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A Sharp Form of the Uniqueness of the Solution to Nonlinear Totally
Characteristic Partial Differential Equations

Hidetoshi TAHARA

Sophia University

Abstract. The paper deals with the following nonlinear partial differential equation (t∂/∂t)mu =
F(t, x, {(t∂/∂t)j (∂/∂x)αu}j+α≤m,j<m) with (t, x) ∈ C2 in the complex domain. Under the assumption that

the equation is of totally characteristic type, the uniqueness of the solution was first proved in [4]. The present paper
gives a sharp form of this uniqueness theorem.

1. Introduction and main result

Notations: (t, x) ∈ Ct × Cx , N = {0, 1, 2, . . .}, and N∗ = {1, 2, . . .}. Let m ∈ N∗, set
N = #{(j, α) ∈ N × N ; j + α ≤ m, j < m} (that is, N = m(m + 3)/2), and denote the

complex variables z ∈ CN by z = {
zj,α

}
j+α≤m,j<m

.

In this paper we will consider the following nonlinear singular partial differential equa-
tion:

(1.1)

(
t

∂

∂t

)m

u = F

(
t, x,

{(
t
∂

∂t

)j(
∂

∂x

)α

u

}
j+α≤m
j<m

)
,

where F(t, x, z) is a function of the variables (t, x, z) defined in a neighborhood ∆ of the

origin of Ct × Cx × CN
z , and u = u(t, x) is the unknown function. Set ∆0 = ∆ ∩ {t =

0, z = 0}, and set also Im = {(j, α) ∈ N × N ; j + α ≤ m, j < m} and Im(+) = {(j, α)

∈ Im ; α > 0}.
We impose the following conditions on F(t, x, z):

A1) F (t, x, z) is a holomorphic function on ∆;
A2) F (0, x, 0) ≡ 0 on ∆0;
A3)

∂F

∂zj,α

(0, x, 0) = O(xα) (as x −→ 0) for all (j, α) ∈ Im(+) .
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Then, the equation (1.1) is called a nonlinear totally characteristic type partial differential
equation. By the condition A3) we have (∂F/∂zj,α)(0, x, 0) = xαcj,α(x) for some holomor-
phic functions cj,α(x) ((j, α) ∈ Im).

We set

L(λ, ρ) = λm −
∑

j+α≤m
j<m

cj,α(0) λjρ(ρ − 1) · · · (ρ − α + 1) ,(1.2)

Lm(X) = Xm −
∑

j+α=m
j<m

cj,α(0) Xj ,(1.3)

and denote by c1, . . . , cm the roots of the equation Lm(X) = 0 in X. If we factorize L(λ, l)

into the form

(1.4) L(λ, l) = (λ − λ1(l)) · · · (λ − λm(l)) , l ∈ N ,

by renumbering the subscript i of λi(l) suitably we have

lim
l→∞

λi(l)

l
= ci for i = 1, . . . ,m .

If Re ci < 0 holds for all i = 1, . . . ,m, we have Reλi(l) −→ −∞ (as l −→ ∞); in this case
we can define

(1.5) β = max


 0, max

1≤i≤m
l≥0

Re λi(l)


 .

Let us recall the result in [4]. We denote:

- R(C \ {0}) the universal covering space of C \ {0} ,

- Sθ = {t ∈ R(C \ {0}) ; |arg t| < θ} a sector in R(C \ {0}) ,

- Sθ (r) = {t ∈ Sθ ; 0 < |t| < r} ,

- DR = {x ∈ C ; |x| ≤ R} .

We also denote by S̃+ the set of all u(t, x) satisfying the following i) and ii): i) u(t, x)

is a holomorphic function on Sθ (r) × DR for some θ > 0, r > 0 and R > 0; and ii)
|u(t, x)| = O(|t|σ ) uniformly on DR (as t −→ 0 in Sθ (r)) for some σ > 0.

THEOREM 1 ([4], Theorem 2). Assume the conditions A1), A2), A3) and

(1.6) Re ci < 0 for i = 1, . . . ,m .

If u1(t, x) and u2(t, x) are solutions of (1.1) belonging in the class S̃+ and if they satisfy

(1.7) max
x∈DR

|(u1 − u2)(t, x)| = O(|t|a) (as t −→ 0 in Sθ (r))

for some a > β, we have u1 = u2 in S̃+.



UNIQUENESS OF THE SOLUTION 197

The following theorem is the main result of this paper, in which the assumption (1.7) is
weakened into the form (1.8).

THEOREM 2. Assume the conditions A1), A2), A3) and (1.6). If u1(t, x) and u2(t, x)

are solutions of (1.1) belonging in the class S̃+ and if they satisfy

(( ∂

∂x

)l

(u1 − u2)
)
(t, 0) = O(|t|a) (as t −→ 0 in Sθ (r))(1.8)

for any l ∈ N

for some a > β, we have u1 = u2 in S̃+.

