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Counting Points of the Curve y2 = x12 + a over a Finite Field
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Abstract. We give explicit formulas of the number of rational points and those of the congruence zeta functions

for the hyperelliptic curves over a finite field defined by affine equations y2 = x6 + a, y2 = x12 + a and y2 =
x(x6 + a).

Introduction

It is an interesting problem to count rational points of a non-singular projective curve
over a finite field and those of the Jacobian variety. In [3], Buhler and Koblitz proposed a
method to give explicit formulas for the number of rational points on the Jacobian variety of

the hyperelliptic curve over a finite field defined by an affine equation αy2 + y = βxn for
an odd prime number n, considering applications to cryptography. It is a key to their method
to express the congruence zeta function in terms of Jacobi sums. In [5] and [6], Kawazoe
and Takahashi gave explicit formulas for the congruence zeta function of the hyperelliptic

curve over a finite field defined by an affine equation y2 = xn + ax in the cases where
n = 5, 7, 9. Recently, Ozaki [8] gave explicit formulas for the number of rational points and
for the congruence zeta function of the non-singular projective curve over a finite field defined
by an affine equation y4 = x3 + a.

In this article, we give explicit formulas of the number of rational points and those of
the congruence zeta functions for the hyperelliptic curves over a finite field defined by affine
equations

y2 = x6 + a (Proposition 2.1 and Corollary 2.8)
y2 = x12 + a (Proposition 3.1 and Theorem 4.2)

y2 = x(x6 + a) (Proposition 5.1)

by determining Jacobi sums.
The point in the argument is to consider the coverings of hyperelliptic curves as follows:
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Now we explain in a typical case the argument of obtaining the formulas.
Let p be a prime number such that p ≡ 1 mod 12. Then there exist uniquely a prime

element π = A + B
√−3 in the ring of Eisenstein integers and a prime element ρ = C +

D
√−1 in the ring of Gauss integers, where A ≡ 1 mod 3, B > 0, C ≡ 1 mod 4 and

D > 0. Let χ denote the multiplicative character of the finite field Fp of order 12 defined by

α �→ (
α

π, ρ

)
12. Then, by applying a theorem of Davenport-Hasse to the curves listed above,

we obtain:

#E(Fp) − (p + 1) = TrQ(e2πi/3)/Q(χ10(a)J (χ4, χ6)) ,

#Ẽ(Fp) − (p + 1) = TrQ(
√−1)/Q(χ(−1)χ9(a)J (χ3, χ6)) ,

#X(Fp) − #E(Fp) = TrQ(eπi/3)/Q(χ8(a)J (χ2, χ6))

and

#Y (Fp) − #X(Fp) = TrQ(eπi/6)/Q(χ(−1)χ7(a)J (χ, χ6))

+ TrQ(
√−1)/Q(χ(−1)χ9(a)J (χ3, χ6)) .

(For the notations, see the section 1.) Hence it remains to determine the Jacobi sums

J (χ4, χ6) , J (χ3, χ6) , J (χ2, χ6) , J (χ, χ6) .

It is crucial to restrict the possibilities of Jacobi sums in our cases, up to the multiplication
by a power root of unity, with help of Stickelberger’s theorem for Jacobi sums. At last we
arrive at the main result, analyzing the trace of Jacobi sums.

Hereafter we explain the plan of the article in the typical case stated above.
In the section 1, after reviewing the definition of power residue symbols and Jacobi sums,

we mention a theorem due to Stickelberger for Jacobi sums and a result due to Davenport-
Hasse [4] on the congruence zeta function of the non-singular projective curve defined by an
affine equation axm + byn = c over a finite field. We conclude the section by recalling the
results on the Jacobi sums:

J (χ4, χ6) = −(A + B
√−3)
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and

χ(−1)J (χ3, χ6) = −(C + D
√−1) .

In the section 2, we determine the Jacobi sum J (χ2, χ6). By considering the double

covering X → E defined by (x, y) �→ (x2, y), we prove an important congruence

TrQ(eπi/3)/Q(χ(−1)J (χ2, χ6)) ≡ −2 mod 6 ,

from which we obtain

χ(−1)J (χ2, χ6) = −(A + B
√−3) .

The congruence zeta function of the hyperelliptic curve X over the finite field Fp is deduced
from the result.

In the section 3, we determine the Jacobi sum J (χ, χ6). By considering the double

covering Y → X defined by (x, y) �→ (x2, y), we prove an important congruecnce

TrQ(ζ )/Q
(
χ(−1)J (χ, χ6)

) + TrQ(
√−1)/Q

(
χ3(−1)J (χ3, χ6)

) ≡ −6 mod 24 ,

from which we obtain

χ(−1)J (χ, χ6) =
{−ρ if C �≡ 0 mod 3 ,

ρ if C ≡ 0 mod 3 .

In the section 4, we determine the congruence zeta function of the hyperelliptic curve

defined by the affine equation y2 = x12 + a. In the case where p �≡ 1 mod 12, it is crucial
to determine Jacobi sums over a quadratic extension field.

In the section 5, as a corollary of the theorem in the section 4, we obtain explicit formulas
for the congruence zeta function of the hyperelliptic curve over a finite field defined by the

affine equation y2 = x(x6 + a).
It should be mentioned that some of our results can be deduced from the assertions men-

tioned in Berndt, Evans and Williams [2, Chapter 3]. We adopt here a method emphasizing
relations between the Jacobi sums and the hyperelliptic curves.
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Suwa for his advice and suggestion. He has learned much from his lecture in the winter
semester 2004, getting materials of the section 1. Furthermore he is very grateful to the
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NOTATION

Throughout the article, p denotes a prime number and q a power of p.
Fq : the finite field of order q

F×
q : the multiplicative group Fq − {0} of Fq

X(Fq) the set of Fq -rational points of an algebraic variety X

#S the cardinal of a finite set S

1. Recall: a result of Davenport-Hasse

In this section, we mention classical results due to Stickelberger and due to Davenport
and Hasse, recalling the definition of power residue symbols and Jacobi sums.

1.1. Let Fq denote the finite field of order q . A multiplicative character of Fq is nothing

but a homomorphism of multiplicative groups χ : F×
q → C×. The trivial character ε is

defined by ε(α) = 1 for all α ∈ F×
q . By convention, we set

χ(0) =
{

1 if χ is trivial ,
0 if χ is non-trivial .

Then we have

∑
α∈Fq

χ(α) =
{

q if χ is trivial ,
0 if χ is non-trivial .

EXAMPLE 1.2. Let n be an integer ≥ 2, and let K be a number field containing all the
n-th roots of unity. Take a prime ideal p of K not dividing n. For any integer α of K , prime
to p, there exists uniquely an n-th root of unity

(
α
p

)
n

such that

α
Np−1

n ≡
(

α

p

)
n

mod p ,

where Np denotes the order of the residue field at p. We call
(

α
p

)
n

the n-th power residue

symbol. Put q = Np. Then α �→ (
α
p

)
n

induces a multiplicative character of Fq of order n.

When n = 2, K = Q and p is a prime number �= 2, the power residue symbol is nothing
but the Legendre symbol

(
α
p

)
.

1.3. Let χ and η be multiplicative characters of the finite field Fq . Then the Jacobi sum
J (χ, η) is defined by

J (χ, η) =
∑
α∈Fq

χ(α)η(1 − α) .

It is well known that
(1) J (χ, η) = J (η, χ);
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(2) J (ε, ε) = q;
(3) J (χ, ε) = J (ε, χ) = 0 if χ is non-trivial;
(4) J (χ, χ−1) = −χ(−1) if χ is non-trivial;
(5) |J (χ, η)| = √

q if χ , η and χη are non-trivial.

1.4. Now we mention Stickelberger’s theorem after a description by Weil [10], which

will be used often later. Let n be an integer > 2, and put ζ = e2πi/n. Take a prime ideal
p of the cyclotomic field Q(ζ ) which is prime to n, and put q = Np. Let χ denote the
multiplicative character of the finite field Fq induced by α �→ (

α
p

)
n
. Moreover we define

σt ∈ Gal(Q(ζ )/Q) by σt (ζ ) = ζ t .
For integers i, j > 0, we define

w(i, j) =
∑

0<t<n
(t,n)=1

[〈
ti

n

〉
+

〈
tj

n

〉
−

〈
t (i + j)

n

〉]
σ−1−t ∈ Z[Gal(Q(ζ )/Q)] ,

where 〈λ〉 denote the fractional part of a real number λ.
Then we have a prime factorization in Q(ζ )

(J (χi, χj )) = pw(i,j)

for integers 0 < i, j < n.

1.5. We can now introduce a result due to Davenport and Hasse [4]. Let p be a prime
number and q a power of p. Let m and n be positive integers dividing q − 1. Let C denote
the non-singular projective curve over Fq defined by the affine equation axm + byn = c

(a, b, c ∈ F×
q ). Take multiplicative characters χ and η of Fq of order m and n, respectively.

Then we have

Z(C/Fq, t) =
∏

0<i<m
0<j<n

χiηj �=ε

(
1 + χi

(
c

a

)
ηj

(
c

b

)
J (χi, ηj ) t

)/
(1 − t)(1 − qt) .

In particular, we obtain

#C(Fq ) = q + 1 +
∑

0<i<m
0<j<n

χiηj �=ε

χi

(
c

a

)
ηj

(
c

b

)
J (χi, ηj ) .

EXAMPLE 1.6. Let p be a prime number ≥ 5, and let E denote the elliptic curve

defined by the affine equation y2 = x3 + a over the finite field Fp. It is well known that:
(1) Suppose p ≡ 1 mod 6. Then there exists uniquely a pair of integers (A,B) with

A2 + 3B2 = p , A ≡ 1 mod 3 , B > 0 .
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Put π = A + B
√−3, and let χ and η denote the multiplicative characters of the finite field

Fp induced by α �→ (
α
π

)
3 and by α �→ (

α
p

)
, respectively. Moreover put ω = (−1 +√−3)/2.

Then we have

J (χ, η) = −π

and therefore, applying the theorem of Davenport-Hasse to the curve E and putting ε = ±1,
we have:

(a) #E(Fp) = p + 1 − ε2A if χ(a) = 1 and η(a) = ε;
(b) #E(Fp) = p + 1 + ε(A + 3B) if χ(a) = ω and η(a) = ε;

(c) #E(Fp) = p + 1 + ε(A − 3B) if χ(a) = ω2 and η(a) = ε.
(2) Suppose p ≡ 2 mod 3. Then we have #E(Fp) = p + 1.
This result ascends to Gauss’ work in Disquisitiones Arithmeticae. For a proof, for

example, see [8, 1.6].

