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Abstract. In the stochastic context, an invariant set is decomposed into the union of ergodic basins, and each
of basin possesses the fractal structure determined by ergodic measures. This paper is to show that when a hyperbolic
SRB measure is mixing, the set of measures with zero entropy and the set of measures with positive entropy but
without SRB are both dense on the set of all invariant measures on the closure of the ergodic basin in the Pesin set,
and moreover that in the set of invariant measures as above a measure with ergodicity and SRB exists uniquely.

1. Introduction

The set of invariant Borel probability measures of a compact metric space is compact
convex with respect to the weak∗-topology and its extreme points are ergodic measures.
Every invariant measure is decomposed by the ergodic measures ([12]). This means that
ergodic measures play an important role in the study of stochastic dynamics.

The set of points satisfying Birkhoff’s ergodic theorem for any continuous function is
called theergodic basin. If the ergodic basin has the positive Lebesgue measure, then the
measure is said to be aSinai-Ruelle-Bowen measure (abbrev. SRB measure). Sinai, Ruelle
and Bowen showed the existence of an SRB measure for a hyperbolic attractor ([6]). Our
aim of this paper is to investigate a characteristic of the set of ergodic measures under the
assumption of the existence of an SRB measure.

In the context of nonuniformly hyperbolic system, the theory of SRB measures has been
developed by Pesin, Katok, Ledrappier, Young and several other mathematicians ([15], [20],
[23]).

In [23] Pugh and Shub proved that a hyperbolic measure satisfying SRB condition is an
SRB measure. Here let us say that an invariant measureµ satisfiesSRB condition if µ has
absolutely continuous conditional measures on unstable manifolds.

Firstly, we shall show that if a hyperbolic ergodic measure satisfies SRB condition, then
its support is an SRB attractor (which is called an ergodic attractor in [23]) and that the
attractor has similar properties to hyperbolic attractors (Theorem 3.2).
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Secondly, under the same assumption, the set of ergodic measures will be divided into
several classes according to their entropy and some of them satisfy the properties as stated in
[27] (Theorem 4.1). A key point of the investigation is a theorem (Theorem 2.4), which is a
version of nonuniformly shadowing property obtained by Katok ([12], Theorem S.4.14) and
Pollicott ([22], Theorem 5.1).

Finally, we shall find several properties of measures satisfying SRB condition or absolute
continuity (Theorem 5.4, Theorem 5.7).

Throughout this paper, letf be aC2-diffeomorphism of ann-dimensional closed man-
ifold M andµ be anf -invariant Borel probability measure onM. We denote byd(·, ·) and
‖ · ‖ the distance and the norm induced by the Riemannian metric〈·, ·〉 onM respectively. Let
m denote the Lebesgue measure onM. Thesupport of µ is the set of allx ∈ M satisfying
thatµ(U) > 0 for any neighborhoodU of x, and is denoted by Supp(µ). To simplify the
notation we will often putS = Supp(µ).

An f -invariant setA is called anSRB attractor or anergodic attractor of µ if the
setA has fullµ-measure and there exists a setW ⊂ M with positive Lebesgue measure such
that (i) forw ∈ W , dist(f n(w),A) = inf{d(f n(w), y) : y ∈ A} → 0 asn → ∞, (ii)if we set

R(µ) =
{
x ∈ M

∣∣∣∣ lim
n→∞

1

n

n−1∑
i=0

ϕ(f i(x)) =
∫
ϕdµ (ϕ : M → R: continuous)

}

(which is called anergodic basin ofµ), thenW ⊂ R(µ) except for anm-null set. We remark
thatµ is an SRB measure if and only if there exists an SRB attractorA of µ(Remark 3.1(a)).

By [19], there exists a setYµ ⊂ S = Supp(µ) with full µ-measure such that every

x ∈ Yµ has aDxf -invariant decomposition TxM = ⊕t (x)
i=1 Ei(x) into subspacesEi(x) and

real numbersχ1(x) > χ2(x) > · · · > χt(x)(x) (1 ≤ t (x) ≤ n) which satisfy the following
properties:

(1) lim
n→±∞

1

n
log‖Dxf n(v)‖ = χi(x) (v ∈ Ei(x)\{0}) ,

(2) lim
n→±∞

1

n
log sin( 
 (Dxf n(Ei(x)),Dxf n(Ej (x)))) = 0 (i 
= j, 1 ≤ i, j ≤ t) .