REMARK 1. If u1 ∈ S̃+ and u2 ∈ S̃+ hold, by the definition we have

max
x∈DR

|(u1 − u2)(t, x)| = O(|t|s) (as t −→ 0 in Sθ (r))

for some s > 0. If s > β we can use Theorem 1; but, if s ≤ β we need some additional
condition like (1.7) or (1.8).

In the study of solutions of nonlinear totally characteristic type partial differential equa-
tions, the following situation often occurs: we can check the condition (1.8), but it is very
difficult to check the condition (1.7). This is the reason why the author needs to publish this
paper. The application of Theorem 2 will be given in the forthcoming paper.

See also [1], [2] and [3], in which the uniqueness of the solution is obtained for other
types of nonlinear partial differential equations.

2. Pseudo-differential operators of Euler type

In the proof of Theorem 2, we will use the same notations as in [4]; in particular, we

recall here the notations XR , C0([0, T ],XR), Sk and Sk([0, T ],XR).
For a formal power series f (x) = ∑

l≥0 fl x
l ∈ C[[x]], we set

(2.1) |f |(x) =
∑
l≥0

|fl | xl and |f |ρ = |f |(ρ) =
∑
l≥0

|fl | ρl .

Let R > 0. Using this norm, we define XR by

XR = {f (x) ∈ C[[x]] ; |f |R < ∞} .

It is easy to see that XR is a Banach space with the norm | · |R . We denote by C0([0, T ],XR)

the space of all continuous functions f (t, x) on [0, T ] with values in XR , which is also
a Banach space with the norm ‖f ‖ = maxt∈[0,T ] |f (t)|R . For m ∈ N∗ we denote by
Cm([0, T ],XR) the space of all Cm functions f (t, x) on [0, T ] with values in XR .
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For a sequence λ(l) (l = 0, 1, 2, . . .) of complex numbers, we define the operator λ(θ) :
C[[x]] −→ C[[x]] by the following:

(2.2) C[[x]] 
 f =
∑
l≥0

flx
l �−→ λ(θ)f =

∑
l≥0

flλ(l)xl ∈ C[[x]] .

If λ(ρ) is a mapping from N into C, we can define an operator λ(θ) : C[[x]] −→ C[[x]].
In particular, if λ(ρ) is a function defined on R+ = {ρ ∈ R ; ρ ≥ 0}, we have an operator
λ(θ) : C[[x]] −→ C[[x]]. If λ(ρ) is a polynomial in ρ, we easily see that λ(θ) = λ(x(d/dx))

holds as an operator from C[[x]] into C[[x]]. Thus, our operator λ(θ) can be regarded as a
generalization of a differential operator of Euler type. From now, we will call this operator
λ(θ) as a pseudo-differential operator of Euler type.

If a pseudo-differential operator λ(θ) : C[[x]] −→ C[[x]] satisfies

(2.3) |λ(l)| ≤ C(1 + l)k (l = 0, 1, 2, . . .)

for some C ≥ 0 and k ≥ 0, we say that λ(θ) is a pseudo-differential operator of order k. We
denote by Sk the set of all such pseudo-differential operators of order k as above.

Similarly, for a sequence a(t, x; l) ∈ C0([0, T ],XR) (l = 0, 1, 2, . . .) we define the
operator a(t, x; θ) by the following:

(2.4) f (t, x) =
∑
l≥0

fl(t)x
l �−→ a(t, x; θ)f (t, x) =

∑
l≥0

a(t, x; l)fl(t)x
l .

We often write a(t; θ)f (t) instead of a(t, x; θ)f (t, x). By the definition we have:

LEMMA 1. For any f (t, x) = ∑
l≥0 fl(t)x

l ∈ C0([0, T ],XR) we have

|a(t; θ)f (t)|R ≤
∑
l≥0

|a(t; l)|R |fl(t)| Rl

where |a(t; l)|R is the norm of a(t, x; l) ∈ C[[x]] for fixed (t, l).

In view of Lemma 1, we say that a(t, x; θ) is a pseudo-differential operator of order k

(≥ 0) with symbol in C0([0, T ],XR), if it satisfies

(2.5) |a(t; l)|R ≤ C(1 + l)k, 0 ≤ t ≤ T and l = 0, 1, 2, . . .

for some C > 0. We denote by Sk([0, T ],XR) the set of all the pseudo-differential operators
of order k with symbol in C0([0, T ],XR).

3. Proof of Theorem 2

As is seen in [4], Theorem 1 is reduced to a uniqueness result in some linear pseudo-
differential equations. Let us recall its reduced linear case.