REMARK 1.7. Let P(E; t) denote the characteristic polynomial of the Frobenius on
E over Fp. The assertion of Example 1.6 is restated as follows:

(1) Suppose p ≡ 1 mod 6．There exists uniquely a pair of integers (A,B) with

A2 + 3B2 = p , A ≡ 1 mod 3 , B > 0 .

Put π = A + B
√−3, and let χ and η denote the multiplicative character of Fp defined by

α �→ (
α
π

)
3 and α �→ (

α
p

)
, respectively. Moreover put ω = (−1+√−3)/2 and ε = ±1. Then

we have:
(a) P(E; t) = 1 − ε2At + pt2 if χ(a) = 1 and η(a) = ε;
(b) P(E; t) = 1 + ε(A + 3B)t + pt2 if χ(a) = ω and η(a) = ε;
(c) P(E; t) = 1 + ε(A − 3B)t + pt2 if χ(a) = ω2 and η(a) = ε.
(2) Suppose p ≡ 5 mod 6. Then we have P(E; t) = 1 + pt2.

REMARK 1.8. Let p be a prime number such that p ≡ 1 mod 6, and let E denote the
elliptic curve over Fp defined by the affine equation y2 = x3 + 1. Then we have

#E(Fp) ≡ 0 mod 12

as is remarked in [8, Corollary 1.8].

EXAMPLE 1.9. Let p be a prime number ≥ 3, and let Ẽ denote the elliptic curve over
the finite field Fp defined by the affine equation y2 = x4 + a . It is known that:

(1) Suppose p ≡ 1 mod 4. Then there exists uniquely a pair of integers (C,D) with

C2 + D2 = p , C ≡ 1 mod 4 , D > 0 .
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Put ρ = C + D
√−1, and let χ denote the multiplicative character of the finite field Fp

induced by α �→ (
α
ρ

)
4. Moreover put i = √−1. Then we have

χ(−1)J (χ, χ2) = −ρ ,

and therefore, applying the theorem of Davenport-Hasse to the curve Ẽ and putting ε = ±1,
we have:

(a) #Ẽ(Fp) = p + 1 − ε2C if χ(a) = ε;

(b) #Ẽ(Fp) = p + 1 − ε2D if χ(a) = εi.

(2) Suppose p ≡ 3 mod 4. Then we have #Ẽ(Fp) = p + 1.

We give a proof of the statement for the reader’s convenience. Let Q denote the conic

over the finite field Fp defined by the affine equation y2 = x2 + a. Then a double covering

f : Ẽ → Q is defined by f (x, y) = (x2, y). Moreover we have

#Ẽ(Fp) = #Q(Fp) +
∑

(α,β)∈F2
p

β2=α2+a

(
α

p

)
.

Here #Q(Fp) = p + 1 since the curve Q is a conic over the finite field Fp.

Suppose p ≡ 3 mod 4. Then we have
(−α

p

) = −(
α
p

)
for each α ∈ F×

p since p ≡ 3

mod 4. Hence we obtain

∑
(α,β)∈F2

p

β2=α2+a

(
α

p

)
=

∑
(α,β)∈H×Fp

β2=α2+a

{(
α

p

)
+

(−α

p

)}
= 0 ,

where H = {1, 2, · · · ,
p−1

2 }. Hence we obtain that #Ẽ(Fp) = #Q(Fp) = p + 1.
Suppose p ≡ 1 mod 4. Then, applying the theorem of Davenport and Hasse to the

curve Ẽ, we have

#E(Fp) = p + 1 + χ(−1)χ3(a)J (χ, χ2) + χ(−1)χ(a)J (χ3, χ2)

and therefore,

∑
(α,β)∈F2

p

β2=α2+a

(
α

p

)
= χ(−1)χ3(a)J (χ, χ2) + χ(−1)χ(a)J (χ3, χ2) .

In particular, we have

∑
(α,β)∈F2

p

β2=α2−1

(
α

p

)
= J (χ, χ2) + J (χ3, χ2) .
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It follows immediately from the definition that the Jacobi sum J (χ, χ2) is a Gauss inte-

ger, that is, J (χ, χ2) ∈ Z[√−1]. Moreover we can verify

(J (χ, χ2)) = (ρ) ,

applying Stickelberger’s theorem to n = 4, i = 1, j = 2, p = (ρ) and noting that

w(1, 2) =
[〈

1

4

〉
+

〈
2

4

〉
−

〈
3

4

〉]
σ−1

−1 +
[〈

3

4

〉
+

〈
6

4

〉
−

〈
9

4

〉]
σ−1

−3 = σ1 .

We have also

|J (χ, χ2)| = √
p , |ρ| = √

p

as remarked in 1.3. These imply, together with the prime factorization theorem for the ring of
Gauss integers, that

J (χ, χ2) ∈ {±ρ,±iρ} .

We prove now

(#) χ(−1)J (χ, χ2) = −p .

At first put

R =
{
(α, β) ∈ F2

p ; β2 = α2 − 1,

(
α

p

)
= 1

}
,

S =
{
(α, β) ∈ F2

p ; β2 = α2 − 1,

(
α

p

)
= −1

}
,

T =
{
(α, β) ∈ F2

p ; β2 = α2 − 1,

(
α

p

)
= 0

}

and

r = #R , s = #S , t = #T .

Then we have

Q(Fp) − {∞+,∞−} = R ∪ S ∪ T

and

p − 1 = r + s + t ,

where Q is the conic over Fp defined by the affine equation y2 = x2 − 1. This implies that

∑
(α,β)∈F2

p

β2=α2−1

(
α

p

)
= r − s = 2r + t − p + 1 .
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Furthermore we have a partition

R =
{
(α, β) ∈ (F×

p )2 ; β2 = α2 − 1,

(
α

p

)
= 1

}
∪ {(±1, 0)

}
,

and the group µ2 × µ2 acts faithfully on R − {(±1, 0)} by (ξ, θ)(α, β) = (ξα, θβ) since(−α
p

) = (
α
p

)
for each α ∈ Fp. It follows that r ≡ 2 mod 4. On the other hand, we have

t = 2, that is, there exist exactly two elements β ∈ F×
p such that β2 = −1 since p ≡ 1

mod 4. Summing up, we have gotten

∑
(α,β)∈F2

p

β2=α2−1

(
α

p

)
= 3 − p + 2r ≡

{−2 mod 8 if p ≡ 1 mod 8 ,

2 mod 8 if p ≡ 5 mod 8 ,

which implies

TrJ (χ, χ2) ≡
{−2 mod 8 if p ≡ 1 mod 8 ,

2 mod 8 if p ≡ 5 mod 8 .

Here Tr denote the trace for the quadratic extension Q(
√−1)/Q.

Note now that

Tr(ρ) = 2C , Tr(iρ) = −2D ,

which implies

Tr(ρ) ≡ 2 mod 8 , Tr(±iρ) ≡ 0 mod 4

and

Tr(−ρ) ≡ −2 mod 8

since C ≡ 1 mod 4, D ≡ 0 mod 2.
Hence we obtain

J (χ, χ2) =
{−ρ if p ≡ 1 mod 8 ,

ρ if p ≡ 5 mod 8 .

It follows that χ(−1)J (χ, χ2) = −ρ, and therefore we have

(a) #Ẽ(Fp) = p + 1 + Tr(−ερ) = p + 1 − ε2C if χ(a) = ε;

(b) #Ẽ(Fp) = p + 1 + Tr(εiρ) = p + 1 − ε2D if χ(a) = εi.

REMARK 1.10. Let P(Ẽ; t) denote the characteristic polynomial of the Frobenius on

Ẽ over Fp. The assertion of Example 1.9 is restated as follows:
(1) Suppose p ≡ 1 mod 4．There exists uniquely a pair of integers (C,D) with

C2 + D2 = p , C ≡ 1 mod 4 , D > 0 .
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Put ρ = C+D
√−1, and let χ denote the multiplicative character of Fp defined by α �→ (

α
ρ

)
4.

Moreover put i = √−1. Then we have:

(a) P(Ẽ; t) = 1 − ε2Ct + pt2 if χ(a) = ε;

(c) P(Ẽ; t) = 1 − ε2Dt + pt2 if χ(a) = εi.

(2) Suppose p ≡ 3 mod 4. Then we have P(Ẽ; t) = 1 + pt2.

2. Congruence zeta function of the curve y2 = x6 + a

Throughout the section, we put ζ = eπi/3.

PROPOSITION 2.1. Let p be a prime number ≥ 5, and let X denote the hyperelliptic

curve over the finite field Fp defined by the affine equation y2 = x6 + a.
(1) Suppose p ≡ 1 mod 6. Then there exists uniquely a pair of integers (A,B) with

A2 + 3B2 = p , A ≡ 1 mod 3 , B > 0 .

Put π = A + B
√−3 and let χ denote the multiplicative characters of the finite field Fp

induced by α �→ (
α
π

)
3. Put ω = (−1 + √−3)/2. Moreover let E denote the elliptic curve

over the finite field Fp defined by the affine equation y2 = x3 + a. Then we have:
(a) #X(Fp) − #E(Fp) = −2A if χ(a) = 1;
(b) #X(Fp) − #E(Fp) = A − 3B if χ(a) = ω;

(c) #X(Fp) − #E(Fp) = A + 3B if χ(a) = ω2.
(2) Suppose p ≡ 5 mod 6. Then we have #X(Fp) = p + 1.

PROOF. Suppose p ≡ 5 mod 6. Let Q denote the conic over the finite field Fp defined

by the affine equation y2 = x2 + a. Then a triple covering f : X → Q is defined by

f (x, y) = (x3, y). The curves X and Q have two infinity points, and α �→ α3 is bijective on
Fp since p ≡ 2 mod 3. Hence we obtain #X(Fp) = #Q(Fp) = p + 1.

Suppose p ≡ 1 mod 6. Let χ̃ denote the multiplicative character of the finite field Fp

induced by α �→ (
α
π

)
6. Then, applying the theorem of Davenport-Hasse to the curves X and

E, we have

#X(Fp) − #E(Fp) = TrQ(eπi/3)/Q(χ̃(−1)χ̃4(a)J (χ̃, χ̃3)) .

Hence the result is a direct consequence of the following Theorem 2.2.

THEOREM 2.2 Let p be a prime number with p ≡ 1 mod 6. Then there exists
uniquely a pair of integers (A,B) with

A2 + 3B2 = p , A ≡ 1 mod 3 , B > 0 .

