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Abstract. Recently, under the influence of Elkies’ conjecture [2], the optimal recursive towers of algebraic
function fields (of one variable) over the finite fields with square cardinality are studied [3, 5, 6]. In this paper, we
define the limit

lim
i→∞ (the number of places of degree n in Fi/Fq )/(genus of Fi )

of a tower F0 ⊆ F1 ⊆ F2 ⊆ · · · over the finite field Fq . Using this limit, we prove that all the proper constant field
extensions of all the optimal towers over the finite fields with square cardinality are not optimal, and we show a simple
criterion whether a tower is optimal or not. Moreover, we give many new recursive towers of finite ramification type.

1. Introduction

Let q be a power of a prime p, and Fq the finite field of cardinality q . In this paper,
we deal with (algebraic) function fields F (of one variable) with full constant field Fq . Let
Bn(F ) := Bn(F/Fq) be the number of places of degree n of F/Fq . We denote by g(F ) the
genus of F . A. Garcia and H. Stichtenoth [3] introduced the notion of towers: A tower of
function fields over Fq is a sequence

F := (F0, F1, F2, . . . )

of function fields F0/Fq, F1/Fq, F2/Fq, . . . with the following properties:
i) each field Fi+1 is a finite separable extension of Fi of degree> 1.

ii) the genus of Fs is greater than 1 for some s.
They also defined the limit of a tower λ(F) = λ(F/Fq) := limi→∞ B1(Fi)/g(Fi ). A

tower F is said to be asymptotically good (resp. asymptotically bad) if λ(F) > 0 (resp.
λ(F) = 0). Here we present the value A(q) := lim supg→∞ Nq(g)/g , where Nq(g) :=
max{B1(F ) | F/Fq is a function field of genus g}. Note that A(q) provides an upper bound
for λ(F/Fq). A tower F/Fq is said to be (asymptotically) optimal if λ(F/Fq) = A(q).
Y. Ihara [8] (independently, M. A. Tsfasman, S. G. Vlăduţ and T. Zink [12] in some cases)
showed that

A(q) = √
q − 1 for a square q ,(1)
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and V. G. Drinfeld and Vlăduţ [1] proved the so-called Drinfeld-Vlăduţ bound A(q) ≤ √
q−1

for a unconditional q .
Now we generalize the notion of the limit λ(F), and present the notation of composite

tower (cf, [10] for asymptotically exact families):

DEFINITION 1.1. Let F = (F0, F1, F2, . . . ) be a tower of function fields over Fq , and
Fqn the n-th cyclic Galois extension of Fq . We define the compositum

FFqn := (F0Fqn, F1Fqn , F2Fqn, . . . )

of F and Fqn , and the limit of a tower

∆n(F) := ∆n(F/Fq) := lim
i→∞ Bn(Fi)/g(Fi ) .

We call FFqn/Fqn the composite tower of F/Fq and Fqn , and ∆n(F/Fq) the generalized
Garcia-Stichtenoth number (of degree n) of F/Fq . (The sequence FFqn is a tower over Fqn

and the sequence (Bn(Fi)/g(Fi))i≥0 is convergent, see Section 2.)

The aim of this paper is to study exact values of ∆n(F), and upper and lower bounds for
∆n(F). Our main theorems are:

THEOREM 1.2. Let q be a square. Suppose that F is an optimal tower of function
fields over Fq . Then, for all n ≥ 2, we obtain

∆n(F/Fq) = 0 and λ(FFqn/Fqn) = √
q − 1 .

In particular, the composite tower FFqn is not optimal.

Let PF denote the set of places of F/Fq . A tower F = (F0, F1, F2, . . . ) is said to be
tame if each extension Fi+1/Fi is tame.

