 < Px(τ
∗
b < τa) < 1.

PROOF. In case 0 < f (0) < ∞, the result is obtained by Harrison and Resnick ([6]).
Assume that f (0) = ∞. Define An(t) as in Section 2 and let Xn(t) be the storage process
corresponding to (r,An) starting at x. Let τ ∗

b (n) and τa(n) be the hitting times of [b,∞)

and {a} by Xn(t), respectively. We have τ ∗
b (n) ↓ τ ∗

b and τa(n) ↑ τa as n → ∞ a.s. since
X(τ ∗

b ) > b a.s., Xn(t) ↑ X(t) as n → ∞ uniformly on any bounded time interval a.s. and
both {Xn(t)} and {X(t)} are quasi-left continuous. Hence

Px(τ
∗
b (n) < τa(n)) ↑ Px(τ ∗

b < τa)

as n → ∞. Let

fn(x) =
{
f (x) for x > 1/n ,

0 otherwise

and let f ∗
n (x) = ∑∞

m=1 f
m∗
n (x). Note that

Px(τ
∗
b (n) < τa(n)) =

∫ b−a

b−x
f ∗
n (y)dy/

{
1 +

∫ b−a

0
f ∗
n (y)dy

}
.
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Hence, Px(τ ∗
b < τa) > 0. Since {f m∗

n (x)} is non-decreasing in n and limn→∞ fm∗
n (x) =

f m∗(x) for x > 0,

lim
n→∞

∫ b−a

b−x
f m∗
n (y)dy =

∫ b−a

b−x
f m∗(y)dy .

Hence, by bounded convergence theorem,

∫ b−a

b−x
f ∗
n (y)dy =

∞∑
m=1

∫ b−a

b−x
f m∗
n (y)dy →

∞∑
m=1

∫ b−a

b−x
f m∗(y)dy =

∫ b−a

b−x
f ∗(y)dy

as n → ∞. �

REMARK 1. Lemma 3 is stated in [1] in another form.

LEMMA 4. For every 0 < a < x < b,

0 < Px(τ
∗
b < τa) < 1

PROOF. Let r0 = infa≤z≤b r(z). Then r0 > 0. Define r1(x) = r0 for all x > 0 and

r2(x) =
{
r0 if a < x ≤ b ,

r(x) otherwise .

Let {Xj(t)} be the storage processes corresponding to (rj , A) starting at x for j = 1, 2,
respectively. Let τa(j) and τ ∗

b (j) be the hitting times of {a} and [b,∞) for the storage process
{Xj(t)} for j = 1, 2, respectively. Then, since X2(t) ≥ X(t) and X1(t) = X2(t) up to the
first exit time from the interval (a, b),

Px(τ
∗
b < τa) ≤ Px(τ

∗
b (2) < τa(2)) = Px(τ

∗
b (1) < τa(1)) < 1

by Lemma 3. Similarly, we have Px(τ ∗
b < τa) > 0. �

LEMMA 5. For every 0 < y < x, Px(τy < ∞) > 0.

PROOF. Choose b so that b > x. By Lemma 4, we have

Px(τy < ∞) ≥ Px(τy < τ ∗
b ) > 0 . �

PROOF OF THEOREM 1. Assume that there are x0 and y0 such that 0 < y0 < x0 and
Px0(τy0 < ∞) < 1. Then, by Lemma 1, it holds that Px(τy < ∞) < 1 for all y in (0, y0)

and for all x > x0. For y ∈ (0, y0) and x ∈ (y, x0), choose b so that b > x0. Note that
0 < Px(τ ∗

b < τy) by Lemma 4. We have

Px(τy < ∞) = Px(τ
∗
b < τy < ∞)+ Px(τy ≤ τ ∗

b < ∞)

≤ Pb(τy < ∞)Px(τ
∗
b < τy)+ 1 − Px(τ

∗
b < τy)

< 1
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by strong Markov property and nonincreasingness of Px(τy < ∞) in x. Hence Px(τy <
∞) < 1 for y ∈ (0, y0) and x > y. Now suppose that there is some y1 ∈ [y0,∞) such that

Px(τy < ∞) = 1 for all x > y > y1

and

Px(τy < ∞) < 1 for all y ∈ (0, y1) and for all x > y .

Choose y2, y3, x so that y2 < y1 < y3 < x. Then Py3(τ
∗
x ≥ τy2) > 0. Note that

PX(τ∗
x )
(τy2 < ∞) = PX(τ∗

x )
(τy3 < ∞)Py3(τy2 < ∞) = Py3(τy2 < ∞) .

Hence, by the strong Markov property, we have

Py3(τy2 < ∞) = Ey3(PX(τ∗
x )
(τy2 < ∞) : τ ∗

x < τy2)+ Py3(τ
∗
x ≥ τy2)

= Py3(τy2 < ∞)Py3(τ
∗
x < τy2)+ Py3(τ

∗
x ≥ τy2)

= Py3(τy2 < ∞){1 − Py3(τ
∗
x ≥ τy2)} + Py3(τ

∗
x ≥ τy2) .