Put π = A+B
√−3 and let χ̃ denote the multiplicative character of the finite field Fp induced

by α �→ (
α
π

)
6. Then we have

χ̃(−1)J (χ̃, χ̃3) = −π .
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2.3. We start to prove Theorem 2.2 by the following observation. Let E denote the

curve over the finite field Fp defined by the affine equation y2 = x3 + a. Then a double

covering f : X → E is defined by f (x, y) = (x2, y). Moreover we have

#X(Fp) = #E(Fp) + 1 +
∑

(α,β)∈F2
p

β2=α3+a

(
α

p

)

since X has two infinity points while E has one infinity point.
We present Lemma 2.4 and Corollary 2.5, which are available to prove Theorem 2.2.

LEMMA 2.4. Let p be a prime number such that p ≡ 1 mod 6. Then there exists

uniquely a pair of integers (A,B) such that A2 + 3B2 = p, A ≡ 1 mod 3 and B > 0. Put

π = A + B
√−3. Let χ̃ denote the multiplicative character of the finite field Fp induced by

α �→ (
α
π

)
6. Then we have:

Tr(χ̃(−1)χ̃4(a)J (χ̃, χ̃3)) = 1 +
∑

(α,β)∈F2
p

β2=α3+a

(
α

p

)
,

where Tr denotes the trace for the extension Q(ζ )/Q.

PROOF. Let X denote the hyperelliptic curve over Fp defined by the affine equation

y2 = x6 + a and let E denote the elliptic curve over Fp defined by the affine equation

y2 = x3 + a. Applying the theorem of Davenport-Hasse to the curves X and E, we obtain

#X(Fp) = p + 1 + χ̃5(a)J (χ̃2, χ̃3) + χ̃(a)J (χ̃4, χ̃3)

+ χ̃(−1)χ̃4(a)J (χ̃, χ̃3) + χ̃(−1)χ̃2(a)J (χ̃5, χ̃3)

and

#E(Fp) = p + 1 + χ̃5(a)J (χ̃2, χ̃3) + χ̃(a)J (χ̃4, χ̃3) .

It follows that

#X(Fp) = #E(Fp) + Tr(χ̃ (−1)χ̃4(a)J (χ̃, χ̃3))

since the orbit of χ̃(−1)χ̃4(a)J (χ̃, χ̃3) under the action by Gal(Q(ζ )/Q) is given by

{χ̃(−1)χ̃4(a)J (χ̃, χ̃3), χ̃ (−1)χ̃2(a)J (χ̃5, χ̃3)} .

On the other hand, we have

#X(Fp) = #E(Fp) + 1 +
∑

(α,β)∈F2
p

β2=α3+a

(
α

p

)
.
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COROLLARY 2.5. Under the notations of 2.4, we have

Tr (χ̃ (−1)J (χ̃, χ̃3)) ≡ −2 mod 6 .

PROOF. Put

R =
{
(α, β) ∈ F2

p ; β2 = α3 + 1,

(
α

p

)
= 1

}
,

S =
{
(α, β) ∈ F2

p ; β2 = α3 + 1,

(
α

p

)
= −1

}
,

T =
{
(α, β) ∈ F2

p ; β2 = α3 + 1,

(
α

p

)
= 0

}

and

r = #R , s = #S , t = #T .

Then we have

E(Fp) − {∞} = R ∪ S ∪ T

and

#E(Fp) − 1 = r + s + t ,

where E is the elliptic curve over Fp defined by the affine equation y2 = x3 + 1. This implies
that

1 +
∑

(α,β)∈F2
p

β2=α3+1

(
α

p

)
= 1 + r − s = 2r + t − #E(Fp) + 2 .

Hence we obtain the result from (a) r ≡
{

3 mod 6 if p ≡ 1 mod 12,

0 mod 6 if p ≡ 7 mod 12
; (b) t = 2; (c)

#E(Fp) ≡ 0 mod 12.

In order to verify (a), we consider an action of µ3 ×µ2. If p ≡ 1 mod 12, then we have( ζ
p

) = 1. Hence we obtain

R =
{
(α, β) ∈ (F×

p )2 ; β2 = α3 + 1,

(
α

p

)
= 1

}
∪ {(−1, 0), (ζ, 0), (ζ 5, 0)} .

Moreover the group µ3 ×µ2 acts faithfully on R−{(−1, 0), (ζ, 0), (ζ 5, 0)} by (ξ, θ)(ξ, β) =
(ξα, θβ) since

( ζ 2α
p

) = (
α
p

)
for each α ∈ Fp. Hence (a) follows. If p ≡ 7 mod 12, then we

have
(

ζ
p

) = −1. This implies that

R =
{
(α, β) ∈ (F×

p )2 ; β2 = α3 + 1,

(
α

p

)
= 1

}
.
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Therefore we obtain (a) as above.
It is easy to verify (b). In fact, there exist exactly two elements 1,−1 ∈ F×

p such that

β2 = 1. The assertion (c) follows from Remark 1.8.

2.6. Proof of Theorem 2.2. We have a prime factorization

(p) = (π)(π̄)

in Q(ζ ). Let χ̃ denote the multiplicative character of the finite field Fp induced by α �→ (
α
π

)
6.

It follows immediately from the definition that the Jacobi sum J (χ̃, χ̃3) is an Eisenstein
integer, that is, J (χ̃, χ̃3) ∈ Z[ζ ]. Moreover we can verify

(J (χ̃, χ̃3)) = (π) ,

applying Stickelberger’s theorem to n = 6, i = 1, j = 3, p = (π) and noting that

w(1, 3) =
[〈

1

6

〉
+

〈
3

6

〉
−

〈
4

6

〉]
σ−1

−1 +
[〈

5

6

〉
+

〈
15

6

〉
−

〈
20

6

〉]
σ−1

−5 = σ1 .

We have also

|J (χ̃, χ̃3)| = √
p, |π | = √

p

as is remarked in 1.3. These imply, together with the prime factorization theorem for the ring
of Eisenstein integers, that

J (χ̃, χ̃3) ∈ {±π,±ζπ,±ζ 2π} .

By Corollary 2.5, we have

Tr (χ̃(−1)J (χ̃, χ̃3)) ≡ −2 mod 6 .

On the other hand, we have

Tr(π) = 2A , Tr(ζπ) = A − 3B , Tr(ζ 2π) = −A − 3B ,

which implies

Tr(π) = 2 mod 6 , Tr(ζπ) = Tr(−ζ 2π) ≡ 1 mod 6

and

Tr(−π) = −2 mod 6 , Tr(−ζπ) = Tr(ζ 2π) ≡ −1 mod 6 .

since A ≡ 1 mod 3 and B ≡ 0 mod 2.
Hence we obtain

χ̃(−1)J (χ̃, χ̃3) = −π .

2.7. Let p be a prime number which is prime to 6. Let X denote the hyperelliptic curve

over Fp defined by the affine equation y2 = x6 + a over Fp, and let E denote the elliptic
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curve defined by the affine equation y2 = x3 + a. Let J (X) denote the Jacobian variety of X.

Then the double covering X → E defined by (x, y) �→ (x2, y) induces a homomorphism of
abelian varieties E → J (X). Put S = Coker[E → J (X)]. Then S is an elliptic curve over
Fp, and J (X) is isogenous to the product E × S.

Let P(J (X)/Fp; t), P(E/Fp; t) and P(S/Fp; t) denote the characteristic polynomials
of the Frobenius on J (X), E and S over Fp, respectively. Then we have

(1 − t)(1 − pt)Z(X/Fp; t) = P(J (X)/Fp; t)

and

P(J (X)/Fp; t) = P(E/Fp; t)P (S/Fp; t) .

COROLLARY 2.8. Under the notation of 2.7, we put P(t) = P(S/Fp; t). Then:
(1) Suppose p ≡ 1 mod 6. There exists uniquely a pair of integers (A,B) with

A2 + 3B2 = p , A ≡ 1 mod 3 , B > 0 .

Put π = A + B
√−3, and let χ denote the multiplicative character of Fp defined by α �→(

α
π

)
3. Moreover put ω = (−1 + √−3)/2. Then we have:

(a) P(t) = 1 − 2At + pt2 if χ(a) = 1;
(b) P(t) = 1 + (A − 3B)t + pt2 if χ(a) = ω;
(c) P(t) = 1 + (A + 3B)t + pt2 if χ(a) = ω2.
(2) Suppose p ≡ 5 mod 6. Then we have P(t) = 1 + pt2.

PROOF. Proof of (1). Let χ̃ denote the multiplicative characters of the finite field Fp

induced by α �→ (
α
π

)
6. Then, by the theorem of Davenport-Hasse and 2.7, we have

P(t) = (1 + χ̃(−1)χ̃4(a)J (χ̃, χ̃3) t)(1 + χ̃(−1)χ̃2(a)J (χ̃5, χ̃3) t) .

Furthermore we have

χ̃(−1)J (χ̃, χ̃3) = −(A + B
√−3)

and therefore

χ̃ (−1)J (χ̃5, χ̃3) = −(A − B
√−3)

as is proved in Theorem 2.2. Hence we obtain the result, expanding the right hand side in
each case.

Proof of (2). Let α1, α2 denote the eigenvalues of the Frobenius on the elliptic curve
S = Coker[E → J (X)] over Fp. Then we have

α1 + α2 = 0

since #X(Fp) = p + 1 as is shown in Proposition 2.1. It follows that

α1, α2 ∈ {√−p,−√−p} .
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Hence we obtain

P(t) = 1 + pt2 .

COROLLARY 2.9. Let p be a prime number such that p ≡ 1 mod 12, and let X

denote the hyperelliptic curve over Fp defined by the affine equation y2 = x6 − 1. Then we
have:

(1) #X(Fp) ≡ −2 mod 24 if p ≡ 1 mod 24;
(2) #X(Fp) ≡ 10 mod 24 if p ≡ 13 mod 24.

PROOF. Take A,B ∈ Z such that A2 + 3B2 = p and A ≡ 1 mod 3. Then we have
#X(Fp) = p + 1 − 4A since χ(−1) = 1, as is shown in Proposition 2.1 and Example 1.6.

Now, assume that A ≡ 4 mod 6, then we would have B2 ≡ −1 mod 4. Therefore, we
obtain A ≡ 1 mod 6.

COROLLARY 2.10. Let p be a prime number which is prime to 6, and let X denote

the hyperelliptic curve over Fp defined by the affine equation y2 = x6 − 1. Then we have:

#X(Fp2) ≡ −2 mod 24 .