COROLLARY 1.3. Assume that F = (F0, F1, F2, . . . ) is a tame tower of function
fields over Fq satisfying conditions

(i) VF0 := {P ∈ PF0 | P is ramified in Fi/F0 for some i > 0} is finite;
(ii) Spln(F/Fq) := {P ∈ PF0 | P splits completely in all Fi/F0, and deg P = n} is

non-empty for some n ≥ 2. (For brevity, we write Spln as Spln(F/Fq).)

Then λ(F) <
√

q − 1. Moreover, if q is a square, then F is not optimal.

A tower F = (F0, F1, F2, . . . ) is said to be of finite ramification type if VF0 < ∞.
Perhaps, whether a recursive tower of the Kummer type [5], [7] (resp. the Artin-Schreier

type [3]) is optimal or not is dependent on the characteristic p (resp. the defining equation). So
optimal recursive towers (of degree 2) of the Kummer type should be constructed as follows
(see Section 4):

• First: Set two polynomials ax2 + bx + c, αx + β ∈ Z[x] with a · α �= 0;

• Second: Choose one prime number p such that the reduction āx2 + b̄x + c̄ at p is a

separable polynomial over Fp, ā · ᾱ �= 0 and ᾱx + β̄ � āx2 + b̄x + c̄;



OPTIMAL TOWERS OVER FINITE FIELDS 479

• Third: By increasing the value of n from 1, find a finite field Fp2n over which the

recursive tower F given by y2 = (āx2 + b̄x + c̄)/(ᾱx + β̄) is optimal.
In general, this algorithm is not deterministic. However, if a tower F over Fp2n is optimal for

some n, this finishes by Theorem 1.2, because the composite towers FFp2nm over Fp2nm are

no longer optimal for all m > 1.
The contents of this paper are as follows: In Section 2, we show the convergence of the

sequence in Definition 1.1 (see Proposition 2.2), and we present some simple properties about
the generalized Garcia-Stichtenoth numbers ∆n(F) without proofs, which are generalizations
of the results [4, 6] and [7] in the ordinary cases λ(F) (see Propositions 2.3 and 2.4 and 2.5).
The first half of Section 3 gives Keylemma in order to prove the main theorems. A similar
result to this keylemma can be obtained from Corollary 1 in [10]. However, our proof that
uses the same techniques as that of the Drinfeld-Vlăduţ bound is completely different from
his, and ours is very elementary. The latter half of Section 3 shows Theorem 1.2 and Corollary
1.3. In Section 4, we compute several examples. From them, we see that the lower and upper
bounds in Section 2 and 3 can not be improved (see Examples 4.2 and 4.3).

In this paper, we use the notation of the textbook [9] of Stichtenoth.

2. Preliminaries

In the section, we will prove that there exists the limit of a tower ∆n(F), and we give
three elementary properties of this limit. First, we recall some facts about constant field
extensions (cf, [9] Chap. III.6). Let F be a function field over Fq of genus g . Fix an algebraic

closure F̄q of Fq and the constant field extension F F̄q of F . By FFqn(⊆ F F̄q), we denote
the compositum of the fields F and Fqn . Then FFqn is a function field with full constant field
Fqn , and its genus g(FFqn) is equal to g (see, [9] III.6.1 and III.6.3). Hence, if F is a tower
over Fq , then so FFqn is over Fqn from Galois Theory. Second, we show that the sequence
(Bn(Fi)/g(Fi)) is convergent.

LEMMA 2.1. For any tower F , the sequence (B1(Fi)/g(Fi))i≥0 is convergent.

PROOF. See Corollary 2.2 in [3]. �

PROPOSITION 2.2. For every n > 0 and any tower F = (F0, F1, F2, . . . ), the se-
quence (Bn(Fi)/g(Fi ))i≥0 is convergent.

PROOF. We proceed by induction on n. The assertion is trivial for n = 1 by Lemma
2.1. Recall the formula

B1(FiFqn/Fqn) = B1(Fi/Fq) +
∑

d |n,d �=1

d · Bd(Fi/Fq)(2)

(see, [9] p178). Assume that n > 1 and that the limits ∆m(F/Fq) exist for all m < n. By di-
viding both sides of the formula (2) by the genus g(Fi ) (note that g(Fi) > 1 for a sufficiently
large i), we get B1(FiFqn/Fqn)/g(Fi) = B1(Fi/Fq)/g(Fi)+∑

d |n,d �=1 d ·Bd(Fi/Fq)/g(Fi).