This yields

{1 − Py3(τy2 < ∞)}Py3(τ
∗
x ≥ τy2) = 0 .

This is a contradiction. Hence y1 = ∞. Now assume that

Px(τy < ∞) = 1 for all x > y > 0 . (6)

We have the following equality.

Px(X(t) ∈ B) = Px(X(t) ∈ B, τy > t)+
∫ t

0
Py(X(t − s) ∈ B)Px(τy ∈ ds) (7)

for x, y > 0. This is a renewal equation for x = y. It is easy to see that Px(τx ∈ ds) is not
arithmetic for any x > 0. If Ex(τx) < ∞, then Pt (X(t) ∈ B, Tx > t) is directly Riemann
integrable in t since it is nondecreasing in t . By the renewal theorem (e.g. [5]), we have

Px(X(t) ∈ B) → 1

Ex(τx)

∫ ∞

0
Px(X(t) ∈ B, τx > t)dt (8)

as t → ∞ for x satisfying Ex(τx) < ∞ and

Px(X(t) ∈ B) → 0 (9)

as t → ∞ for x satisfying Ex(τx) = ∞. Denote the right hand sides of both (8) and (9) by
the same symbol πx(B). Note that Px(τy < ∞) = 1 for all x, y > 0 by Lemma 2 and the
assumption (6). Hence, by (7), we have

πx(B) = πy(B)

for x, y > 0. This shows the dichotomy (b) and (c). �

We say that a storage process {X(t)} is transient if (a) of Theorem 1 holds, null recur-
rent if (b) holds, positive recurrent if (c) holds and recurrent if (b) or (c) holds, respectively.
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Necessary and sufficient condition for positive recurrence in case that r(x) is nondecreasing
is known as follows ([3]): there is c > 0 such that∫ ∞

0

ν([x,∞))

r(x + c)
dx < 1 . (10)

The following is the restatement of the above theorem of [3].

THEOREM 2. Assume that r is nondecreasing.
(a) In case ∫ ∞

0
ν([x,∞))dx =

∫ ∞

0
xν(dx) = m < ∞ ,

{X(t)} is positive recurrent iff m
r(∞)

< 1.

(b) In case m = ∞, {X(t)} is positive recurrent iff∫ ∞

c

ν([x,∞))

r(x)
dx < ∞ for some c > 0 . (11)

Now we are interested in finding a criterion for recurrence and transience.

4. Lemmas

Let ϕ(x) = Ex[e−ατa ] for x ≥ a ≥ 0 and α ≥ 0.

REMARK 2. Let a ≥ 0. Proposition (2.31) in [4] is valid under our assumption on r
and ν. By this proposition, only one of the following two cases can occur:

(a) ϕ(x) > 0 for all x > a and ϕ(a) = 1,
(b) ϕ(x) = 0 for all x ≥ a.
If a > 0, then (b) does not occur.

LEMMA 6. Suppose that ν(R+) < ∞ or infx≥1 r(x) > 0. Let a ≥ 0. Then ϕ(x)
is uniformly continuous on [a,∞), ϕ(x) is left differentiable on (a,∞), the left derivative
d−
dx
ϕ(x) is left continuous on (a,∞) and satisfies

−r(x)d
−

dx
ϕ(x)+

∫ ∞

0
{ϕ(x + z)− ϕ(x)}ν(dz) = αϕ(x) (12)

for x ∈ (a,∞) and α ≥ 0.

PROOF. If ϕ(a) < 1, then the assertion is obvious by Remark 2. So we consider the
case ϕ(a) = 1. First, assume that λ = ν(R+) < ∞. Then ϕ(a) = 1 is equivalent to
R(a, x) < ∞ for some x > a (hence for all x > a ) and then ϕ(x) satisfies the following
equality:

ϕ(x) = exp{−(α + λ)R(a, x)}

+
∫ ∞

0

[∫ x

a

ϕ(u+ z)r(u)−1 exp{−(α + λ)R(u, x)}du
]
ν(dz) (13)
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for x ≥ a and α ≥ 0. The right hand side of (13) is uniformly continuous on [a,∞) and left

differentiable for x > a and α ≥ 0 and the left derivative d−
dx
ϕ(x) satisfies (12) for x > a

and α ≥ 0. By the identity (12), r(x) d
−
dx
ϕ(x) is continuous for x ≥ a. Hence, d

−
dx
ϕ(x) is left

continuous for x > a. Next, suppose that ν(R+) = ∞. DefineAn(t) as in Section 2. Let {Xn}
be the storage process corresponding to (r,An) starting at x and let τa(n) be the hitting time
of {a} by {Xn}. As in the proof of Lemma 3, we have τa(n) ↑ τa as n → ∞ for x > a. Since