PROOF. In the case p ≡ 7 mod 12, take A,B ∈ Z such that A2 +3B2 = p and A ≡ 1

mod 3, B > 0. Then we have #X(Fp2) = p2 + 1 − 2{(A + B
√−3)2 + (A − B

√−3)2} =
p2 + 1 − 8A2 + 4p since χ(−1) = −1, as is shown in Corollary 2.8 and Remark 1.7.

In the case p ≡ 5 or 11 mod 12, we have #X(Fp2) = p2 + 1 + 4p = (p + 1)2 + 2p as

is shown in Corollary 2.8 and Remark 1.7.

REMARK 2.11. Let p be a prime number which is prime to 6. Let X denote the

hyperelliptic curve over Fp defined by the affine equation y2 = x6 + a over Fp, and let E

denote the elliptic curve defined by the affine equation y2 = x3 + a. Put S = Coker[E →
J (X)].

By Tate’s conjecture for Abelian varieties over a finite fields, we can conclude that:
(a) If p ≡ 1 mod 6, S is isogenous to the ordinary elliptic curve over the finite field

Fp defined by y2 = x3 + a2;
(b) If p ≡ 5 mod 6, S is isogenous to the supersingular elliptic curve over the finite

field Fp defined by y2 = x3 + 1,
comparing the congruence zeta functions of E and S (Remark 1.7 and Corollary 2.8).

3. Counting points of the curve y2 = x12 + a

Throughout the section, we put ζ = eπi/6.

PROPOSITION 3.1. Let Y denote the hyperelliptic curve over the finite field Fp defined

by the affine equation y2 = x12 + a.
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(1) Suppose p ≡ 1 mod 12. There exist unique pairs of integers (A,B) and (C,D)

with

A2 + 3B2 = p , A ≡ 1 mod 3 , B > 0

and

C2 + D2 = p , C ≡ 1 mod 4 , D > 0 .

Put π = A + B
√−3 and ρ = C + D

√−1, and let χ denote the multiplicative character
of Fp defined by α �→ (

α
π,ρ

)
12. Moreover let X denote the hyperelliptic curve over the finite

field Fp defined by the affine equation y2 = x6 + a and put ε = ±1.
If C �≡ 0 mod 3, then we have:
(a) #Y (Fp) − #X(Fp) = −ε6C if χ(a) = ε;

(b) #Y (Fp) − #X(Fp) = −ε2D if χ(a) = εζ 3;

(c) #Y (Fp) − #X(Fp) = −ε4D if χ(a) = εζ or εζ 5;

(d) #Y (Fp) = #X(Fp) if χ(a) = εζ 4 or εζ 2.
If C ≡ 0 mod 3, then we have:
(a) #Y (Fp) − #X(Fp) = ε2C if χ(a) = ε;

(b) #Y (Fp) − #X(Fp) = ε6D if χ(a) = εζ 3;

(c) #Y (Fp) = #X(Fp) if χ(a) = εζ or εζ 5;

(d) #Y (Fp) − #X(Fp) = −ε4C if χ(a) = εζ 4 or −εζ 2.

(2) Suppose p ≡ 5 mod 12．Let Ẽ denote the elliptic curve over the finite field Fp

defined by the affine equation y2 = x4 + a. Then we have

#Y (Fp) = #Ẽ(Fp) .

(3) Suppose p ≡ 7 mod 12．Let X denote the hyperelliptic curve over the finite field

Fp defined by the affine equation y2 = x6 + a. Then we have

#Y (Fp) = #X(Fp) .

(4) Suppose p ≡ 11 mod 12. Then we have #Y (Fp) = p + 1.

3.2. Proof of (2) and (4). Let Ẽ denote the elliptic curve over the finite field Fp defined

by the affine equation y2 = x4 + a. Then a triple covering f : Y → Ẽ is defined by

f (x, y) = (x3, y). The curves X and Ẽ have two infinity points, and the map α → α3 is

bijective on Fp since p ≡ 2 mod 3. Hence we obtain #Y (Fp) = #Ẽ(Fp).

3.3. Proof of (3). Let X denote the hyperelliptic curve over the finite field Fp defined

by the affine equation y2 = x6 + a. Then a double covering f : Y → X is defined by
f (x, y) = (x2, y). Moreover put

R =
{
(α, β) ∈ F2

p ; β2 = α6 + a,

(
α

p

)
= 1

}
,
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S =
{
(α, β) ∈ F2

p ; β2 = α6 + a,

(
α

p

)
= −1

}

and

r = #R , s = #S ,

then we have

#Y (Fp) = #X(Fp) +
∑

(α,β)∈F2
p

β2=α6+a

(
α

p

)
= #X(Fp) + r − s .

Now, denote by ζ6 a primitive 6th root of unity in Fp, then we have
( ζα

p

) = −(
α
p

)
for each

α ∈ F×
p since p ≡ 7 mod 12. Hence, a bijective map R → S is defined by α �→ ξ6α. This

implies that r = s. Hence we obtain that #Y (Fp) = #X(Fp).

3.4. Proof of (1). Applying the theorem of Davenport-Hasse to the curves Y and X,
we have

#Y (Fp) − #X(Fp) = TrQ(eπi/6)/Q(χ(−1)χ7(a)J (χ, χ6))

+ TrQ(
√−1)/Q(χ(−1)χ9(a)J (χ3, χ6)) .

Hence the result is a direct consequence of the following Theorem 3.5 and Example 1.9.

THEOREM 3.5. Let p be a prime number with p ≡ 1 mod 12. Then there exist
unique pairs of integers (A,B) and (C,D) with

A2 + 3B2 = p , A ≡ 1 mod 3 , B > 0

and

C2 + D2 = p , C ≡ 1 mod 4 , D > 0 .

Put π = A + B
√−3 and ρ = C + D

√−1, and let χ denote the multiplicative character of
Fp defined by α �→ (

α
π,ρ

)
12. Then we have

χ(−1)J (χ, χ6) =
{−ρ if C �≡ 0 mod 3 ,

ρ if C ≡ 0 mod 3 .

We present Lemma 3.6 and Corollary 3.7, which are available to verify Theorem 3.5 and
to prove the theorem stated in the next section.

LEMMA 3.6. Let p be a prime ideal of Q(ζ ). Assume that p is prime to 6, and put
q = Np. Let χ denote the multiplicative character of Fq defined by α �→ (

α
p

)
12. Then we
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have:

TrQ(ζ )/Q(χ(−1)χ7(a)J (χ, χ6)
) + TrQ(

√−1)/Q

(
χ(−1)χ9(a)J (χ3, χ6)

) =
∑

(α,β)∈F2
q

β2=α6+a

(
α

p

)
2

.

PROOF. Let Y and X denote the hyperelliptic curves over the finite field Fq defined

by the affine equation y2 = x12 + a and by the affine equation y2 = x6 + a, respectively.
Applying the theorem of Davenport-Hasse to the curves Y and X, we obtain

#Y (Fq) = q + 1 + χ8(a)J (χ2, χ6) + χ10(a)J (χ4, χ6) + χ2(a)J (χ8, χ6)

+ χ4(a)J (χ10, χ6) + χ(−1)χ7(a)J (χ, χ6) + χ(−1)χ11(a)J (χ5, χ6)

+ χ(−1)χ(a)J (χ7, χ6) + χ(−1)χ5(a)J (χ11, χ6)

+ χ(−1)χ9(a)J (χ3, χ6) + χ(−1)χ3(a)J (χ9, χ6)

and

#X(Fq) = q + 1 + χ8(a)J (χ2, χ6) + χ10(a)J (χ4, χ6)

+ χ2(a)J (χ8, χ6) + χ4(a)J (χ10, χ6) .

It follows that

#Y (Fq) = #X(Fq) + TrQ(ζ )/Q(χ(−1)χ7(a)J (χ, χ6))

+ TrQ(
√−1)/Q(χ(−1)χ9(a)J (χ3, χ6))

since the orbit of χ(−1)χ7(a)J (χ, χ6) under the action by Gal(Q(ζ )/Q) is given by

{χ(−1)χ7(a)J (χ, χ6), χ(−1)χ11(a)J (χ5, χ6),

χ(−1)χ(a)J (χ7, χ6), χ(−1)χ5(a)J (χ11, χ6)}
and the orbit of χ(−1)χ9(a)J (χ3, χ6) under the action by Gal(Q(

√−1)/Q) is given by

{χ(−1)χ9(a)J (χ3, χ6), χ(−1)χ3(a)J (χ9, χ6)} .

On the other hand, we have

#Y (Fq ) = #X(Fq) +
∑

(α,β)∈F2
q

β2=α6+a

(
α

p

)
2

.

Hence the required result.

COROLLARY 3.7. Under the notations of 3.6, we have

TrQ(ζ )/Q(J (χ, χ6)) + TrQ(
√−1)/Q

(
J (χ3, χ6)

) ≡
{ −6 mod 24 if q ≡ 1 mod 24 ,

6 mod 24 if q ≡ 13 mod 24 .
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PROOF. Put

R =
{
(α, β) ∈ F2

q ; β2 = α6 − 1,

(
α

p

)
2

= 1

}
,

S =
{
(α, β) ∈ F2

q ; β2 = α6 − 1,

(
α

p

)
2

= −1

}
,

T =
{
(α, β) ∈ F2

q ; β2 = α6 − 1,

(
α

p

)
2

= 0

}

and

r = #R , s = #S , t = #T .

Then we have

X(Fq) − {∞+,∞−} = R ∪ S ∪ T

and

#X(Fq) − 2 = r + s + t ,

where X is the hyperelliptic curve over Fq defined by the affine equation y2 = x6 − 1. This
implies that

∑
(α,β)∈F2

q

β2=α6−1

(
β

p

)
2

= r − s = 2r + t − #X(Fq) + 2 .

Hence we obtain the result from (a) r ≡ 6 mod 12; (b) t = 2 and

(c) #X(Fq) ≡
{−2 mod 24 if q ≡ 1 mod 24 ,

10 mod 24 if q ≡ 13 mod 24 .

For the assertion of (a), we denote by ζ6 a primitive 6th root of unity in F×
q . Then we

have
( ζ6

p

)
2 = 1 since q ≡ 1 mod 12. This implies that

R =
{
(α, β) ∈ (F×

q )2 ; β2 = α6 − 1,

(
α

p

)
2

= 1

}
∪ {(±1, 0), (±ζ6, 0), (±ζ 2

6 , 0)} .