Let T > 0, R > 0, and let
1) λi(θ) ∈ S1 (i = 1, . . . ,m),
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2) aj (t, x; θ) ∈ Sm−j ([0, T ],XR) (j < m),
3) bq,j (t, x; θ) ∈ Sm−q−j ([0, T ],XR) (q + j ≤ m, q > 0),

and set

Θ0 = 1 ,

Θ1 =
(
t

∂

∂t
− λ1(θ)

)
,

Θ2 =
(
t

∂

∂t
− λ2(θ)

)(
t
∂

∂t
− λ1(θ)

)
,

· · · · · · · · ·

Θm =
(
t

∂

∂t
− λm(θ)

)(
t

∂

∂t
− λm−1(θ)

)
· · ·

(
t

∂

∂t
− λ1(θ)

)
.

Let µ ∈ R, and let us consider the following linear pseudo-differential equation:

(3.1) Θmu =
∑
j<m

aj(t, x; θ)Θju +
∑

q+j≤m
q>0

bq,j (t, x; θ)
(
tµ

∂

∂x

)q

Θju .

Suppose:
c1) there are b ≥ 0 and c > 0 such that b − Reλi(l) ≥ c l holds for all l ∈ N and

i = 1, . . . ,m,
c2) for any i = 0, 1, . . . ,m − 1 we have

sup
0≤t≤T0

l≥0

|aj (t; l)|R0

(1 + l)m−j
= o(1) (as T0 −→ 0 and R0 −→ 0) ,

c3) µ > 0.
Then, the proof of Theorem 1 was reduced to proving

PROPOSITION 1 ([4], Theorem 3∗). Assume the conditions c1), c2) and c3). If u(t, x)

is a solution of (3.1) belonging in the class Cm((0, T ],XR) and if it satisfies

(3.2)

∣∣∣(t
∂

∂t

)j

u(t)

∣∣∣
R

= O(ta) (as t −→ 0) for j = 0, 1, . . . ,m − 1

for some a > b, we have u(t, x) ≡ 0 on (0, ε] × Dr for some ε > 0 and r > 0.

Thus, by the same reduction as in [4] we see that to prove Theorem 2 it is sufficient to
show the following result.

PROPOSITION 2. Assume the conditions c1), c2) and c3). If u(t, x) is a solution of
(3.1) belonging in the class Cm((0, T ],XR) and if there are s > 0 and a > b such that∣∣∣(t

∂

∂t

)j

u(t)

∣∣∣
R

= O(ts) (as t −→ 0) for j = 0, 1, . . . ,m − 1, and(3.3)

((
t

∂

∂t

)j( ∂

∂x

)l

u
)
(t, 0) = O(ta) (as t −→ 0)(3.4)
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for any l ∈ N and j = 0, 1, . . . ,m − 1 ,

we have u(t, x) ≡ 0 on (0, ε] × Dr for some ε > 0 and r > 0.

First we note the following two lemmas.

LEMMA 2. Let δ > 0. For a function w(t, x) ∈ C1((0, T ),XR) we define Jw by
(Jw)(t, x) = w(t, tδx). We have:

1) Jw ∈ C1((0, T ),XR1) holds for any 0 < R1 < R/T δ;

2) J ◦
(
t

∂

∂t

)
w =

(
t

∂

∂t
− δx

∂

∂x

)
◦Jw;

3) J ◦
(
x

∂

∂x

)
w =

(
x

∂

∂x

)
◦Jw, more generally, for any pseudo-differential operator

λ(θ) we have J ◦λ(θ)w = λ(θ)◦Jw;
4) J ◦

( ∂

∂x

)
w =

(
t−δ ∂

∂x

)
◦Jw.

LEMMA 3. Let a(t, x; θ) ∈ Sk([0, T ],XR) and δ > 0. Then for any 0 < R1 < R/T δ

we have a(t, tδx; θ) ∈ Sk([0, T ],XR1) and |a(t, tδx; l)|R1 ≤ |a(t; l)|R (l = 0, 1, . . .).

The proof of these lemmas is easy, and so we may omit the details. Now let us give a
proof of Proposition 2.