HereDxf denotes the derivative off atx and
 (A,B) = min
{

cos−1 |〈u,v〉|
‖u‖‖v‖ | u ∈ A, v ∈ B}

for subspacesA, B ⊂ Rn. For x ∈ Yµ, dimEi(x) is the dimension ofEi(x), which means
the multiplicity of χi(x). We callχi(x) (1 ≤ i ≤ t (x) ≤ n) Lyapunov exponents of µ at
x ∈ Yµ. If µ is ergodic, thent (x), χi(x) and dimEi(x) are constantst (x) = t, χi(x) = χi

and dimEi(x) = dimEi for µ-a.e.x.
An invariant measureµ is calledhyperbolic if all Lyapunov exponents ofµ are different

from 0.
Here after assume thatµ is ergodic and hyperbolic, and put

χs = max{χi < 0 |1 ≤ i ≤ t} , χu = min{χi > 0 |1 ≤ i ≤ t} ,
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Es(x) =
⊕
i:χi<0

Ei(x), Eu(x) =
⊕
i:χi>0

Ei(x) .

Then these subspaces areDxf -invariant and satisfyTxM = Es(x) ⊕ Eu(x). Fix ε > 0
sufficiently small and writeΛl (l > 0) the set of all pointsx satisfying the following:

(i) for v ∈ Es(x) andn > 0

‖Dxf n(v)‖ ≤ exp(2εl) exp(n(χs + ε))‖v‖ ,
(ii) for v ∈ Eu(x) andn > 0

‖Dxf−n(v)‖ ≤ exp(2εl) exp(n(−χu + ε))‖v‖ ,
(iii) for n ∈ Z

sin( 
 (Dxf n(Es(x)),Dxf n(Eu(x)))) ≥ exp(−ε(l + |n|)) .
Then

(3) Λl is a closed set,
(4) f (Λl) ⊂ Λl+1 for l > 0,
(5) the above subspacesEs(x) andEu(x) depend continuously onx ∈ Λl ,
(6) Λ = ⋃∞

l=1Λl is f -invariant.

Λ = ⋃∞
l=1Λl is said to be aPesin set with respect toµ (abbrev. w.r.t.µ).

It is well known (see [20]) that for everyx ∈ Λ there exist thelocal stable andunstable
manif olds Ws

loc(x) andWu
loc(x) such that

f (Ws
loc(x)) ⊂ Ws

loc(f (x)) , f−1(Wu
loc(x)) ⊂ Wu

loc(f
−1(x))

andEσ (x) = TxW
σ
loc(x) (σ = s, u). Thestable andunstable manif olds Ws(x) andWu(x)

are defined by

Ws(x) =
⋃
n≥0

f−n(Ws
loc(f

n(x))) , Wu(x) =
⋃
n≥0

f n(Wu
loc(f

−n(x))) .

Let B be the Borelσ algebra. For a measurable partitionξ of M denote byBξ the set
of all Borel subsets which consist of the unions of the elements ofξ . A measurable partition

ξ defines a family of measures{µξx} (µ-a.e.x) such that forµ-a.e.x andB ∈ B, µξx(B) is a
Bξ -measurable function ofx and

µ(E ∩ B) =
∫
E

µξx(B)dµ(x) (E ∈ Bξ ) .

If there exists a sequence{ξi}i≥1 of countable measurable partitions such that

ξ1 ≤ ξ2 ≤ · · · ≤ ∨i≥1ξi = ξ ,

thenµξx(ξ(x)) = 1 whereξ(x) denotes the element ofξ containingx. The family of measures

{µξx} (µ-a.e.x) is said to bethe canonical system of conditional measures of µ w.r.t. ξ .
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We assume that a measurable partitionξu of M is subordinate to the Wu-f oliation,
that is,ξu satisfies that(7) ξu(x) ⊂ Wu(x) and(8) ξu(x) contains an open set inWu(x) for
µ-a.e.x. Let {µux} (µ-a.e.x) denote a canonical system of conditional measures ofµ w.r.t. ξu

andmux denote the Lebesgue measure onWu(x). If µux is absolutely continuous w.r.t.mux for
µ-a.e.x (µux � mux), then we say thatµ satisf ies SRB condition (for f ).