Moreover the group µ6 × µ2 acts faithfully on R − {(±1, 0), (±ζ6, 0), (±ζ 2
6 , 0)} by

(ξ, θ)(α, β) = (ξα, θβ) since
( ζ6α

p

)
2 = (

α
p

)
2 for each α ∈ Fq .

It is easy to verify (b). In fact, there exist exactly two elements α ∈ F×
q such that

β2 = −1 since q ≡ 1 mod 4. The assertion (c) follows from Corollary 2.9 and 2.10.

3.8. Proof of Theorem 3.5. We have a prime factorization

(p) = (π, ρ)(π, ρ̄)(π̄, ρ)(π̄, ρ̄)
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in Q(ζ ) = Q(
√−1,

√−3).
By the definition, the Jacobi sum J (χ, η) is an integer in Q(ζ ). Furthermore we have a

prime factorization

(J (χ, η)) = (π̄, ρ)(π, ρ) ,

applying Stickelberger’s theorem to n = 12, i = 1, j = 6, p = (π, ρ) and noting that

w(1, 6) =
[〈

1

12

〉
+

〈
6

12

〉
−

〈
7

12

〉]
σ−1

−1 +
[〈

5

12

〉
+

〈
30

12

〉
−

〈
35

12

〉]
σ−1

−5

+
[〈

7

12

〉
+

〈
42

12

〉
−

〈
49

12

〉]
σ−1

−7 +
[〈

11

12

〉
+

〈
66

12

〉
−

〈
77

12

〉]
σ−1

−11

=σ5 + σ1

and σ5(π) = π̄ , σ5(ρ) = ρ. This implies that

(J (χ, η)) = (ρ) .

Hence we can conclude that

J (χ, η) ∈ {±ρ,±ζρ,±ζ 2ρ,±ζ 3ρ,±ζ 4ρ,±ζ 5ρ}
since |J (χ, η)| = √

p and |ρ| = √
p.

In the case p ≡ 1 mod 24, by Corollary 3.7, we have

TrQ(ζ )/Q(J (χ, χ6)) + TrQ(
√−1)/Q(J (χ3, χ6)) ≡ −6 mod 24 .

Furthermore we have

TrQ(
√−1)(J (χ3, χ6)) = −2C

since J (χ3, χ6) = −ρ as is shown in Example 1.9. Hence we obtain

TrQ(ζ )/Q(J (χ, χ6)) − 2C ≡ −6 mod 24 .

On the other hand, we have

TrQ(ζ )/Q(ρ) = 4C , TrQ(ζ )/Q(ζρ) = −2D , TrQ(ζ )/Q(ζ 2ρ) = 2C ,

TrQ(ζ )/Q(ζ 3ρ) = −4D , TrQ(ζ )/Q(ζ 4ρ) = −2C , TrQ(ζ )/Q(ζ 5ρ) = −2D ,

and therefore

TrQ(ζ )/Q(ρ) − 2C = 2C , TrQ(ζ )/Q(ζρ) + −2C = −2C − 2D ,

TrQ(ζ )/Q(ζ 2ρ) − 2C = 0 , TrQ(ζ )/Q(ζ 3ρ) − 2C = −2C − 4D ,

TrQ(ζ )/Q(ζ 4ρ) − 2C = −4C , TrQ(ζ )/Q(ζ 5ρ) − 2C = −2C − 2D

and

TrQ(ζ )/Q(−ρ) − 2C = −6C , TrQ(ζ )/Q(−ζρ) − 2C = −2C + 2D ,
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TrQ(ζ )/Q(−ζ 2ρ) − 2C = −4C , TrQ(ζ )/Q(−ζ 3ρ) − 2C = −2C + 4D ,

TrQ(ζ )/Q(−ζ 4ρ) − 2C = 0 , TrQ(ζ )/Q(−ζ 5ρ) − 2C = −2C + 2D .

Hence we obtain

TrQ(ζ )/Q(ρ) − 2C ≡ 2 mod 8 , TrQ(ζ )/Q(ζρ) − 2C ≡ −2 mod 8 ,

TrQ(ζ )/Q(ζ 2ρ) − 2C = 0 , TrQ(ζ )/Q(ζ 3ρ) − 2C ≡ −2 mod 8 ,

TrQ(ζ )/Q(ζ 4ρ) − 2C ≡ 4 mod 8 , TrQ(ζ )/Q(ζ 5ρ) − 2C ≡ −2 mod 8

and

TrQ(ζ )/Q(−ρ) − 2C ≡ −6 mod 24 , TrQ(ζ )/Q(−ζρ) − 2C ≡ −2 mod 8 ,

TrQ(ζ )/Q(−ζ 2ρ) − 2C ≡ 4 mod 8 , TrQ(ζ )/Q(−ζ 3ρ) − 2C ≡ −2 mod 8 ,

TrQ(ζ )/Q(−ζ 4ρ) − 2C = 0 , TrQ(ζ )/Q(−ζ 5ρ) − 2C ≡ −2 mod 8

since C ≡ 1 mod 4, D ≡ 0 mod 4.
Then we can conclude

J (χ, χ6) = ρ or − ρ .

If C �≡ 0 mod 3, then we obtain

J (χ, χ6) = −ρ .

since we have

TrQ(ζ )/Q(ρ) − 2C �≡ 0 mod 6 , TrQ(ζ )/Q(−ρ) − 2C ≡ 0 mod 6 .

If C ≡ 0 mod 3, which implies D �≡ 0 mod 3, then we obtain

J (χ, χ6) = ρ

from the observation below.
Take a ∈ Fp such that χ(a) = ζ 3 and put

R =
{
(α, β) ∈ F2

p ; β2 = α6 + a,

(
α

p

)
= 1

}
,

S =
{
(α, β) ∈ F2

p ; β2 = α6 + a,
(α

p

)
= −1

}
,

T =
{
(α, β) ∈ F2

p ; β2 = α6 + a,

(
α

p

)
= 0

}

and

r = #R , s = #S , t = #T .
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Then we have

X(Fp) − {∞+,∞−} = R ∪ S ∪ T

and

#X(Fp) − 2 = r + s + t ,

where X is the hyperelliptic curve over Fp defined by the affine equation y2 = x6 + a. This
implies that

∑
(α,β)∈F2

p

β2=α6+a

(
α

π, ρ

)
2

= r − s = 2r + t − #X(Fp) + 2 .

Hence we obtain the result from (a) r ≡ 0 mod 12; (b) t = 0; (c) #X(Fp) ≡ 2 mod 24.
For the assertion of (a), note that

R =
{
(α, β) ∈ (F×

p )2 ; β2 = α6 + a,

(
α

p

)
= 1

}

since χ2(−a) = −1. Hence the group µ6×µ2 acts faithfully on R by (ξ, θ)(α, β) = (ξα, θβ)

since
( ζ6α

π,ρ

)
2 = (

α
p

)
2 for each α ∈ Fp, where ζ6 denotes a primitive 6th root of unity in F×

p .

It is easy to verify (b). In fact, there exists no element α ∈ F×
p such that β2 = −1

since χ6(a) = −1. The assertion (c) follows from #X(Fp) = p + 1, which we obtain since

χ4(a) = 1 and χ6(a) = −1 as is shown Proposition 2.1 and Example 1.6.
Hence we obtain

TrQ(ζ )/Q(−ζ 3J (χ, χ6)) + TrQ(
√−1)/Q(ζ 3J (χ3, χ6)) ≡ 0 mod 24

as is shown in the proof of Lemma 3.6 and Corollary 3.7. Furthermore we have

TrQ(
√−1)/Q(ζ 3J (χ3, χ6)) = 2D

since J (χ3, χ6) = −ρ as is shown in Example 1.9. Hence we obtain

TrQ(ζ )/Q(−ζ 3J (χ, χ6)) + 2D ≡ 0 mod 24

On the other hand, we have

TrQ(ζ )/Q(−ζ 3ρ) = 4D , TrQ(ζ )/Q(−ζ 3(−ρ)) = −4D ,

and therefore

TrQ(ζ )/Q(−ζ 3ρ) + 2D = 6D , TrQ(ζ )/Q(−ζ 3(−ρ)) + 2D = −2D .

Hence we obtain

TrQ(ζ )/Q(−ζ 3ρ) + 2D ≡ 0 mod 6 , TrQ(ζ )/Q(−ζ 3(−ρ)) + 2D �≡ 0 mod 6 .
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Therefore we obtain

J (χ, χ6) = ρ .

In the case p ≡ 13 mod 24, by Corollary 3.7, we have

TrQ(ζ )/Q(J (χ, χ6)) + TrQ(
√−1)/Q(J (χ3, χ6)) ≡ 6 mod 24 .

Furthermore we have

TrQ(
√−1)/Q(J (χ3, χ6)) = 2C

since J (χ3, χ6) = ρ as is shown in Example 1.9. Hence we obtain

TrQ(ζ )/Q(J (χ, χ6)) + 2C ≡ 6 mod 24 .

On the other hand, we have

TrQ(ζ )/Q(ρ) + 2C = 6C , TrQ(ζ )/Q(ζρ) + 2C = 2C − 2D ,

TrQ(ζ )/Q(ζ 2ρ) + 2C = 4C , TrQ(ζ )/Q(ζ 3ρ) + 2C = 2C − 4D ,

TrQ(ζ )/Q(ζ 4ρ) + 2C = 0 , TrQ(ζ )/Q(ζ 5ρ) + 2C = 2C − 2D

and

TrQ(ζ )/Q(−ρ) + 2C = −2C , TrQ(ζ )/Q(−ζρ) + 2C = 2C + 2D ,

TrQ(ζ )/Q(−ζ 2ρ) + 2C = 0 , TrQ(ζ )/Q(−ζ 3ρ) + 2C = 2C + 4D ,

TrQ(ζ )/Q(−ζ 4ρ) + 2C = 4C , TrQ(ζ )/Q(−ζ 5ρ) + 2C = 2C + 2D .