PROOF OF PROPOSITION 2. Let u(t, x) ∈ Cm((0, T ],XR) be a solution of (3.1) sat-
isfying the conditions (3.3) and (3.4) for some s > 0 and a > b. Take a sufficiently small
δ > 0 and set u∗(t, x) = u(t, tδx). Take any 0 < R1 < R/T δ and fix it. Then, by Lemma 2
we see that u∗(t, x) ∈ Cm((0, T ],XR1) and that u∗ satisfies the following equation:

(3.5) Θ∗
mu∗ =

∑
j<m

aj(t, t
δx; θ)Θ∗

j u∗ +
∑

q+j≤m
q>0

bq,j (t, t
δx; θ)

(
tµ−δ ∂

∂x

)q

Θ∗
j u∗ ,

where

Θ∗
0 = 1 ,

Θ∗
1 =

(
t
∂

∂t
− λ∗

1(θ)
)

,

Θ∗
2 =

(
t
∂

∂t
− λ∗

2(θ)
)(

t
∂

∂t
− λ∗

1(θ)
)

,

· · · · · · · · ·

Θ∗
m =

(
t
∂

∂t
− λ∗

m(θ)
)(

t
∂

∂t
− λ∗

m−1(θ)
)

· · ·
(
t

∂

∂t
− λ∗

1(θ)
)

and λ∗
i (θ) = λi(θ) + δθ (i = 1, 2, . . . ,m).

It is easy to see by Lemma 3 that λ∗
i (θ) ∈ S1 (i = 1, . . . ,m), aj (t, t

δx; θ) ∈
Sm−j ([0, T ],XR1) (j < m), and bq,j (t, t

δx; θ) ∈ Sm−q−j ([0, T ],XR1) (q + j ≤ m, q > 0).
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Since c1) is assumed, we have b − Reλ∗
i (l) = b − Reλi(l) − δl ≥ cl − δl = (c − δ)l

(l = 0, 1, . . .); therefore, if 0 < δ < c holds we have b − Reλ∗
i (l) ≥ c∗l (l = 0, 1, . . .) with

c∗ = c − δ > 0. By Lemma 3 we have |aj (t, t
δx; l)|R1 ≤ |aj (t; l)|R; therefore we easily see:

sup
0≤t≤T0

l≥0

|aj (t, x
δx; l)|R0

(1 + l)m−j
= o(1) (as T0 −→ 0 and R0 −→ 0) .

Since δ > 0 is sufficiently small, we may assume that µ − δ > 0 holds. Thus, the reduced
equation (3.5) satisfies all the assumption except (3.2) in Proposition 1. Hence, if we know
the condition

(3.6)

∣∣∣(t
∂

∂t

)j

u∗(t)
∣∣∣
R1

= O(ta) (as t −→ 0) for j = 0, 1, . . . ,m − 1

by applying Proposition 1 to (3.5) we can obtain the conclusion of Proposition 2, and the
proof of Proposition 2 is completed.

Thus, lastly let us prove (3.6). If s ≥ a holds, (3.6) follows from the assumption (3.3).
Therefore, from now we assume the condition 0 < s < a.

Let δ > 0 be as above, and take an N ∈ N∗ sufficiently large so that δN + s ≥ a holds.
We express u(t, x) in the form

u(t, x) =
N−1∑
l=0

φl(t)x
l + w(t, x)xN .

Then, by (3.3), (3.4) and 0 < s < a we see that(
t

∂

∂t

)j

φl(t) = O(ta) (as t −→ 0) for 0 ≤ l < N, and(3.7) ∣∣∣(t
∂

∂t

)j

w(t)

∣∣∣
R

= O(ts) (as t −→ 0)(3.8)

hold for j = 0, 1, . . . ,m − 1; hence, if we take 0 < R0 < R we have

(3.9)

∣∣∣( ∂

∂x

)l(
t

∂

∂t

)j

w(t)

∣∣∣
R0

= O(ts) (as t −→ 0) for any l ∈ N

for j = 0, 1, . . . ,m − 1.
Set w∗(t, x) = w(t, tδx). By the definition we have

u∗(t, x) =
N−1∑
l=0

φl(t)t
δlxl + w∗(t, x)tδNxN

and by Lemma 2 we have(
t

∂

∂t

)j

w∗(t, x) =
[(

t
∂

∂t
+ δx

∂

∂x

)j

w
]
(t, tδx) .
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Since 0 < R1 < R/T δ is assumed, by (3.9) we have

(3.10)

∣∣∣(t
∂

∂t

)j

w∗(t)
∣∣∣
R1

≤
∣∣∣(t

∂

∂t
+ δx

∂

∂x

)j

w(t)

∣∣∣
T δR1

= O(ts) (as t −→ 0)

for j = 0, 1, . . . ,m − 1. Thus, by (3.7) and (3.10) we obtain

∣∣∣(t
∂

∂t

)j

u∗(t)
∣∣∣
R1

≤
N−1∑
l=0

∣∣∣(t
∂

∂t

)j

(φl(t)t
δl)

∣∣∣R1
l +

∣∣∣(t
∂

∂t

)j

(w∗(t)tδN )

∣∣∣
R1

R1
N

≤
N−1∑
l=0

O(ta+δl) + O(ts+δN) = O(ta) (as t −→ 0)

for j = 0, 1, . . . ,m − 1. This proves (3.6). �
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