ϕ(a) = 1, ϕn(x) = Exe
−ατa(n) ↓ ϕ(x) as n → ∞ for x ≥ a. Since ϕn(x) is nonincreasing

in x for each n ≥ 1, the convergence is uniform on [a,∞). Noting that ϕ(x) is nonincreasing
and nonnegative, we have the uniform continuity of ϕ(x) on [a,∞). Let

ψ(θ) =
∫ ∞

0
(e−θz − 1)ν(dz)+ rθ ,

with r > 0. Let ψ−1(α) be the unique solution of α = ψ(θ) for α > 0 and de-

fine ψ−1(0) = limα↓0ψ
−1(α). Let Tx be the hitting time of {−x} by A(t) − rt . Then,

E[e−αTx ] = exp(−xψ−1(α)). If a = 0, then define b arbitrarily in (0, x). If a > 0, then set
b = a. Set r = infz≥b r(z). Then, by the assumption, r > 0. Since x + A(t)− rt ≥ X(t) for
t ≤ τb,

τy ≤ Tx−y for x > y ≥ b .

Hence Ex[e−ατy ] ≥ E[e−αTx−y ] for x > y ≥ b. We have, for x > y ≥ b,

1 − Ex[e−ατy ] ≤ 1 − E[e−αTx−y ]
= 1 − exp{−(x − y)ψ−1(α)} .

By Lemma 1, we have, for z > 0 and x ≥ b,

|ϕ(x + z)− ϕ(x)| = |Ex+z[e−ατx ]Ex[e−ατa ] − Ex[e−ατa ]|
≤ |Ex+z[e−ατx ] − 1|
≤ 1 − e−zψ−1(α) ≤ 1 ∧ ψ−1(α)z .

(14)

This shows that ϕ(x) is Lipschitz continuous and absolutely continuous in x ≥ b. Since

ψn(θ) := ∫ ∞
0 (e−θz − 1)νn(dz)+ rθ ≥ ψ(θ), ψ−1

n (α) ≤ ψ−1(α). Hence

|ϕn(x + z)− ϕn(x)| ≤ 1 ∧ ψ−1(α)z (15)

for x ≥ b. Since (14) and (15) hold, ϕn(x) converges to ϕ on [a,∞) and ν([1,∞)) < ∞,
we have, by bounded convergence theorem,∫ ∞

0
1[1/n,∞)(z)[ϕn(x + z)− ϕn(x)]ν(dz) →

∫ ∞

0
[ϕ(x + z)− ϕ(x)]ν(dz)

for x ∈ [b,∞). Since b > 0 is arbitrary in case a = 0, r(x) d
−
dx
ϕn(x) converges to some

function g(x) on (a,∞). Since
∫ ∞

0 {ϕ(x+z)−ϕ(x)}ν(dz) is continuous by (14) and bounded
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convergence theorem, g is continuous on (a,∞) and gr−1 is left continuous on (a,∞). Since{
r(x) d

−
dx
ϕn(x)

}
are bounded,

{
d−
dx
ϕn(x)

}
are bounded on compact sets in (a,∞). Hence∫ d

c

d−

dx
ϕn(x)dx →

∫ d

c

g(x)r(x)−1dx

as n → ∞ for a < c < d by bounded convergence theorem. On the other hand,∫ d

c

d−

dx
ϕn(x)dx = ϕn(d)− ϕn(c) → ϕ(d)− ϕ(c) .

Hence, gr−1 is a density of ϕ. Since gr−1 is left continuous, ϕ is left differentiable and gr−1

is the left derivative. �

REMARK 3. Lemma 6 is proved in [4] under the assumption that r is nondecreasing
and continuous on (0,∞). Although our proof is essentially the same as [4] , we gave the
proof for completeness.

Let C([0,∞]) be the class of real valued continuous functions f on [0,∞) having
limx→∞ f (x). Let C0 = C([0,∞]) ∩ {f : limx→∞ f (x) = 0} and let C00 = C0 ∩ {f :
f (0) = 0}. If ν(R+) < ∞ or r is nondecreasing, then semigroup on C([0,∞]) associated
with the storage process is strongly continuous ([14]). We denote its generator by G and
domain of G by D.

LEMMA 7 ([13]), ([14]). Let f be a function in C0 which has a derivative f ′ such
that rf ′ ∈ C00. If (a) ν(0,∞) < ∞ or (b) r is nondecreasing and f ′ is bounded, then f is
contained in the domain D of the generator G. The generator has the following form:

Gf (x) = −r(x)f ′(x)+
∫ ∞

0
{f (x + y)− f (x)}ν(dy)

for x ≥ 0.

LEMMA 8. Assume that ν(R+) < ∞ or r is nondecreasing. Let x0 > 0 and let u be a
nonnegative function on [x0,∞) such that r(x)u(x) is continuous.