480 TAKEHIRO HASEGAWA

Since (B1(FiFqn/Fqn)/g(Fi)) and (Bm(Fi)/g(Fi)) are convergent (for all m < n) from
Lemma 2.1 and the assumption of induction, the sequence (Bn(Fi)/g(Fi)) is also conver-
gent from the above equation and we obtain

λ(FFqn/Fqn) = λ(F/Fq) +
∑

d |n,d �=1

d · ∆d(F/Fq) .(3)

This completes the proof of this proposition. �

REMARK. (a) It follows from the formula (3) and the Drinfeld-Vlăduţ bound that if
F/Fq is asymptotically good, then so FFqn/Fqn is (for each n) and that

∆n(F/Fq) ≤ (
√

qn − 1)/n .

(b) By using the formula (2) and the Möbius inversion formula (see, [9] p178), it can
be also shown that (Bn(Fi)/g(Fi)) is convergent.

Last, we generalize the theorems in [4, 6] and [7]. Their proofs are the same as the
original. The Key is to use B1(FFqn) ≥ n · Bn(F ) obtained from the formula (2).

PROPOSITION 2.3. Suppose that a tower F = (F0, F1, F2, . . . ) over Fq is given by

Fi = Fi−1(xi) = Fq(x0, x1, . . . , xi) ,

where x0 is transcendental over Fq and xi (for each i ≥ 1) satisfies an absolutely irreducible
polynomial Φ(xi−1, Y ) ∈ Fi−1[Y ] with Φ(X, Y ) ∈ Fq [X,Y ]. Assume that Φ is separable
both in X and Y , and degX Φ �= degY Φ. Then ∆n(F) = 0 for all n.

We do not know whether the converse of this proposition is true or not, namely, if Φ is
separable both in X and Y , degX Φ = degY Φ and #VF0 < ∞, then λ(FFqn/Fqn) > 0 for a
sufficiently large n? Several numerical computations of this question can be seen in Example
4.3 and Remark of the last section.

The following is the best possible lower bound for tame towers (see Example 4.3).

PROPOSITION 2.4. Let n > 0. Suppose that F/Fq is a tame tower with #VF0 < ∞
and #Spln �= 0. Then ∆n(F) ≥ 2 · #Spln/(2g(F0) − 2 + ∑

P∈VF0
deg P ) > 0.

Next, we give an upper bound of ∆n(F).

PROPOSITION 2.5. Let s > 0 and n > 0. Assume that F is a tower satisfying the

condition: the set Σs = {
l ∈ N

∣∣ F satisfies the inequalities
deg Diff(Fs+j /Fs+j−1)

[Fs+j :Fs+j−1]−1 ≥ [Fs+j−1 :
F0]+[F1 : F0], for all 1 ≤ j ≤ l

}
is non-empty. Then, for every l ∈ Σs , we obtain ∆n(F) ≤

2tn/(2g(F0) − 2 + R(s, l) + ds), where R(s, l) := l+ [Fs+l :Fs ]−1
[Fs+l :F1] −∑l

j=1
1

[Fs+j :Fs+j−1] , tn :=
limi→∞ Bn(Fi)[Fi :F0] and ds := deg Diff(Fs/F0)[Fs :F0] .
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3. Proofs of the main theorems

We show the main results. In their courses, we need three lemmas which will be proved
first. Let q be a power of a prime.

LEMMA 3.1. Let m be a non-negative integer. Then,

(a)
∑m

s=0(m + 1 − s) · (√q)−s = (m+1)·q−(m+2)·√q+(1/
√

q)m

(
√

q−1)2 ;
(b)

∑m
s=0(m + 1 − s) · (√q)s = (

√
q)m+2−(m+2)·√q+m+1

(
√

q−1)2 .