It is well known thatµ satisfies SRB condition forf if and only if the measure theoretic
entropyhµ(f ) has

hµ(f ) =
∑
i:χi>0

χi dimEi

([13] Theorem 4.8, [14] Theorem 1.2, [15] Theorem A). It follows from the proof of Theorem
A in [15] that if µ satisfies SRB condition forf then

µux ∼ mux |ξu(x) (µ-a.e.x). (1.1)

Here the notationµux ∼ mux |ξu(x) indicates that both relationsµux � mux |ξu(x) andµux �
mux |ξu(x) hold. If a hyperbolic measureµ satisfies SRB condition forf , then its support is an
SRB attractor (Remark 3.1(b)).

2. Nonuniformly Shadowing Property

Let µ be a hyperbolic ergodic measure andΛ be a Pesin set w.r.t.µ. Forh ∈ (0,1] we

denote byBs(h) ⊂ RdimEs (Bu(h) ⊂ RdimEu ) be an s-closed ball (u-closed ball) centered at
0 of radiush w.r.t. the Euclidean norm. Forγ ∈ (0,1), δ ≥ 0 andh ∈ (0,1] we define

Uγ,δ0 = {graph(ϕ) | ϕ : Bu(h) → Bs(h) is aC1 map satisfying|Dϕ| ≤ γ, |ϕ(0)| ≤ δ} ,
Sγ,δ0 = {graph(ϕ) | ϕ : Bs(h) → Bu(h) is aC1 map satisfying|Dϕ| ≤ γ, |ϕ(0)| ≤ δ} .

For x ∈ Λ we introduce an inner product〈·, ·〉′x of TxM such that〈·, ·〉′x depends con-
tinuously onx ∈ Λl for l ≥ 1, the angle betweenEs(x) andEu(x) in 〈·, ·〉′x is π/2 and for
n ∈ N

‖Dxf n(v)‖′ ≤ exp(n(χs + ε))‖v‖′ (v ∈ Es(x)) ,
‖Dxf−n(v)‖′ ≤ exp(n(−χu + ε))‖v‖′ (v ∈ Eu(x)) ,

where ‖ · ‖′ is the norm induced by〈·, ·〉′x . By using a linear mapCε(x) satisfying
〈Cε(x)(v), Cε(x)(w)〉′x = 〈v,w〉 for everyu, v ∈ Rn ([12], p. 666 Theorem S.2.10), we
define the mapΦx : Rn → M byΦx = expx ◦Cε(x).

There exists a Borel measurable functionq : Λ → R such thate−ε < q(x)/q(f (x)) <

eε ([12] p. 673 Theorem S.3.1 (1)) andΦx |B(q(x)) is injective. HereB(q(x)) = Bs(q(x))×
Bu(q(x)). We putfx = Φ−1

f (x) ◦ f ◦Φx andf−1
x = Φ−1

f−1(x)
◦ f−1 ◦Φx , and denote byD0fx

andD0f
−1
x the derivative offx andf−1

x at 0 respectively. Sincef isC2-class,fx−D0fx and
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f−1
x −D0f

−1
x are the Lipschitz continuous maps fromB(q(x)) to Rn with Lipschitz constant

ε. For simplicity we replaceB(α · q(x)) byB(α) for any 0< α ≤ 1.
We set

Uγ,δx = {Φx(V ) |V ∈ Uγ,δ0 } , Sγ,δx = {Φx(V ) |V ∈ Uγ,δ0 }
for x ∈ Λ. For γ > 0 small, the local stable (unstable) manifold ofx ∈ Λ belongs toSγ,δx
(Uγ,δx ).

REMARK 2.1 ([11], p. 153). Forl ∈ N there existsrl > 0 such that forx, y ∈ Λ with
y, f (x) ∈ Λl if d(y, f (x)) < rl then,

(a) forV ∈ Uγ,δx , f (V ) ∩Φy(B(1)) ∈ Uγ,δy ,

(b) forH ∈ Sγ,δy , f−1(H) ∩Φx(B(1)) ∈ Sγ,δx .