Hence we obtain

TrQ(ζ )/Q(ρ) + 2C ≡ 6 mod 24 , TrQ(ζ )/Q(ζρ) + 2C ≡ −2 mod 8 ,

TrQ(ζ )/Q(ζ 2ρ) + 2C ≡ 4 mod 8 , TrQ(ζ )/Q(ζ 3ρ) + 2C ≡ 2 mod 8 ,

TrQ(ζ )/Q(ζ 4ρ) + 2C = 0 , TrQ(ζ )/Q(ζ 5ρ) + 2C ≡ −2 mod 8

and

TrQ(ζ )/Q(−ρ) + 2C ≡ −2 mod 8 , TrQ(ζ )/Q(−ζρ) + 2C ≡ −2 mod 8 ,

TrQ(ζ )/Q(−ζ 2ρ) + 2C = 0 , TrQ(ζ )/Q(−ζ 3ρ) + 2C ≡ 2 mod 8 ,

TrQ(ζ )/Q(ζ 4ρ) + 2C ≡ 4 mod 8 , TrQ(ζ )/Q(ζ 5ρ) + 2C ≡ −2 mod 8

since C ≡ 1 mod 4 and D ≡ 2 mod 4.
These imply that

J (χ, χ6) ∈ {±ρ,±ζρ,±ζ 5ρ} .
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Furthermore we have

TrQ(ζ )/Q(ζρ) + 2C �≡ 0 mod 6 , TrQ(ζ )/Q(ζ 5ρ) + 2C �≡ 0 mod 6

and

TrQ(ζ )/Q(−ζρ) + 2C �≡ 0 mod 6 , TrQ(ζ )/Q(ζ 5ρ) + 2C �≡ 0 mod 6

since C + D �≡ 0 mod 3 and C − D �≡ 0 mod 3.
Then we can conclude that

J (χ, χ6) ∈ {±ρ} .

If C �≡ 0 mod 3, then we obtain

J (χ, χ6) = ρ .

since we have

TrQ(ζ )/Q(ρ) + 2C ≡ 0 mod 6 , TrQ(ζ )/Q(−ρ) + 2C �≡ 0 mod 6 .

If C ≡ 0 mod 3, which implies D �≡ 0 mod 3, then we obtain

J (χ, χ6) = −ρ .

from the observation below.
Take a ∈ Fp such that χ(a) = −ζ 3. Put

R =
{
(α, β) ∈ F2

p ; β2 = α6 + a,

(
α

p

)
= 1

}
,

S =
{
(α, β) ∈ F2

p ; β2 = α6 + a,

(
α

p

)
= −1

}
,

T =
{
(α, β) ∈ F2

p ; β2 = α6 + a,

(
α

p

)
= 0

}

and

r = #R , s = #S , t = #T .

Then we have

X(Fp) − {∞+,∞−} = R ∪ S ∪ T

and

#X(Fp) − 2 = r + s + t ,

where X is the hyperelliptic curve over Fp defined by the affine equation y2 = x6 + a. This
implies that

∑
(α,β)∈F2

p

β2=α6+a

(
α

π, ρ

)
2

= r − s = 2r + t − #X(Fp) + 2 .
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Hence we obtain the result from (a) r ≡ 0 mod 12; (b) t = 0; (c) #X(Fp) ≡ 14 mod 24.
For the assertion of (a), note that

R =
{
(α, β) ∈ (F×

p )2 ; β2 = α6 + a,
(α

p

)
= 1

}

since χ2(−a) = −1. Hence the group µ6×µ2 acts faithfully on R by (ξ, θ)(α, β) = (ξα, θβ)

since
( ζ6α

π,ρ

)
2 = (

α
p

)
2 for each α ∈ Fp, where ζ6 denotes a primitive 6th root of unity in F×

p .

It is easy to verify (b). In fact, there exists no element α ∈ F×
p such that β2 = −1

since χ6(a) = −1. The assertion (c) follows from #X(Fp) = p + 1, which we obtain since

χ4(a) = 1 and χ6(a) = −1 as is shown in Proposition 2.1.
Hence we obtain

TrQ(ζ )/Q(−ζ 3J (χ, χ6)) + TrQ(
√−1)/Q(ζ 3J (χ3, χ6)) ≡ 12 mod 24

as is shown in the proof of Lemma 3.6 and Corollary 3.7. Furthermore we have

TrQ(
√−1)/Q(ζ 3J (χ3, χ6)) = −2D

since we have J (χ3, χ6) = ρ as is shown in Example 1.9. Hence we obtain

TrQ(ζ )/Q(−ζ 3J (χ, χ6)) − 2D ≡ 12 mod 24

On the other hand, we obtain

TrQ(ζ )/Q(−ζ 3ρ) = 4D , TrQ(ζ )/Q(−ζ 3(−ρ)) = −4D

and therefore

TrQ(ζ )/Q(−ζ 3ρ) − 2D = 2D , TrQ(ζ )/Q(−ζ 3(−ρ)) − 2D = −6D .

Hence we have

TrQ(ζ )/Q(−ζ 3ρ) − 2D �≡ 0 mod 6 , TrQ(ζ )/Q(−ζ 3(−ρ)) − 2D ≡ 0 mod 6 .

These imply that

J (χ, χ6) = −ρ .

4. Congruence zeta function of the curve y2 = x12 + a

Throughout the section, we put ζ = eπi/6.

4.1. Let p be a prime number which is prime to 6. Let Y and X denote the hyperelliptic

curves defined by the affine equation y2 = x12+a and by the affine equation y2 = x6+a over

Fp, respectively. Moreover let Ẽ denote the elliptic curve defined by the affine equation y2 =
x4 + a over Fp. Let J (Y ) and J (X) denote the Jacobian varieties of Y and X, respectively.
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Then the double covering Y → X defined by (x, y) �→ (x2, y) and the triple covering Y → Ẽ

defined by (x, y) �→ (x3, y) induce a homomorphism of abelian varieties J (X)×Ẽ → J (Y ).

Put S = Coker[J (X) × Ẽ → J (Y )]. Then S is an abelian surface over Fp, and J (Y ) is

isogenous to the product J (X) × Ẽ × S.

Let P(J (Y )/Fp; t), P(J (X)/Fp; t), P(Ẽ/Fp; t) and P(S/Fp; t) denote the character-

istic polynomials of the Frobenius on J (Y ), J (X), Ẽ and S over Fp, respectively. Then we
have

(1 − t)(1 − pt)Z(Y/Fp; t) = P(J (Y )/Fp; t)

and

P(J (Y )/Fp; t) = P(J (X)/Fp; t)P (Ẽ/Fp; t)P (S/Fp; t) .

THEOREM 4.2. Under the notations of 4.1, we put P(t) = P(S/Fp, t). Then:
(1) Suppose p ≡ 1 mod 12. There exist uniquely pairs of integers (A,B) and (C,D)

with

A2 + 3B2 = p , A ≡ 1 mod 3 , B > 0

and

C2 + D2 = p , C ≡ 1 mod 4 , D > 0 .

Put π = A + B
√−3 and ρ = C + D

√−1, and let χ denote the multiplicative character of
Fp defined by α �→ (

α
π,ρ

)
12. Furthermore we put ε = ±1.

Suppose C �≡ 0 mod 3. Then we have:
(a) P(t) = (1 − ε2Ct + pt2)2 if χ(a) = ε;
(b) P(t) = (1 − ε2Dt + pt2)2 if χ(a) = εζ 3;
(c) P(t) = 1 − ε2Dt + (−C2 + 3D2)t2 − ε2Dpt3 + p2t4 if χ(a) = εζ ;
(d) P(t) = 1 + ε2Ct + (3C2 − D2)t2 + ε2Cpt3 + p2t4 if χ(a) = εζ 4 or −εζ 2;
(e) P(t) = 1 − ε2Dt + (−C2 + 3D2)t2 − ε2Dpt3 + p2t4 if χ(a) = εζ 5.
Suppose C ≡ 0 mod 3. Then we have:
(a) P(t) = (1 + ε2Ct + pt2)2 if χ(a) = ε;
(b) P(t) = (1 + ε2Dt + pt2)2 if χ(a) = εζ 3;
(c) P(t) = 1 + ε2Dt + (−C2 + 3D2)t2 + ε2Dpt3 + p2t4 if χ(a) = εζ ;
(d) P(t) = 1 − ε2Ct + (3C2 − D2)t2 − ε2Cpt3 + p2t4 if χ(a) = εζ 4 or −εζ 2;
(e) P(t) = 1 + ε2Dt + (−C2 + 3D2)t2 + ε2Dpt3 + p2t4 if χ(a) = εζ 5.
(2) Suppose p ≡ 5 mod 12. There exists uniquely a pair of integers (C,D) with

C2 + D2 = p , C ≡ 1 mod 4 , D > 0 .

Then we have:
(a) P(t) = (1 + 2Dt + pt2)(1 − 2Dt + pt2) if ( a

p
) = 1;
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(b) P(t) = (1 + 2Ct + pt2)(1 − 2Ct + pt2) if
(

a
p

) = −1.

(3) Suppose p ≡ 7 mod 12. There exists uniquely a pair of integers (A,B) with

A2 + 3B2 = p , A ≡ 1 mod 3 , B > 0 .

Put π = A + B
√−3, and let χ denote the multiplicative character of Fp defined by α �→(

α
π

)
3. Then we have:

(a) P(t) = (1 + pt2)2 if χ(a) = 1;
(b) P(t) = 1 − pt2 + p2t4 if χ(a) �= 1.
(4) Suppose p ≡ 11 mod 12. Then we have P(t) = (1 + pt2)2.

4.3. Proof of (1). By the theorem of Davenport-Hasse and 4.1, we have

P(t) =
∏

0<i<12
(i,12)=1

(1 + χ(−1)χi+6(a)J (χi, χ6) t) .

Furthermore, if C �≡ 0 mod 3, then we have

χ(−1)J (χ, χ6) = χ(−1)J (χ5, χ6) = −(C + D
√−1) ,

χ(−1)J (χ7, χ6) = χ(−1)J (χ11, χ6) = −(C − D
√−1)

and, if C ≡ 0 mod 3, then we have

χ(−1)J (χ, χ6) = χ(−1)J (χ5, χ6) = C + D
√−1 ,

χ(−1)J (χ7, χ6) = χ(−1)J (χ11, χ6) = C − D
√−1

as is proved in Theorem 3.5. Hence we obtain the result, expanding the right hand side in
each case.

4.4. Proof of (3). First note that the prime ideals (π) and (π̄) of Q(
√−3) inert in the

extension Q(ζ )/Q(
√−3), and we have a prime factorization (p) = (π)(π̄) in Q(ζ ). Let χ̃

denote the multiplicative character of Fp2 defined by α �→ (
α
π

)
12.