PROOF. (a) First recall an equation
∑m+1

s=0 T s = (1 − T m+2)/(1 − T ), where T is an

indeterminate element. Next the derivative of the equation (at T ) is given by
∑m

s=0(s +
1) · T s = (m+1)·T m+2−(m+2)·T m+1+1

(1−T )2 . Multiplying both sides of the equation by 1/T m, we

get
∑m

s=0(s + 1) · T s−m = (m+1)·T 2−(m+2)·T +(1/T )m

(1−T )2 ; that is,
∑m

s=0(m + 1 − s) · T −s =
(m+1)·T 2−(m+2)·T+(1/T )m

(1−T )2 . Now substituting
√

q for T of the equation, we obtain the result.

(b) Replacing T of the same equation by 1/
√

q, we obtain the other result. �

Here |r| (resp. r̄) denotes the absolute value (resp. the complex conjugate) of a complex
number r .

LEMMA 3.2. Let m > 0, and let β be a complex number with |β| = 1. Then, m + 1 +∑m
s=1(m + 1 − s) · βs + ∑m

s=1(m + 1 − s) · β−s is a non-negative real number.

PROOF. Note that m+1+∑m
s=1(m+1−s)·βs +∑m

s=1(m+1−s)·β−s = ∑m
s=−m(m+

1 − |s|) · βs . Since β · β̄ = 1 by our assumption, we obtain | ∑m
s=0 βs |2 = (∑m

s=0 βs
) ·(∑m

t=0 β̄ t
) = (∑m

s=0 βs
) · (∑m

t=0 β−t
)
, i.e.

(∑m
s=0 βs

) · (∑m
t=0 β−t

) = ∑m
s,t=0 βs−t =∑m

s=−m(m + 1 − |s|) · βs . As a consequence, we get m + 1 + ∑m
s=1(m + 1 − s) · βs +∑m

s=1(m + 1 − s) · β−s = | ∑m
s=0 βs |2 ≥ 0. This completes the proof of the claim. �

The congruence zeta function Z(t) = ZF (t) (resp. L-polynomial L(t) = LF (t)) of

a function field F/Fq is defined as follows: Z(0) := 1 and Z(t) := ∑∞
n=1 B1(FFqn)tn−1

(resp. L(t) := (1 − t)(1 − qt) · Z(t)). We know that L(t) factors in C[t] in the form

L(t) = ∏2g
i=1(1 − αi t), αj · αg+j = q for j = 1, . . . , g , where g is the genus of F (see, [9]

V.1.15 (e)), and the reciprocals of the roots of L(t) satisfy |αi | = √
q for i = 1, . . . , 2g from

the Hasse-Weil theorem. Putting βi := αi/
√

q for i = 1, . . . , 2g , we see that βj · βg+j = 1
holds for j = 1, . . . , g , and |βi| = 1 for i = 1, . . . , 2g . Thus we obtain

2g∑
i=1

βs
i =

2g∑
i=1

(
1

βi

)s

(4)
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for all positive integers s. By ([9] V.1.16), we have B1(FFqs ) = qs + 1 − ∑2g
i=1(βi · √

q)s

for all s. Multiplying both sides of this equation by (1/
√

q)s , we get

B1(FFqs )

(
√

q)s
= (

√
q)s +

(
1√
q

)s

−
2g∑
i=1

βs
i .(5)

LEMMA 3.3 (Keylemma). Let F/Fq be a tower. Then, for each n ≥ 2, we obtain

∆n(F) ≤ c · (1 − λ(F)/(
√

q − 1)
) ≤ c for some constant c > 0 (depending on n).