Forv = (v1, v2) ∈ Rn = RdimEs ⊕
RdimEu define a norm||| · ||| onRn by

|||v||| = max{|v1|, |v2|} .
Here| · | denotes the Euclidean norm onRn. Obviously

|||v||| ≤ |v| ≤ √
2|||v||| .

LEMMA 2.2 ([11], p. 149). For V ∈ Uγ,δ0 ,H ∈ Sγ,δ0 and x ∈ Λ,
(a) exp(χu − 2ε)|||y − z||| ≤ |||fx(y)− fx(z)||| (y, z ∈ V ),
(b) exp(−χs − 2ε)|||y − z||| ≤ |||f−1

x (y)− f−1
x (z)||| (y, z ∈ H).

LEMMA 2.3 ([12], p. 680). For l > 0 there exists rl > 0 such that for x, y ∈ Λl with
d(x, y) < rl

|Φ−1
y ◦Φx(v)− v| < ε|v| (v ∈ B(1)) .

Forα ∈ (0,1) andl > 0 there existsβl > 0 such that iff (x), y ∈ Λl andd(f (x), y) < βl,
thenf (Φx(B(α))) (f−1(Φy(B(α)))) intersects transverselyΦy(B(α)) (Φx(B(α))) along the
unstable (stable) direction as shown in Figure 1 (Figure 2) (see [22], Lemma 5.1).

FIGURE 1. A transverse intersection
(u-direction).

FIGURE 2. A transverse intersection
(s-direction).
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A sequence{xi}i∈Z ⊂ Λ is called a{βl}l≥1-pseudo-orbit if there exists a sequence
{sn}n≥1 ⊂ N such that forn ∈ Z xn ∈ Λsn , |sn − sn+1| ≤ 1 andd(f (xn), xn+1) ≤ βsn . Given

α > 0, a pointx ∈ M satisfyingd(f i(x), xi) < α for i ∈ Z is called anα-shadowing point
for a {βl}l≥1-pseudo orbit{xi}∞i=−∞.

THEOREM 2.4 (Uniqueness of Nonuniformly Shadowing Points).For α ∈ (0,1)
there exists a sequence {βl}l≥1 of positive real numbers such that for any {βl}l≥1-pseudo

orbit there exists a unique shadowing point x with f i(x) ∈ Φxi (B(α)) for i ∈ Z.

Theorem 2.4 is a reformation of the nonuniformly shadowing lemma by Katok ([11],
Main lemma) and Katok-Hasselblatt ([12], p. 690, Theorem S.4.14).

PROOF OFTHEOREM 2.4. As the existence of shadowing points is shown as in [11]
and [12], it remains only to show a uniqueness of the shadowing point.

A sequence{βl}l≥1 is chosen to satisfy the condition described as above. Assume thatx

andx ′ be two distinct shadowing points for a{βl}l≥1-pseudo orbit{xi}∞i=−∞ such that

f i(x), f i(x ′) ∈ Φxi (B(α)) (i ∈ Z) .

Then we show that

|||Φ−1
x0
(x)−Φ−1

x0
(x ′)||| ≤ {

(1 − ε) exp(χu − 2ε)
}−m

+ {
(1 − ε) exp(−χs − 2ε)

}−m (2.1)

for m ∈ N. If we establish (2.1) and chooseε > 0 such that(1 − ε) exp(χu − 2ε) > 1 and
(1 − ε) exp(−χs − 2ε) > 1, then (2.1) impliesx = x ′. This is a contradiction.

To prove (2.1), fixm ∈ N and takeHm ∈ Sγ,δxm with f m(x ′) ∈ Hm. By Remark 2.1(2)
we have

f m−1(x ′) ∈ Hm−1 ≡ f−1(Hm) ∩Φxm−1(B(α)) ∈ Sγ,δxm−1

and again

fm−2(x ′) ∈ Hm−2 ≡ f−1(Hm−1) ∩Φxm−2(B(α)) ∈ Sγ,δxm−2 .