(a) If ∫ ∞

x0

u(x)dx = ∞ (16)

and

r(x)u(x) ≥
∫ ∞

0
ν(y,∞)u(x + y)dy for all x ≥ x0 , (17)

then the storage process {X(t)} is recurrent.
(b) If

0 <
∫ ∞

x0

u(x)dx < ∞ (18)
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and

r(x)u(x) ≤
∫ ∞

0
ν(y,∞)u(x + y)dy for all x ≥ x0 , (19)

then the storage process {X(t)} is transient and

Px(τy < ∞) ≤
∫ ∞

x

u(z)dz
/∫ ∞

y

u(z)dz . (20)

Moreover, if equality holds in (19), then equality holds in (20).

PROOF. Let x > x0. Choose a, b,M so that x0 ≤ a < x < b < M . Let U(x) =∫ x
x0
u(y)dy. Under the assumption (a), there is V ∈ D such thatU(x) = V (x) for x ∈ [x0,M]

and v(x) := V ′(x) ≤ u(x) for x > M by Lemma 7. Under the assumption (b), r(x)u(x)→ 0
as x → ∞ and hence u(x) is bounded on x > x0 if r is nondecreasing. Hence, under the
assumption (b), there is V ∈ D such that U(x) − U(∞) = V (x) for x ≥ x0 by Lemma 7.
We have

GV (x) = −r(x)V ′(x)+
∫ ∞

0
{V (x + y)− V (x)}ν(dy)

= −r(x)v(x)+
∫ ∞

0
ν(y,∞)v(x + y)dy for x ≥ 0 .

Hence,

GV (x)
{≤ 0 for M ≥ x ≥ x0 under (a) ,

≥ 0 for x ≥ x0 under (b) .
(21)

Since, for 0 ≤ s ≤ t ∧ τa ∧ τ ∗
b ,

V (X(s)) =
{
U(X(s)) under (a) and

U(X(s))− U(∞) under (b) ,

we have, by Dynkin formula,

Ex(U(X(t ∧ τa ∧ τ ∗
b ))) = U(x)+ Ex

[ ∫ t∧τa∧τ∗
b

0
GV (X(s))ds

]
.

Divide the left hand side of the above equality as follows:

Ex(U(X(t ∧ τa ∧ τ ∗
b ))) = J1 + J2 + J3

where

J1 = Ex(U(X(t)); t < τa ∧ τ ∗
b ) ,

J2 = Ex(U(X(τa)); τa < τ ∗
b , τa ≤ t) ,

J3 = Ex(U(X(τ
∗
b )); τ ∗

b ≤ τa, τ
∗
b ≤ t) .
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By Px(τ ∗
b < ∞) = 1 and X(τa) = a,

J2 → U(a)Px(τa < τ ∗
b ) as t → ∞ . (22)

We have

J3 → Ex(U(X(τ
∗
b )); τ ∗

b ≤ τa) (23)

as t → ∞. Assume (a). By X(τ ∗
b ) ≥ b and the nondecreasingness of U

Ex(U(X(τ
∗
b )); τ ∗

b ≤ τa) ≥ U(b)Px(τ
∗
b ≤ τa) . (24)

By (21), we have

J2 + J3 ≤ U(x) . (25)

Hence, by (22)–(25),

{U(b)− U(a)}Px(τ ∗
b ≤ τa) ≤ U(x)− U(a) . (26)

By letting b → ∞, we have

Px(τ
∗
b ≤ τa) → Px(τa = ∞) ,

U(b)− U(a) → ∞
by Px(limb→∞ τ ∗

b = ∞) = 1 (Lemma 2) and the assumption. Hence

Px(τa = ∞) ≤ U(x)− U(a)

U(∞)− U(a)
= 0

and {X(t)} is recurrent. Now assume (b). By (21), we have

J1 + J2 + J3 ≥ U(x) . (27)

Since Px(limb→∞ τ ∗
b = ∞) = 1, X(τ ∗

b ) ≥ b, U(∞) < ∞ and U is nondecreasing,

lim
b→∞ lim

t→∞ J3 = U(∞)Px(τa = ∞) (28)

and

J1 ≤ U(∞)P (t < τa ∧ τ ∗
b ) → 0 as t → ∞ . (29)

Hence, by (22), (27)–(29),

U(a)Px(τa < τ ∗
b )+ U(∞)Px(τa = ∞) ≥ U(x) .

That is,

U(∞)Px(τa = ∞)− U(a)Px(τ
∗
b ≤ τa) ≥ U(x)− U(a) .

Letting b → ∞, we have

Px(τ
∗
b ≤ τa) → Px(τa = ∞) ≥ U(x)− U(a)

U(∞)− U(a)
> 0 (30)

by Px(limb→∞ τ ∗
b = ∞) = 1. Hence Px(τa < ∞) < 1 and the process {X(t)} is transient.

If equality holds in (19), then equality holds in (27). This yields the equality in (30). �
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5. Recurrence-transience criteria

THEOREM 3. Assume that the release rate r is continuous and nondecreasing. If

r(x) ≥
∫ ∞

0
ν(y,∞)

x

x + y
dy

for all large x, then {X(t)} is recurrent.

PROOF. Let u(x) = x−1. Then u(x) satisfies the assumptions in Lemma 8 (a). Hence
{X(t)} is recurrent.