PROOF. Fix any integer n ≥ 2. As the genus g(Fi) tends to ∞ for i → ∞ from
definition of towers and the Hurwitz Genus Formula, there exists the function field Fj/Fq such

that n < log[logq g(Fj )2], where [r] denotes the integer part of the real number r . Here we set

m := m(j) := [logq g(Fj )
2], l := l(j) := [(log m)/n] ≥ 1 and g = g(Fj ). Let α1, . . . , α2g

be the reciprocals of the roots of LFj (t), and βi = αi/
√

q for i = 1, . . . , 2g . Note that each βi

satisfies the condition in Lemma 3.2. Summing the values in the lemma over i = 1, . . . , 2g ,

we obtain 2g(m + 1) + ∑m
s=1(m + 1 − s)

∑2g
i=1 βs

i + ∑m
s=1(m + 1 − s)

∑2g
i=1 β−s

i ≥ 0; that

is, by Eq.(4), g(m + 1) + ∑m
s=1(m + 1 − s)

∑2g
i=1 βs

i ≥ 0. From Eq. (5), we get

g(m + 1) +
m∑

s=1

(m + 1 − s)

(
(
√

q)s +
(

1√
q

)s

− B1(FFqs )

(
√

q)s

)
≥ 0 ;

thus,

g(m + 1) +
m∑

s=1

(m + 1 − s)

(
(
√

q)s +
(

1√
q

)s)
≥

m∑
s=1

(m + 1 − s)
B1(Fj Fqs )

(
√

q)s
.(6)

On the other hand, by the formula (2), we obtain

g(m + 1) +
m∑

s=1

(m + 1 − s)

(
(
√

q)s +
(

1√
q

)s)
− B1(Fj ) ·

m∑
s=1

m + 1 − s

(
√

q)s

≥
m∑

s=2

m + 1 − s

(
√

q)s
·

∑
d |s,d>1

d · Bd(Fj ) .

Noting that n ≥ 2, l ≥ 1 and Bs(Fj ) is a non-negative integer for all s, we obtain

m∑
s=2

m + 1 − s

(
√

q)s
·

∑
d |s,d>1

d · Bd(Fj ) ≥ n · Bn(Fj ) ·
l∑

t=1

m + 1 − tn

(
√

q)tn

≥ (m + 1 − ln)n · Bn(Fj ) ·
l∑

t=1

(
1√
qn

)t

= m + 1 − ln

c
·
(

1 −
(

1√
qn

)l)
· Bn(Fj ) ,
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where c = (
√

qn − 1)/n. From Lemma 3.1, we get

g(m + 1) + (
√

q)m+2 − (m + 2)
√

q + m + 1

(
√

q − 1)2

+ (m + 1)q − (m + 2)
√

q + (1/
√

q)m

(
√

q − 1)2
− 2(m + 1)

− B1(Fj ) ·
(

(m + 1)q − (m + 2)
√

q + (1/
√

q)m

(
√

q − 1)2 − (m + 1)

)

≥ m + 1 − ln

c
·
(

1 −
(

1√
qn

)l )
· Bn(Fj ) .

Multiplying both sides of this inequality by 1/g(m + 1), we get

1 + (
√

q)m+2 − (m + 2)
√

q + m + 1

g(m + 1)(
√

q − 1)2

+ (m + 1)q − (m + 2)
√

q + (1/
√

q)m

g(m + 1)(
√

q − 1)2 − 2

g

− B1(Fj )

g
·
(

(m + 1)q − (m + 2)
√

q + (1/
√

q)m

(m + 1)(
√

q − 1)2 − 1

)

≥ 1

c
· Bn(Fj )

g
· m + 1 − ln

m + 1
·
(

1 −
(

1√
qn

)l )
.

This shows that 1 − λ(F)/(
√

q − 1) ≥ (1/c) · ∆n(F), because it is easily seen that

(
√

q)m+2 − (m + 2)
√

q + m + 1

g(m + 1)(
√

q − 1)2 → 0 ;

(m + 1)q − (m + 2)
√

q + (1/
√

q)m

g(m + 1)(
√

q − 1)2
→ 0 ;

(m + 1)q − (m + 2)
√

q + (1/
√

q)m

(m + 1)(
√

q − 1)2
− 1 → 1√

q − 1

for j → ∞. This finishes the proof of Lemma 3.3. �

We now begin the proofs of the main theorems.