Repeating this inductively, we can findHj ∈ Sγ,δxj (j = −m, . . . ,m) such thatf j (x ′) ∈ Hj
andf (Hj ) ⊂ Hj+1.

Next takeV−m ∈ Sγ,δx−m with f−m(x) ∈ V−m. By Remark 2.1(1) we have

f−m+1(x) ∈ V−m+1 ≡ f (V0) ∩Φx−m+1(B(α)) ∈ Uγ,δx−m+1 .

Using induction, we have thatVj ∈ Uγ,δxj (j = −m, . . . ,m) such thatf j (x) ∈ Vj and

f−1(Vj ) ⊂ Vj−1.
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For j = −m, . . . ,m put {zj } = Hj ∩ Vj . Thenf (zj ) = zj+1. Lemmas 2.2 and 2.3
ensure that

|||Φ−1
x0
(x)− Φ−1

x0
(z0)||| ≤ {

(1 − ε) exp(χu − 2ε)
}−m

,

|||Φ−1
x0
(x ′)−Φ−1

x0
(z0)||| ≤ {

(1 − ε) exp(−χs − 2ε)
}−m

,

from which (2.1) is concluded. �

For n ∈ N setYn = {0, . . . , n − 1} and denote byYZ
n the infinite product topological

space ofYn. ThenYZ
n is a compact metric space equipped with the metricd defined by

d(x, y) =
∞∑

k=−∞

|xi − yi|
n|k| (x = (xi)i∈Z, y = (yi)i∈Z ∈ YZ

n ) .

Define thelef t shif t map σ : YZ
n → YZ

n by σ((xi)) = (xi+1) for (xi)i∈Z ∈ YZ
n . An f -

invariant setΓ ⊂ M is said to be atopological horseshoe if there existsn > 0 such that

σ : YZ
n → YZ

n andf : Γ → Γ are topologically conjugate.

THEOREM 2.5. Let µ be a hyperbolic ergodic measure and assume that hµ(f ) > 0.
Then for α > 0 and h ∈ (0, hµ(f )) there exist Γ ⊂ M and n, q ∈ N such that

(a) f n : Γ → Γ and σ : YZ
q → YZ

q are topologically conjugate,

(b) if Γ ′ = ⋃n−1
i=0 f

i(Γ ), then |h(f |Γ ′)− h| ≤ α. Here f |Γ ′ is the restriction of f on
Γ and h(f |Γ ′) is the topological entropy of f |Γ ′ ,

(c) if µ satisfies SRB condition for f , then Γ ⊂ S = Supp(µ).

The estimation (b) of Theorem 2.5 is a some refined version of Theorem S.5.9 in [12],
whose proof is similar to that in [12].

Form ∈ N, ρ > 0 andδ ∈ (0,1) let

Bm(x, ρ) = {y ∈ M | d(f i(x), f i(y)) ≤ ρ, (0 ≤ i ≤ m− 1) }
and

Nf (m, ρ, δ) = inf{ k |µ(
k⋃
i=1

Bm(xi, ρ)) > 1 − δ, (x1, . . . xk ∈ M) } .

LEMMA 2.6 ([11] p. 143). Let ν be an ergodic measure and assume that hν(f ) < ∞.
Then for δ ∈ (0,1)

hν(f ) = lim
ρ→0

lim sup
n→∞

1

n
logNf (n, ρ, δ)

= lim
ρ→0

lim inf
n→∞

1

n
logNf (n, ρ, δ) .

PROOF OFTHEOREM 2.5. Forα > 0 chooseρ > 0 such that

(hµ(f )− 2ρ)/(1 + ρ) > hµ(f )− α/2 , α > ρ .
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We define

Λ̃l = Supp(µ|Λl ) (l ≥ 1) , Λ̃ =
⋃
l≥1

Λ̃l . (2.2)

Obviouslyµ(Λ̃) = 1 andf (Λ̃) = Λ̃. Forδ ∈ (0,1) there isl ∈ N such that

µ(Λ̃l) > 1 − δ .