THEOREM 4. Assume that infx≥1 r(x) > 0. If there is c > 0 such that∫ x

c

ν((x − y,∞))

r(y)
dy ≤ 1 (31)

for all x ≥ c, then {X(t)} is recurrent.

PROOF. By Lemma 6, u(x) = − ∂
∂x
Px(τc < ∞) ≥ 0 satisfies

r(x)u(x) =
∫ ∞

x

ν((z− x,∞))u(z)dz (32)

for x > c. If
∫ ∞
c
u(x)dx = ∞, then, by Lemma 7, X(t) is recurrent. Assume that∫ ∞

c u(x)dx < ∞. Divide the both sides of (32) by r(x) and then integrate the both sides. We
have ∫ ∞

c

( ∫ z

c

ν((z − y,∞))

r(y)
dy − 1

)
u(z)dz = 0 .

The left hand side of the above equality is non-positive by the assumption (31). Since∫ 1
0 ν(z,∞)dz < ∞,

∫ z
c
ν((z−y,∞))

r(y)
dy → 0 as z ↓ c. Hence u(x) = 0 for x > c suffi-

ciently close to c. Since Px(τc < ∞) tends to 1 as x ↓ c, Px(τc < ∞) = 1 for all x > c

sufficiently close to c. By Theorem 1, the process is recurrent. �.

THEOREM 5. Assume that the release rate r is continuous and nondecreasing. If there
is γ > 1 such that

r(x) ≤
∫ ∞

0
ν(y,∞)

(
x

x + y

)γ
dy

for all large x, then {X(t)} is transient.

PROOF. Let u(x) = x−γ . Then u(x) satisfies the assumptions in Lemma 8 (b). Hence
{X(t)} is transient.
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THEOREM 6. Assume that ν(0,∞) < ∞ or r is nondecreasing. If, for some c > 0,∫ ∞

c

ν((x,∞))

r(x)
dx = ∞ (33)

and ∫ ∞

c

1

r(x)
exp{−

∫ x

c

ν((y,∞))

r(y)
dy}dx < ∞ , (34)

then {X(t)} is transient.

PROOF. Choose n so that c > 1
n

and let νn = ν|(1/n,∞). Then νn((x,∞)) = ν((x,∞))

for x > c. Put u(x) = 1
r(x)

exp{− ∫ x
c
ν((z,∞))
r(z)

dz}. By the assumption (34), 0 <
∫ ∞

0 u(x)dx <

∞. Obviously, r(x)u(x) is continuous. We have∫ ∞

x

νn((y − x,∞))u(y)dy =
∫ ∞

x

νn((y − x,∞))

r(y)
exp

{
−

∫ y

c

ν((z,∞))

r(z)
dz

}
dy

≥
∫ ∞

x

νn((y,∞))

r(y)
exp

{
−

∫ y

c

ν((z,∞))

r(z)
dz

}
dy

=
∫ ∞

x

ν((y,∞))

r(y)
exp

{
−

∫ y

c

ν((z,∞))

r(z)
dz

}
dy

= −
[

exp{−
∫ y

c

ν((z,∞))

r(z)
dz}

]∞

y=x

= exp

{
−

∫ x

c

ν((z,∞))

r(z)
dz

}
= r(x)u(x)

for x > c by (33). Hence u satisfies the assumptions of Lemma 8 (b) for r and νn. Define
An(t) as in Section 2 and let {Xn(t)} be the storage process corresponding to (r,An). Then
{Xn(t)} is transient by Lemma 8 (b). Since Xn(t) ≤ X(t), {X(t)} is also transient. �

THEOREM 7. Assume (2). Then (34) is a necessary and sufficient condition for tran-
sience of {X(t)} (without (33)) of {X(t)}.

REMARK 4. If r is of the form (2), the necessary and sufficient condition for transience
of {X(t)} is the following (Shiga [9]).

∫ 1

0
z−1 exp

{
−

∫ 1

z

ν̃(y)

r(y)
dy

}
dz < ∞ , (35)

where ν̃(y) = ∫ ∞
1 (1 − e−yx)ν(dx). The condition (34) is simpler than (35). Theorem 7 can

be extended to higher dimension with r(x) = Ix and general Lévy processes {A(t)}, where
x ∈ Rd (d ≥ 1) and I is the identity matrix.
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PROOF OF THEOREM 7. We show that (35) is equivalent to (34). Let ν̃ be the quantity
defined in Remark 4. Integration by parts yields that for 0 < z ≤ 1,∫ 1

z

ν̃(y)

r(y)
dy =

∫ 1

z

( ∫ ∞

1

1 − e−yx

ay
ν(dx)

)
dy

= ν((1,∞))

∫ 1

z

1 − e−y

ay
dy +

∫ ∞

1

ν((x,∞))

ax
(e−zx − e−x)dx

= O(1)+
∫ ∞

0
G(x)e−zxdx ,

where

G(x) =
{

0 for 0 ≤ x < 1 ,
ν((x,∞))/ax for x ≥ 1 .