By the definition, the Jacobi sum J (χ̃, χ̃6) is an integer in Q(ζ ). We have a prime
factorization

(J (χ̃, χ̃6)) = (π̄)(π) ,

applying Stickelberger’s theorem to n = 12, i = 1, j = 6, p = (π) and noting that

w(1, 6) = σ5 + σ1

and σ5(π) = π̄ as is shown in 3.8.
This implies that

(J (χ̃, χ̃6)) = (p) .
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Hence we can conclude that

J (χ̃, χ̃6) ∈ {±p,±ζp,±ζ 2p,±ζ 3p,±ζ 4p,±ζ 5p}
since |J (χ̃, χ̃6)| = p.

By Corollary 3.7, we have

TrQ(ζ )/Q(J (χ̃, χ̃6)) + TrQ(
√−1)/Q(J (χ̃3, χ̃6)) ≡ −6 mod 24 ,

and furthermore we have

TrQ(
√−1)/Q(J (χ̃3, χ̃6)) = 2p

since J (χ̃, χ̃6) = p by Remark 1.10. Hence we obtain

TrQ(ζ )/Q(J (χ̃, χ̃6)) ≡ 4 mod 24 .

On the other hand, we have

Tr(p) = 4p , Tr(ζp) = Tr(ζ 3p) = Tr(ζ 5p) = 0 , Tr(ζ 2p) = 2p , Tr(ζ 4p) = −2p

and therefore

Tr(p) ≡ 4 mod 24 , Tr(−p) ≡ −4 mod 16 , Tr(ζ 2p) = Tr(−ζ 4p) ≡ 14 mod 24 ,

Tr(−ζ 2p) = Tr(ζ 4p) ≡ −14 mod 24

since p ≡ 7 mod 12. These imply that

J (χ̃, χ̃6) = J (χ̃5, χ̃6) = J (χ̃7, χ̃6) = J (χ̃11, χ̃6) = p .

Let now α1, α2, α3, α4 and β1, β2 denote the eigenvalues of the Frobenius on the abelian

varieties S = Coker[J (X) × Ẽ → J (Y )] and Ẽ over Fp, respectively. Then we have

{β1, β2} = {√−p,−√−p} as is shown in Remark 1.10 since p ≡ 3 mod 4. For any

a ∈ Fp, we have χ̃(a) = χ2(a) since p + 1 ≡ 8 mod 12. Hence, if χ(a) = 1, we have

{α2
1, α2

2 , α2
3 , α2

4} = {−J (χ̃, χ̃6),−J (χ̃5, χ̃6),−J (χ̃7, χ̃6),−J (χ̃11, χ̃6)}
= {−p,−p,−p,−p} ,

and therefore

{α1, α2, α3, α4} = {√−p,−√−p,
√−p,−√−p} .

Hence we obtain

P(S/Fp; t) = (1 + pt2)2 .

If χ(a) = ζ 4, then we obtain

{α2
1, α2

2 , α2
3 , α2

4} = {−ζ 8J (χ̃, χ̃6),−ζ 4J (χ̃5, χ̃6),−ζ 8J (χ̃7, χ̃6),−ζ 4J (χ̃11, χ̃6)
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= {−ζ 8p,−ζ 4p,−ζ 8p,−ζ 4p} .

We have α1 +α2 +α3 +α4 = 0 since #Y (Fp) = #X(Fp) as is shown in 3.3, and β1 +β2 = 0.
Therefore we obtain

{α1, α2, α3, α4} = {ζ√
p, ζ 5√p,−ζ

√
p,−ζ 5√p} .

This implies that

P(S/Fp; t) = 1 − pt2 + p2t4 .

If χ(a) = ζ 8, then we obtain

{α2
1 , α2

2, α2
3 , α2

4} = {−ζ 4J (χ̃, χ̃6),−ζ 8J (χ̃5, χ̃6),−ζ 4J (χ̃7, χ̃6),−ζ 8J (χ̃11, χ̃6)}
= {−ζ 4p,−ζ 8p,−ζ 4p,−ζ 8p} .

Hence we obtain

P(S/Fp; t) = 1 − pt2 + p2t4

as above.

4.5. Proof of (4). We have a prime factorization (p) = qq′ in Q(
√

3) (q �= q′) since

p ≡ 11 mod 12. Moreover the prime ideals q and q′ inert in the extension Q(ζ )/Q(
√

3), and
we have a prime factorization (p) = qq′ in Q(ζ ). Let χ denote the multiplicative character of
Fp2 defined by α �→ (

α
q

)
12.

By the definition, the Jacobi sum J (χ, χ6) is an integer in Q(ζ ). We obtain a prime
factorization

(J (χ, χ6)) = q′q ,

applying Stickelberger’s theorem to n = 12, i = 1, j = 6, p = q and noting that

w(1, 6) = σ5 + σ1

and σ5(q) = q′.
This implies that

(J (χ, χ6)) = (p) .

Hence we can conclude that

J (χ, χ6) ∈ {±p,±ζp,±ζ 2p,±ζ 3p,±ζ 4p,±ζ 5p}
since |J (χ, χ6)| = p.

By Corollary 3.7, we have

TrQ(ζ )/Q(J (χ, χ6)) + TrQ(
√−1)/Q(J (χ3, χ6)) ≡ −6 mod 24 ,
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and furthermore we have

TrQ(
√−1)/Q(J (χ3, χ6)) = 2p

since J (χ3, χ6) = p by Remark 1.10. Hence we obtain

TrQ(ζ )/Q(J (χ, χ6)) ≡ −4 mod 24 .

On the other hand, we have

Tr(p) = 4p , Tr(ζp) = Tr(ζ 3p) = Tr(ζ 5p) = 0 , Tr(ζ 2p) = 2p , Tr(ζ 4p) = −2p

and therefore

Tr(p) ≡ −4 mod 24 , Tr(−p) ≡ 4 mod 24 , Tr(ζ 2p) = Tr(−ζ 4p) ≡ −2 mod 24 ,

Tr(−ζ 2p) = Tr(ζ 4p) ≡ 2 mod 24

since p ≡ 11 mod 12. These imply that

J (χ, χ6) = J (χ5, χ6) = J (χ7, χ6) = J (χ11, χ6) = p .

Let now α1, α2, α3, α4 and β1, β2 denote the eigenvalues of the Frobenius on the abelian

varieties S = Coker[J (X) × Ẽ → J (Y )] and Ẽ over Fp, respectively. Then we have

{β1, β2} = {√−p,−√−p} as is shown in Remark 1.10 since p ≡ 3 mod 4. For any
a ∈ Fp, we have χ(a) = 1 since p + 1 ≡ 0 mod 12. Hence, we have

{α2
1, α2

2 , α2
3 , α2

4} = {−J (χ, χ6),−J (χ5, χ6),−J (χ7, χ6),−J (χ11, χ6)}
= {−p,−p,−p,−p} .

Here, we obtain α1 + α2 + α3 + α4 = 0 since #Y (Fp) = #X(Fp) as is shown in 3.3, and
β1 + β2 = 0. Therefore we obtain

{α1, α2, α3, α4} = {√−p,−√−p,
√−p,−√−p} .

Hence we have

P(S/Fp; t) = (1 + pt2)2 .

4.6. Proof of (2). First note that the prime ideals (ρ) and (ρ̄) of Q(
√−1) inert in the

extension Q(ζ )/Q(
√−1), and we have a prime factorization (p) = (ρ)(ρ̄) in Q(ζ ). Let χ

denote the multiplicative character of Fp2 defined by α �→ (
α
ρ

)
12.

By the definition, the Jacobi sum J (χ, χ6) is an integer in Q(ζ ). We obtain a prime
factorization

(J (χ, χ6)) = (ρ2) ,

applying Stickelberger’s theorem to n = 12, i = 1, j = 6, p = (ρ) and noting that

w(1, 6) = σ5 + σ1
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and σ5(ρ) = ρ.
Hence we can conclude that

J (χ, χ6) ∈ {±ρ2,±ζρ2,±ζ 2ρ2,±ζ 3ρ2,±ζ 4ρ2,±ζ 5ρ2}
since |J (χ, χ6)| = |ρ2| = p.

By Corollary 3.7, we have

TrQ(ζ )/Q(J (χ, χ6)) + TrQ(
√−1)/Q(J (χ3, χ6)) ≡ −6 mod 24 .

Furthermore we have

J (χ3, χ6) = −ρ2

since J (χ3, χ6) = −ρ2 as is shown in Remark 1.10, and therefore

TrQ(
√−1)/Q(J (χ3, χ6)) = −2(C2 − D2) = −4C2 + 2p ≡ 6 mod 24

since C2 ≡ 1 mod 6. These imply that

TrQ(ζ )/Q(J (χ, χ6)) ≡ 12 mod 24 .

On the other hand, we have

TrQ(ζ )/Q(ρ2) = 4(C2 − D2) , TrQ(ζ )/Q(ζρ2) = −4CD ,

TrQ(ζ )/Q(ζ 2ρ2) = 2(C2 − D2) , TrQ(ζ )/Q(ζ 3ρ2) = −8CD ,

TrQ(ζ )/Q(ζ 4ρ2) = −2(C2 − D2) , TrQ(ζ )/Q(ζ 5ρ2) = −4CD

and therefore,

TrQ(ζ )/Q(±ρ2) ≡ 12 mod 24 , TrQ(ζ )/Q(±ζρ2) �≡ 0 mod 12 ,

TrQ(ζ )/Q(±ζ 2ρ2) ≡ ∓6 mod 24 , TrQ(ζ )/Q(±ζ 3ρ2) �≡ 0 mod 12 ,

TrQ(ζ )/Q(±ζ 4ρ2) ≡ ±6 mod 24 , TrQ(ζ )/Q(±ζ 5ρ2) �≡ 0 mod 12

since C2 − D2 ≡ −3 mod 12 and CD �≡ 0 mod 3.
Hence we obtain

J (χ, χ6) ∈ {±ρ2} .

In the next paragraph, we verify that

(#) J (χ, χ6) = ρ2 .

Admitting (#), we verify the assertion.
Let now α1, α2, α3, α4 and β1, β2, β3, β4 denote the eigenvalues of the Frobenius on the

abelian varieties S = Coker[J (X) × Ẽ → J (Y )] and J (X) over Fp, respectively. Then
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we have {β1, β2, β3, β4} = {√−p,−√−p,
√−p,−√−p} as is shown in Remark 1.7 and

Corollary 2.8. Then we have

α1 + α2 + α3 + α4 = 0

since #Y (Fp) = #Ẽ(Fp) as is shown in 3.2, and β1 + β2 + β3 + β4 = 0. For any a ∈ Fp, we

have χ(a) = (
a
p

)
since p + 1 ≡ 6 mod 12.