By lemma 2.6 we can find 0< r < 1 andm0 ∈ N such that

exp(m(hµ(f )− ρ)) ≤ Nf (m, r, δ) ≤ exp(m(hµ(f )+ ρ)) (2.3)

for m ≥ m0. Let ξ be a finite measurable partition ofM such thatξ ≥ {Λ̃l,M\Λ̃l} and
diam(ξ) ≤ βl(r). Hereβl(r) is the number in Theorem 2.4 andβl(r) < r, and for two finite
partitionsα = {Ai}, β = {Bi}, β ≥ α means that for anyA ∈ α there existsB ∈ β such that
B ⊂ A.

Let

Λml = {x ∈ Λ̃l |m ≤ ∃q ≤ [(1 + ρ)m] s.t f q(x) ∈ ξ(x)} ,
where [a] denotes the Gauss symbol. By Birkhoff’s ergodic theorem we have that

µ(Λ̃l\Λml ) → 0 (m → ∞). Thus there is a setEm ⊂ Λml such that

�(Em) = Nf (m, βl(r), δ)

andBm(x, βl(r)/2) ∩ Bm(y, βl(r)/2) = φ for x, y ∈ Em with x 
= y, where�(A) denotes
the cardinality of a setA. Form ≥ 1 sufficiently large it follows from (2.3) that

�(Em) ≥ exp(m(hµ(f )− ρ)) , (2.4)

�(Em) ≤ exp(m(hµ(f )+ ρ)) (2.5)

and

1

m
log�(ξ) <

α

2
. (2.6)

Form ≤ q ≤ [(1 + ρ)m] let

Vq = {x ∈ Em | f q(x) ∈ ξ(x)} .
Then{Vq}[(1+ρ)m]

q=m is a finite cover ofEm. Denote byVq0 be a set with the maximal cardinality

of {Vq}[(1+ρ)m]
q=m . Obviously

�(Em) ≤ (mρ + 1)�(Vq0) .

Sinceex ≥ x + 1, by (2.4) we have

�(Vq0) ≥ exp(m(hµ(f )− 2ρ)) . (2.7)
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Denote byVq0 ∩ ξ(z0) the set with the maximal cardinality of{Vq0 ∩ ξ(x)|x ∈ Λ̃l} and put

b = �(Vq0 ∩ ξ(z0)) wherez0 ∈ Λ̃l . Sinceb�(ξ) ≥ �(Vq0), by (2.7) we have

logb ≥ − log�(ξ)+m(hµ(f )− 2ρ) . (2.8)

WriteVq0 ∩ξ(z0) = {y0, . . . , yb−1} andYb = {0,1, . . . , b−1}. We construct{βl(δ)}l≥1-

pseudo orbit as follows. Firstly fixa = (ai)i∈Z ∈ YZ
b . Thenyai returns toξ(z0) by the

iteration off q0 such thatd(f q0(yai ), yai+1) < βl(δ)/2 for i ∈ Z. Combining the finite orbit

yai , . . . , f
q0−1(yai ) with the finite orbityai+1, . . . , f

q0−1(yai+1) for anyi ∈ Z, we obtain the
following {βl(δ)}l≥1-pseudo orbit.


· · · , yai , . . . , f q0−1(yai )︸ ︷︷ ︸

i−th
, yai+1, . . . , f

q0−1(yai+1)︸ ︷︷ ︸
(i+1)−th

, · · ·


 ⊂ Λl+q0 .

Denote byz(a) the above sequence (see Figure 3). Theorem 2.4 ensures the existence of

a unique shadowing pointā for z(a), and so defineϕ(a) = ā. PutΓ = ϕ(YZ
b ). Using (2.1)

in the proof of Theorem 2.4, we have that the mapϕ : YZ
b → Γ is injective and continuous.

Thereforeσ : YZ
b → YZ

b andf q0|Γ : Γ → Γ are topologically conjugate.

PutΓ ′ = ⋃q0−1
i=0 f i(Γ ). ThenΓ ′ is f -invariant and

h(f |Γ ′) = 1

q0
h(f q0|Γ )

= 1

q0
logb .

FIGURE 3. A pseudo orbit ofz(a).
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By (2.8) we have

h(f |Γ ′) ≥ − 1

q0
log�(ξ)+ m

q0
(hµ(f )− 2ρ) .