PROOF OF THEOREM 1.2. Recall that A(q) = √
q − 1 by Eq. (1). Since F is optimal,

we obtain λ(F/Fq) = A(q) = √
q − 1. It follows from Lemma 3.3 that ∆n(F/Fq) = 0 for

all n ≥ 2. So, from the formula (3), we obtain

λ(FFqn/Fqn) = λ(F/Fq ) = √
q − 1 for all n ≥ 2 .

Hence FFqn is not optimal since λ(FFqn/Fqn) = √
q − 1 < A(qn) = √

qn − 1. �
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PROOF OF COROLLARY 1.3. It follows from Proposition 2.4 and Lemma 3.3 that

0 < ∆n(F) ≤ c ·
√

q − 1 − λ(F)√
q − 1

.

Thus we obtain
√

q − 1 − λ(F) > 0. If q is a square, then λ(F) <
√

q − 1 = A(q) by Eq.
(1). Therefore F is not optimal. This completes the proof of Corollary 1.3. �

4. Examples

In this section, we state several examples of our results and new recursive towers of finite
ramification type. Firstly, we introduce an example of the Artin-Schreier type.

EXAMPLE 4.1 ([3]). Consider the tower F/Fq2 given recursively by the so-called

Garcia-Stichtenoth equation yq + y = xq/(xq−1 + 1). Then, since this is optimal, we obtain
∆n(F) = 0 and λ(FFq2n) = q − 1 for all n ≥ 2 by Theorem 1.2.

Secondly, we give a tower that attain the upper bound of Lemma 3.3, which is of the
Kummer type.

EXAMPLE 4.2 ([2] Equation 45). Let p ≥ 5, and let G/Fp be the tower given recur-

sively by y2 = x(x + 3)/(x − 1). Then λ(G) = 0 and ∆2(G) = (p − 1)/2.

REMARK. It can be shown that the tower GFp2/Fp2 is optimal.

Thirdly, we introduce a tower whose generalized Garcia-Stichtenoth number is equal to
its lower bound in Proposition 2.4.

EXAMPLE 4.3 ([5] Example 4.3). Consider the tower T1/Fq defined recursively by

the equation y2 = x(x − 1)/(x + 1). Then,

λ(T1/Fq) =
{

0 if q = 3 ;

2/3 if q = 9n ,
∆2n(T1/F3) =

{
1/3 if n = 1 ;

0 if n ≥ 2

from the formula (3).

REMARK. In the tower T1/F3, we know that

VT0 = {∞, Px0, Px0+1, Px0−1, Px2
0+x0−1, Px2

0−x0−1} and Spl2 = {Px2
0+1} ,

where ∞ is the infinite place of T0 and Pp(x) is the zero of p(x) (see, [9] Chap. I.2).

Hence we obtain ∆2(T1/F3) ≥ 2·1
2g(T0)−2+8 = 1

3 from Proposition 2.4 since g(T0) = 0 and∑
P∈VT0

deg P = 8. As a consequence, we see that this lower bound can not be improved.

REMARK ([5] Example 4.5). Suppose that T2/Fq is given by the equation y2 =
x(x + 1)/(x − 1). Then, λ(T2/F3) = λ(T2/F9) = 0 and λ(T2/F81n ) = 2 for n ≥ 1.
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Next, we list the towers over Fp2 (p = 3, 5, 7) of finite ramification type defined recur-
sively by the specific equation

y2 = (f (x) :=)
ax2 + bx + c

αx + β
, a, b, c, α, β ∈ Fp, a · α �= 0 .

By the following proposition, without loss of the generality, we can assume a = α = 1.