We have that ∫ 1

0
z−1 exp

{
−

∫ 1

z

ν̃(y)

r(y)
dy

}
dz < ∞

is equivalent to ∫ ∞

1
z−1 exp

{
−

∫ ∞

0
G(x)e−x/zdx

}
dz < ∞ .

Integration by parts yields∫ ∞

0
G(x)e−x/zdx =

[{∫ x

0
G(u)du

}
e−x/z

]∞

x=0

+ z−1
∫ ∞

0

{∫ x

0
G(u)du

}
e−x/zdx

=
∫ ∞

0

{∫ zv

0
G(u)du

}
e−vdv for z > 0 .

Since | ∫ z
zv
G(u)du| ≤ 1

a
| log v|ν((z ∧ zv) ∨ 1,∞) for z > 1, we have∣∣∣∣

∫ z

0
G(x)dx −

∫ ∞

0
G(x)e−x/zdx

∣∣∣∣ =
∣∣∣∣
∫ z

0
G(u)du−

∫ ∞

0

{∫ zv

0
G(u)du

}
e−vdv

∣∣∣∣
≤

∫ ∞

0

∣∣∣∣
∫ z

zv

G(u)du

∣∣∣∣e−vdv
→ 0 as z → ∞ .

Hence ∫ 1

0
z−1 exp

{
−

∫ 1

z

ν̃(y)

r(y)
dy

}
dz < ∞
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is equivalent to ∫ ∞

1
z−1 exp

{
−

∫ z

1
G(x)dx

}
dz < ∞ . �

6. Applications

6.1. Stable inputs and power function release rates. Let us consider the case
ν((x,∞)) = x−α and r(x) = axβ for 0 < α, β < 1. Set aα = π

sinπα = Γ (α)Γ (1 − α).

THEOREM 8. (a) If α + β > 1 then {X(t)} is positive recurrent.
(b) If α + β = 1 and a ≥ aα, then {X(t)} is null recurrent.
(c) If α + β = 1 and a < aα, then {X(t)} is transient.
(d) If α + β < 1, then {X(t)} is transient.

PROOF. (a) is proved by Theorem 2. (b): By Theorem 2, {X(t)} is not positive re-
current. By Theorem 3 or Theorem 4, {X(t)} is recurrent. (d) is proved by Theorem 5 or
Theorem 6. We prove (c). We have∫ ∞

0
ν((y,∞))

(
x

x + y

)γ
dy =

∫ ∞

0
y−α

(
x

x + y

)γ
dy

= x1−α
∫ ∞

0

1

(1 + y)γ yα
dy

= Γ (1 − α)Γ (γ − 1 + α)

Γ (γ )
x1−α

(36)

for γ > 0. The integral
∫ ∞

0 (1 + y)−γ y−αdy is decreasing in γ > 0 and is equal to aα at
γ = 1. If aα > a, then the assumption of Theorem 5 is satisfied with γ > 1 sufficiently close
to 1. Hence if aα > a, then {X(t)} is transient by Theorem 5. �

This theorem completes the classification of recurrence-transience in this stable input and
power function release rate case. This classification is slightly different from the classification
of existence-non existence of a continuous local time at the origin obtained by M. Takano [10]
and Zakushilo [15]. We illustrate the situation:

α + β < 1 ⇒ 0 < Px(τ0 < ∞) < 1 , 0 < Px(τy < ∞) < 1 ,
α + β = 1, a > aα ⇒ Px(τ0 < ∞) = 1 , Px(τy < ∞) = 1 , Ex(τy) = ∞ ,

α + β = 1, a = aα ⇒ Px(τ0 < ∞) = 0 , Px(τy < ∞) = 1 , Ex(τy) = ∞ ,

α + β = 1, a < aα ⇒ Px(τ0 < ∞) = 0 , 0 < Px(τy < ∞) < 1 ,
α + β > 1 ⇒ Px(τ0 < ∞) = 0 , Px(τy < ∞) = 1 , Ex(τy) < ∞ .

Here, 0 < y < x are arbitrary.
In the first or the second case, 0 is regular for itself ([10], [15]). Hence there exists

a continuous local time at 0. In the second case, Px(τ0 < ∞) = 1 is not quoted in any
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literature. This fact can be proved in the following way: Assume that Px(τ0 < ∞) < 1 for
some x > 0. Then, since Px(τy < ∞) = 1 for 0 < y < x, Px(τ0 < ∞) = c < 1 independent
of x. Since Px(τ0 < ∞) is uniformly continuous in x ∈ [0,∞) by Lemma 6, we have

P0(τ0 < ∞) = c < 1 .

This contradicts to the regularity of 0 for itself, i.e. P0(τ0 < ∞) = 1. Hence Px(τ0 < ∞) =
1.

In case α + β = 1 and a < aα , we have

Px(τy < ∞) =
(
y

x

)γ−1

for x > y > 0

with γ > 1 satisfying a = Γ (1−α)Γ (γ−1+α)
Γ (γ )

by Lemma 8.