If χ(a) = 1, we have

{α2
1, α2

2 , α2
3 , α2

4} = {−J (χ, χ6),−J (χ5, χ6),−J (χ7, χ6),−J (χ11, χ6)}
= {−ρ2,−ρ2,−ρ̄2,−ρ̄2} ,

and therefore

{α1, α2, α3, α4} = {√−1ρ,−√−1ρ,−√−1ρ̄,
√−1ρ̄.}

This implies that

P(S/Fp; t) = (1 + 2Dt + pt2)(1 − 2Dt + pt2) .

If χ(a) = −1, we have

{α2
1 , α2

2, α2
3 , α2

4} = {J (χ, χ6), J (χ5, χ6), J (χ7, χ6), J (χ11, χ6))} = {ρ2, ρ2, ρ̄2, ρ̄2} ,

and therefore

{α1, α2, α3, α4} = {ρ,−ρ, ρ̄,−ρ̄} .

This implies that

P(S/Fp; t) = (1 + 2Ct + pt2)(1 − 2Ct + pt2) .

4.7. Proof of (#). Assume J (χ, χ6) = −ρ2. Take a ∈ Fp2 such that χ(a) = ζ 3. Then

we obtain

TrQ(ζ )/Q(χ7(a)J (χ, χ6)) + TrQ(
√−1)/Q(χ9(a)J (χ3, χ6)) = −4CD

since J (χ3, χ6) = −ρ2 as is shown in Remark 1.10. Hence we obtain

(∗) TrQ(ζ )/Q(χ7(a)J (χ, χ6)) + TrQ(
√−1)/Q(χ9(a)J (χ3, χ6)) �≡ 0 mod 24

since CD �≡ 0 mod 3.
On the other hand, we put

R =
{
(α, β) ∈ F2

p2 ; β2 = α6 + a,

(
α

ρ

)
2

= 1

}
,

S =
{
(α, β) ∈ F2

p2 ; β2 = α6 + a,

(
α

ρ

)
2

= −1

}
,
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T =
{
(α, β) ∈ F2

p2 ; β2 = α6 + a,

(
α

ρ

)
2

= 0

}

and

r = #R , s = #S , t = #T .

Then we have

X(Fp2) − {∞+,∞−} = R ∪ S ∪ T

and

#X(Fp2) − 2 = r + s + t ,

where X is the hyperelliptic curve over Fp2 defined by the affine equation y2 = x6 + a. This
implies that

∑
(α,β)∈F2

p2

β2=α6+a

(
α

ρ

)
2

= r − s = 2r + t − #X(Fp2) + 2 .

Then we obtain that (a) r ≡ 0 mod 12; (b) t = 0; (c) #X(Fp2) ≡ 2 mod 24.

For the assertion of (a), note that

R =
{
(α, β) ∈ (F×

p2)
2 ; β2 = α6 + a,

(
α

ρ

)
2

= 1

}

since χ2(−a) = −1. Moreover the group µ6 × µ2 acts faithfully on R by (ξ, θ)(α, β) =
(ξα, θβ) since

( ζ6α
ρ

)
2 = (

α
ρ

)
2 for each α ∈ Fp2 , where ζ6 denotes a primitive 6th root of

unity in F×
p2 .

It is easy to verify (b). In fact, there exists no element β ∈ F×
p2 such that β2 = a since

χ6(a) = −1.
For the assertion of (c), applying the theorem of Davenport-Hasse to X, we obtain

#X(Fp2) = p2 + 1 + χ(−1)χ8(a)J (χ2, χ6) + χ(−1)χ4(a)J (χ10, χ6)

+ χ(−1)χ10(a)J (χ4, χ6) + χ(−1)χ2(a)J (χ8, χ6) .

Furthermore we have J (χ, χ6) = J (χ4, χ6) = p as is shown in Corollary 2.8 and Remark

1.7, and χ2(a) = −1. These imply that #X(Fp2) = p2 + 1. Hence (c) follows.
These imply that

TrQ(ζ )/Q(χ7(a)J (χ, χ6)) + TrQ(
√−1)/Q(χ9(a)J (χ3, χ6)) ≡ 0 mod 24

as is in the proof of Lemma 3.6 and Corollary 3.7. This contradicts to (∗).
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REMARK 4.8. Let p be a prime number which is prime to 6. Let Y and X denote the

hyperelliptic curves defined by the affine equation y2 = x12 + 1 and by the affine equation

y2 = x6 + 1 over Fp, respectively. Moreover let Ẽ denote the elliptic curve defined by the

affine equation y2 = x4 + 1 over Fp. Put S = Coker[J (X) × Ẽ → J (Y )].
If p ≡ 1 mod 12, then S is isogenous to the self-product of an ordinary elliptic curve

with complex multiplication in Q(
√−1) over Fp.

If p ≡ 5 mod 12, then S is isogenous to the product of ordinary elliptic curves with

complex multiplication in Q(
√−1) over Fp.

If p ≡ 7, 11 mod 12, then S is isogenous to the self-product of a supersingular elliptic
curve over Fp.

5. Congruence zeta function of the curve y2 = x(x6 + a)

PROPOSITION 5.1. Let X̃ be the hyperelliptic curve over the finite field Fp defined by

the affine equation y2 = x(x6 + a). Put ε = ±1 and

P(t) = (1 − t)(1 − pt)Z(X̃/Fp, t) .

(1) Suppose p ≡ 1 mod 12. There exist uniquely pairs of integers (A,B) and (C,D)

with

A2 + 3B2 = p , A ≡ 1 mod 3 , B > 0

and

C2 + D2 = p , C ≡ 1 mod 4 , D > 0 .

Put π = A + B
√−3 and ρ = C + D

√−1, and let χ denote the multiplicative character of

Fp defined by α �→ (
α

π,ρ

)
12. Moreover put ζ = eπi/6.

Suppose C �≡ 0 mod 3. Then we have:
(a) P(t) = (1 − ε2Ct + pt2)3 if χ(a) = ε;
(b) P(t) = (1 − ε2Dt + pt2)2(1 + ε2Dt + pt2) if χ(a) = εζ 3;
(c) P(t) = (1 − ε2Dt + (−C2 + 3D2)t2 − ε2Dpt3 + p2t4)(1 − ε2Dt + pt2) if

χ(a) = εζ ;
(d) P(t) = (1+ε2Ct+(3C2−D2)t2+ε2Cpt3+p2t4)(1−ε2Ct+pt2) if χ(a) = εζ 4

or −εζ 2;
(e) P(t) = (1 − ε2Dt + (−C2 + 3D2)t2 − ε2Dpt3 + p2t4)(1 − ε2Dt + pt2) if

χ(a) = εζ 5.
Suppose C ≡ 0 mod 3. Then we have:
(a) P(t) = (1 + ε2Ct + pt2)2(1 − ε2Ct + pt2) if χ(a) = ε;
(b) P(t) = (1 + ε2Dt + pt2)3 if χ(a) = εζ 3;
(c) P(t) = (1 + ε2Dt + (−C2 + 3D2)t2 + ε2Dpt3 + p2t4)(1 − ε2Dt + pt2) if

χ(a) = εζ ;
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(d) P(t) = (1−ε2Ct+(3C2−D2)t2−ε2Cpt3+p2t4)(1−ε2Ct+pt2) if χ(a) = εζ 4

or −εζ 2;
(e) P(t) = (1 + ε2Dt + (−C2 + 3D2)t2 + ε2Dpt3 + p2t4)(1 − ε2Dt + pt2) if

χ(a) = εζ 5.
(2) Suppose p ≡ 5 mod 12. There exists uniquely a pair of integers (C,D) with

C2 + D2 = p , C ≡ 1 mod 4 , D > 0 .

Put ρ = C + D
√−1, and let χ denote the multiplicative character of Fp defined by α �→(

α
ρ

)
4. Then we have:

(a) P(t) = (1 + 2Dt + pt2)(1 − 2Dt + pt2)(1 − ε2Ct + pt2) if χ(a) = ε;

(b) P(t) = (1 + 2Ct + pt2)(1 − 2Ct + pt2)(1 − ε2Dt + pt2) if χ(a) = ε
√−1.

(3) Suppose p ≡ 7 mod 12. There exists uniquely pair of integers (A,B) with

A2 + 3B2 = p , A ≡ 1 mod 3 , A > 0 .

Put ρ = A+B
√−3, and let χ denote the multiplicative character of Fp defined by α �→ (

α
ρ

)
3.

Then we have:
(a) P(t) = (1 + pt2)3 if χ(a) = 1;
(b) P(t) = (1 + pt2)(1 − pt2 + p2t4) if χ(a) �= 1.
(4) Suppose p ≡ 11 mod 12. Then we have P(t) = (1 + pt2)3.

PROOF. Let Y and X be the hyperelliptic curves over the finite field Fp defined by

y2 = x12 + a and by y2 = x6 + a, respectively, and let J (Y ), J (X) and J (X̃) denote the

Jacobian varieties of Y , X and X̃, respectively. We consider the covering Y → X defined

by (x, y) �→ (x2, y) and the covering Y → X̃ defined by (x, y) �→ (x2, xy). Then J (Y ) is

isogenous to J (X) × J (X̃) (cf. [7, Theorem C]). This implies that

P(J (Y )/Fp; t) = P(J (X)/Fp; t)P (J (X̃)/Fp; t) .

Therefore we can verify the assertion easily by Remark 1.10 and Theorem 4.2.

REMARK 5.2. [6] announced the assertions of Proposition 5.1 in a slightly different
style.

REMARK 5.3. Let X̃ be the hyperelliptic curve over the finite field Fp defined by the

affine equation y2 = x(x6 + a).

If p ≡ 1, 5 mod 12, then J (X̃) is isogenous the product of three ordinary elliptic curves

with complex multiplication in Q(
√−1) over Fp.

If p ≡ 7, 11 mod 12, then J (X̃) is isogenous to the product of three supersingular
elliptic curves over Fp.

REMARK 5.4. It is known that if pi ≡ −1 mod m for some integer i > 0, then the
Fermat curve defined by xm + ym = 1 is supersingular, and therefore every curve which is a
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quotient of the Fermat curve is also supersingular (See [9]). This implies that the hyperelliptic

curve defined by y2 = x6+a over the finite field Fp is supersingular if p ≡ 5 mod 6, and the

hyperelliptic curves y2 = x12+a and y2 = x(x6+a) over the finite field Fp are supersingular
if p ≡ 11 mod 12. Therefore, from this fact, Prop 2.1 (2) and Theorem 3.1 (4), Theorem 4.1
(4), Proposition 5.1 (4) follow immediately.
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