PROPOSITION 4.4. Let q be a power of p ≥ 3. Suppose that F/Fq (resp. G/Fq) is
the tower given recursively by the equation

y2 = f (x)

(
resp. y2 = x2 + b′x + c′

x + β ′ , b′ = bα

a2
, c′ = cα2

a3
, β ′ = β

a

)
.

Then the generalized Garcia-Stichtenoth numbers of F are equal to those of G.

PROOF. Substituting ( α
a
x, α

a
y) for (x, y) of the defining equation of G, we obtain that

of F . So the asymptotic behavior of places in G corresponds to that in F , that is, Bn(Gi) =
Bn(Fi) and g(Gi) = g(Fi) for all i, and ∆n(G) = ∆n(F) for each n. �

The following recursive towers are of finite ramification type. Using Proposition 2.4, we
see that the six towers T4,T11,T12,T17,T19 and T21 are optimal.

• Case p = 3 f (x) Reference
T1: x(x − 1)/(x + 1); [5] Example 4.3
T2: x(x + 1)/(x − 1); [5] Example 4.5
T3: (x + 1)(x − 1)/x;
T4: (x2 + 1)/x; [5] Notation 5.1
T5: (x2 − x − 1)/(x + 1);
T6: (x2 + x − 1)/(x − 1).

• Case p = 5
T7: x(x + 1)/(x − 1); [5] Example 4.5
T8: x(x + 2)/(x + 1); [5] Example 4.7
T9: (x + 1)(x − 2)/(x + 2);
T10: (x + 2)(x − 1)/(x − 2);
T11: x(x − 2)/(x − 1); [2] Equation 45
T12: (x − 1)(x + 1)/x; [5] Notation 5.1
T13: (x + 1)(x − 2)/x;
T14: (x2 − x + 2)/(x + 1);
T15: (x2 − 2x − 1)/x;
T16: (x2 + 2)/(x + 2).

• Case p = 7
T17: x(x + 1)/(x − 1); [5] Example 4.5
T18: x(x + 2)/(x − 1);
T19: x(x + 3)/(x − 1); [2] Equation 45
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T20: (x2 + 1)/(x + 1);
T21: (x2 − 3)/x. [5] Notation 5.1

Here, in order to compute λ(T1) and λ(T8), we give the following result:

PROPOSITION 4.5. Let q be a power of a prime p ≥ 3 and let a, b ∈ Fq, a �= b.
Consider the tower F = (F0, F1, F2, . . . ) over Fq defined recursively by the equation

y2 = (x − a)(x − b)

x − ab − a − b

a + b

.

If a + b = −β2 for some β ∈ Fq , then the places Px0+β and Px0−β in F0/Fq split completely
in the extensions Fi/F0 for all i.

PROOF. We show the claim by using induction on i and the Kummer’s theorem ([9]
III.3.7). First, put P = Px0−β and

ϕ(T ) = T 2 − (x0 − a)(x0 − b)

x0 − ab − a − b

a + b

.

Then ϕ(T ) ∈ OP [T ] as ab−a−b
a+b

�= β, where OP is the discrete valuation ring of P . In fact,
ab−a−b

a+b
= β implies β2 − (a + b)β + ab = 0 (since a + b = −β2). Therefore β = a or b,

and then the defining equation of F is y2 = x − a or x − b. No towers can be constructed
from such an equation, which is a contradiction.

In OP /P [T ] (= Fq [T ]),

ϕ̄(T ) = T 2 − (β − a)(β − b)

β − ab − a − b

a + b

= T 2 − β2 = (T − β)(T + β) .

Similarly, for the other place Px0+β , we obtain

ϕ̄(T ) = T 2 − (−β − a)(−β − b)

−β − ab − a − b

a + b

= (T − β)(T + β) .

The assertion follows immediately from the Kummer’s theorem. �

By this proposition and Proposition 2.4, we see that λ(T1) ≥ 2/3 and λ(T8) ≥ 1. It can
be shown from direct computations that the equalities hold above.
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