REMARK 5. Note that if r(x) = ax1−α (a ≥ 1
α
) and ν((x,∞)) = x−α (0 < α < 1),

then aα > 1
α

and
∫ ∞

1
1
r(x)

exp{− ∫ x
1
ν((y,∞))
r(y)

dy}dx = ∞ hold. However, if aα > a ≥ 1
α

, then

by Theorem 8, the process is transient. Hence the sufficient condition (33) in Theorem 6 for
transience is not a necessary condition while it is a necessary and sufficient condition for the
processes of Ornstein-Uhlenbeck type (Theorem 7).

Noting that
∫ ∞

0
ν((y,∞))
(x+y)γ dy is the Stieltjes transform of ν((y,∞))dy of order γ , we can

extend the above Theorem 8 as follows.

THEOREM 9. Assume that

ν((x,∞)) = x−αL(x)

and

r(x) ∼ axβ

as x → ∞, where a > 0, 0 < α, β < 1 and L(x) is a function slowly varying at infinity.
Then the following hold:

(a) If either α + β > 1or α + β = 1 and
∫ ∞ L(x)

x
dx < ∞, then {X(t)} is positive

recurrent.
(b) If α + β = 1 and there is ε > 0 such that

(1 − ε)a

Γ (α)Γ (1 − α)
> L(x)

for all large x, then {X(t)} is recurrent.
(c) If α + β = 1 and there is ε > 0 such that

(1 + ε)a

Γ (α)Γ (1 − α)
< L(x)

for all large x, then {X(t)} is transient.
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(d) If α + β < 1, then {X(t)} is transient.

PROOF. Let

Sγ (x) =
∫ ∞

0
ν((y,∞))(x + y)−γ dy

be the Stieltjes transform of
∫ x

0 ν((y,∞))dy of order γ (γ > 0). Since ν((y,∞)) is non-

increasing and ν((y,∞)) = y−αL(y),

Sγ (x) ∼ Γ (γ − 1 + α)Γ (1 − α)

Γ (γ )
x1−γ−αL(x)

by Theorem 1.7.4 in [2]. Hence

xγ

r(x)
Sγ (x) ∼ Γ (γ − 1 + α)Γ (1 − α)

Γ (γ )

x1−(α+β)

a
L(x)

as x → ∞. If (b) holds, then letting γ = 1,

x

r(x)
S1(x) ≤ 1 for large x .

By Theorem 3, {X(t)} is recurrent. We see that the process is positive recurrent if either

α + β > 1 or α + β = 1 and
∫ ∞ L(x)

x
dx < ∞ by Theorem 2 (b). If (d) holds, then letting

γ > 1, we have

xγ

r(x)
Sγ (x) ≥ 1 for large x .

If (c) holds, then letting γ > 1 close to 1,

1 + ε

2
≤ Γ (γ − 1 + α)Γ (1 − α)

Γ (γ )
L(x)

for large x. Hence {X(t)} is transient in cases (c) and (d) by Theorem 5. �

REMARK 6. We remark that if we assume
∫ ∞ L(x)

x
dx = ∞ in addition to the assump-

tion of Theorem 9 (b), then {X(t)} is null recurrent.

6.2. Case r(∞) < ∞. Next, we consider the case r(∞) = limx→∞ r(x) < ∞. In
case that there is x0 > 0 such that r(x) is identically equal to r0 for x > x0, it is known that

if
∫ ∞

0 ν((x,∞))dx < r0, then {X(t)} is positive recurrent,

if
∫ ∞

0 ν((x,∞))dx = r0, then {X(t)} is null recurrent and

if
∫ ∞

0 ν((x,∞))dx > r0, then {X(t)} is transient
In the case r is nondecreasing and r(x) �= r(∞) (0 < x < ∞), the same conclusions hold if∫ ∞

0
ν((x,∞))dx �= r(∞) .
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However, in the case that r is nondecreasing and
∫ ∞

0 ν((x,∞))dx = r(∞), it has been
unknown whether the process is recurrent or not. We give sufficient conditions for transience
and recurrence, respectively, under the assumption that r is nondecreasing.

THEOREM 10. Assume that r is nondecreasing, r(∞) = ∫ ∞
0 ν((y,∞))dy < ∞ and

r(∞)− r(x) = Cx−β(1 + o(1)) as x → ∞ ,

where C is a positive constant. Then the following holds:
(a) If β > 1, then {X(t)} is null recurrent.
(b) If β = 1 and

∫ ∞
0 yν((y,∞))dy > C then {X(t)} is null recurrent.

(c) If β = 1 and
∫ ∞

0 yν((y,∞))dy < C, then {X(t)} is transient.

(d) If 0 < β < 1 and
∫ ∞

0 yβν((y,∞))dy < ∞, then {X(t)} is transient.