Sincem ≤ q0 ≤ [(1 + ρ)m], by (2.6)

h(f |Γ ′) ≥ − 1

m
log�(ξ)+ 1

1 + ρ
(hµ(f )− 2ρ)

> hµ(f )− α .

The choice ofα > ρ ensures that

b ≤ exp(m(hµ(f )+ α))

because ofb ≤ �(Vq0) ≤ �(Em) and (2.5). Therefore we have

h(f |Γ ′) = 1

q0
logb

≤ m

q0
(hµ(f )+ α)

≤ hµ(f )+ α .

This completes the proof of (a) and (b) in the case ofh = hµ(f ).
To obtain (c), it suffices to show that every unstable manifold ofy ∈ Vq0 ∩ ξ(z0) is

contained inS = Supp(µ) (see [12], p. 690 Theorem S.4.14).

SinceVq0 ⊂ Λ̃l = Supp(µ|Λl ), we haveµ(U(y) ∩ Λl) > 0 for y ∈ Vq0 ∩ ξ(z0) and
any open neighborhoodU(y) of y. By SRB condition ofµ we haveWu(x) ⊂ S for µ-a.e.x
(Theorem 3.2(b) in the next section). Thus there exists a sequence{xn}n≥1 ⊂ S ∩ Λl such
thatxn → y (n → ∞) andWu(xn) ⊂ S. Therefore we haveWu(y) ⊂ S = Supp(µ) since
local unstable manifolds depend continuously onΛl . This concludes (c) forh = hµ(f ).

Finally we continue the proof for 0< h < hµ(f ). By the above construction we can find
Γ ′ satisfying|h(f |Γ ′)−hµ(f )| ≤ α for 0< α < hµ(f )−h. Sinceh(f |Γ ′) > hµ(f )−α >
h, we can take an equilibrium stateν onΓ ′ with hν(f |Γ ′) = h (in the same way as Theorem
4.1, Part (II)). Applying the argument above toν again, we obtainΓ1 ⊂ Γ ′ andk, j ∈ N such

thatf k : Γ1 → Γ1 andσ : YZ
j → YZ

j are topologically conjugate. PutΓ ′
1 = ⋃k−1

i=0 f
i(Γ1).

Then

|h(f |Γ ′
1
)− h| = |h(f |Γ ′

1
)− hν(f )| ≤ α .

This completes (a) and (b) for 0< h < hµ(f ). If µ satisfies SRB condition, then it is checked
thatΓ ′ ⊂ S. And soΓ1 ⊂ S. The theorem is concluded. �
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3. Hyperbolic Attractors and SRB Attractors

An f -invariant closed setΓ is said to be anattractor if there exists a neighborhood
V of Γ such thatf (Cl(V )) ⊂ V and

⋂
i≥1 f

i(V ) = Γ . Here Cl(A) denotes the closure of
a setA. An attractorΓ is said to be ahyperbolic attractor if Γ is hyperbolic andf |Γ is
topologically transitive. The mapf : Γ → Γ is said to betopologically transitive if there
exists a pointx ∈ Γ such that its orbit{f n(x)}n∈Z is dense inΓ . An f -invariant closed set
Γ is said to be ahyperbolic set if there existC > 0 and 0< λ < 1 such that for anyx ∈ Γ
there exists a decomposition TxM = Es(x) ⊕ Eu(x) into subspacesEs(x) andEu(x) such
that the following properties hold: (i)Dxf (Eσ (x)) = Eσ (f (x)) for σ = s, u, and (ii)

‖Dxf n(v)‖ ≤ Cλn‖v‖ (v ∈ Es(x)) ,
‖Dxf−n(v)‖ ≤ Cλn‖v‖ (v ∈ Eu(x))

for n ∈ N.
Denote byP(f, ϕ) the topological pressure of f w.r.t. ϕ ∈ C(M,R) (see [21] for

the definition), whereC(M,R) denotes the set of real valued continuous functions onM.
An f -invariant probability measureν on M is said to be anequilibrium state for ϕ if
P(f, ϕ) = hν(f ) + ∫

ϕdν holds. Denote byPΓ (f, ϕu) the topological pressure off w.r.t.
ϕu|Γ . Hereϕu(x) = − log |det(Dxf |Eu(x))|. If Γ is a hyperbolic attractor, then the following
properties hold:

(9) PΓ (f, ϕ
u) = 0.