PROOF. Note that in all cases, the process is not positive recurrent by Theorem 2 (a).
We have∫ ∞

0
ν((y,∞))

x

x + y
dy = r(x)+ (r(∞)− r(x))+

{∫ ∞

0
ν((y,∞))

x

x + y
dy − r(∞)

}

= r(x)+ x−β
{
C −

∫ ∞

0
ν((y,∞))

xβy

x + y
dy + o(1)

}
.

(37)

Case (a). If β > 1, then we have by Fatou’s lemma,

lim inf
x→∞

∫ ∞

0
ν((y,∞))

xβy

x + y
dy ≥

∫ ∞

0
ν((y,∞)) lim inf

x→∞
xβy

x + y
dy = ∞ .

Hence we have, for every large enough x,

r(x) ≥
∫ ∞

0
ν((y,∞))

x

x + y
dy .

By Theorem 3, {X(t)} is recurrent.
Cases (b) and (c). Let β = 1. Since xy

x+y is increasing in x > 0 and 0 ≤ xy
x+y ≤ y, we

have

lim
x→∞

∫ ∞

0
ν((y,∞))

xy

x + y
dy =

∫ ∞

0
yν((y,∞))dy ≤ ∞ .

Hence if
∫ ∞

0 yν((y,∞))dy > C (resp. < C), then

C −
∫ ∞

0
ν((y,∞))

xy

x + y
dy < 0 (resp. > 0)

for all large x. Hence by Theorem 3 (resp. 5), {X(t)} is recurrent (resp. transient).
Case (d). Let

g(t) = t−β {1 − (1 + t)−γ }
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for 0 < β < 1 and γ > 0. Then g(t) is bounded on [0,∞) and

g(t) → 0 (38)

as t → 0. As (37), we have∫ ∞

0
ν((y,∞))

(
x

x + y

)γ
dy

= r(x)+ x−β
[
C −

∫ ∞

0
yβν((y,∞))

(
y

x

)−β{
1 −

(
1 + y

x

)−γ}
dy + o(1)

]

By (38) and the dominated convergence theorem, we have

∫ ∞

0
yβν((y,∞))

(
y

x

)−β{
1 −

(
1 + y

x

)−γ}
dy → 0

as x → ∞. We have

r(x) ≤
∫ ∞

0
ν((y,∞))

(
x

x + y

)γ
dy

for all large x with arbitrary γ > 1. Hence {X(t)} is transient by Theorem 5 in case (d). �

Theorem 10 asserts an interesting but curious phenomenon. Let us consider the simplest
case

ν(dx) = bδa(dx)

with a, b > 0 and

r(x) = ab − Cx−1(1 + o(1)) as x → ∞ .

Then ∫ ∞

0
ν((y,∞))dy = ab and

∫ ∞

0
yν((y,∞))dy = a2b

2
.

By Theorem 10, {X(t)} is recurrent if

a2b

2
> C

and transient if

a2b

2
< C .

Fix ab and C. Then the above fact shows that {X(t)} is recurrent if the jump size a is big and
the common mean time interval 1/b between successive jumps is big.
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Yamada [12] showed that if r is nondecreasing, ν((0,∞)),
∫ ∞

0 ν((y,∞))dy = r(∞) >

0 and

r(∞)− r(x) ∼ C

x
as x → ∞

with C > 0, then {
X(nt)

v
√
n

}

converges in law on D([0, T ] → R) to Bessel process with index d = 1 + C/v2 where

v2 = ∫ ∞
0 yν((y,∞))dy > 0 and T > 0 is arbitrary. Bessel process with index d is recurrent

if and only if 0 < d ≤ 2. Our results (b) and (c) of Theorem 10 correspond to this fact
for Bessel process except the case d = 2. In the case d = 2, it is unknown whether the
storage process is recurrent or transient. However, (b) of Theorem 10 can be extended to the
following:

THEOREM 11. Assume that r is nondecreasing and

r(x) =
m∑
n=0

Cnx
−n + o(x−m) as x → ∞ .

If

(−1)n
∫ ∞

0
ynν((y,∞))dy = Cn , n = 0, 1, · · · ,m− 1

and

(−1)m
∫ ∞

0
ymν((y,∞))dy < Cm .

Then {X(t)} is null recurrent.

PROOF. We have∫ ∞

0
ν((y,∞))

x

x + y
dy = r(x)−

m∑
n=0

Cnx
−n − o(x−m)+

∫ ∞

0
ν((y,∞))

x

x + y
dy

= r(x)−
m∑
n=0

Cnx
−n − o(x−m)

+
∫ ∞

0
ν((y,∞))

{m−1∑
n=0

(−1)n
(
y

x

)n
+ (−1)m

x

x + y

(
y

x

)m}
dy

= r(x)− x−m
{
Cm − (−1)m

∫ ∞

0
ym

x

x + y
ν((y,∞))dy + o(1)

}
.
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Hence

r(x) ≥
∫ ∞

0
ν((y,∞))

x

x + y
dy

for large x. By Theorem 3, {X(t)} is recurrent. �
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