(10) Wu(x) ⊂ Γ for anyx ∈ Γ .
(11) f |Γ is topologically transitive (by thedefinition of hyperbolic attractors).
(12) m(Ws(Γ )) > 0.

HereWs(Γ ) denotes the union of all stable manifolds at the points inΓ . In [6] (p. 99 Theo-
rem4.11) Bowen showed that both (9) and (12) are equivalent.

(13) f |Γ satisfies the uniformly shadowing property.
(14) The set of periodic points forf |Γ , P(f |Γ ), is dense inΓ .
(15) f |Γ is expansive.
(16) f |Γ has a unique equilibrium state forϕu.

A sequence{xi}i∈Z ⊂ Γ is called aδ-pseudo orbit for f if d(f (xi), xi+1) < δ for i ∈ Z.
A point x is called anα-shadowing point for a δ-pseudo orbit{xi}i∈Z if d(f i(x), xi) < α

for i ∈ Z. We call thatf |Γ satisfies theunif ormly shadowing property if for any α > 0
there existsδ > 0 such that for anyδ-pseudo orbit there exists at least oneα-shadowing point
in Γ .

Throughout this section, letµ be an ergodic measure andΛ be the Pesin set w.r.t.µ. For
a Borel setR put

Ws(R) =
⋃
x∈R

Ws(x) , Wu(R) =
⋃
x∈R

Wu(x) .
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We say thatµ satisfies thecondition (A)s (condition (A)u) if m(Ws(R)) > 0 (m(Wu(R)) >

0) for any Borel setR with µ(R) = 1.
If µ is an ergodic hyperbolic measure satisfying SRB condition forf , then it follows

from the proof of Theorem 3 in [23] thatµ satisfies the condition(A)s .

REMARK 3.1. The following statements hold:
(a) µ is an SRB measure if and only if there exists an SRB attractor ofµ,
(b) if µ is a hyperbolic measure and satisfies SRB condition forf , thenS = Supp(µ)

is an SRB attractor ofµ.

PROOF. (a) is clear by the definition of SRB attractors. Ifµ satisfies SRB condition,
then (b) follows from(A)s (see [23]). �

If µ is ergodic, then

PR(µ)(f, ϕ) = hµ(f )+
∫
ϕdµ (ϕ ∈ C(S,R)) (3.1)

([21]).
Forψ ∈ L1(µ) define the norm onL1(µ) by ‖ψ‖1 = ∫ |ψ|dµ. SinceC(S,R) is dense

in L1(µ) w.r.t. ‖ · ‖1, for ψ ∈ L1(µ) there is{ϕi}i≥1 ⊂ C(S,R) such that‖ϕn − ψ‖1 → 0
(n → ∞), and so define

P̄R(µ)(f,ψ) = lim
n→∞PR(µ)(f, ϕn)

= lim
n→∞

(
hµ(f )+

∫
ϕndµ

)

= hµ(f )+
∫
ψdµ .

THEOREM 3.2. Let µ be an ergodic measure satisfying SRB condition for f and put
S = Supp(µ). Then

(a) P̄R(µ)(f, ϕ
u) = 0,

(b) Wu(x) ⊂ S for µ-a.e.x,
(c) f |S is topologically transitive.

Moreover, if µ is hyperbolic, then S is an SRB attractor of µ and
(d) m(Ws(R)) > 0 for R ⊂ S ∩Λ with µ(R) = 1,
(e) f |S satisfies the nonuniformly shadowing property,
(f) the set of all hyperbolic periodic points of f |S is dense in S,
(g) in general f |S is not expansive.

PROOF. (a) follows from the SRB condition ofµ (see [15], theorem A). The ergodicity
of µ implies (c).

To show (b), letξu be a measurable partition which is subordinate to theWu-foliation
as in Sect.1,µux be the canonical system of conditional measure ofµ w.r.t. ξu andmux be the
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Lebesgue measure onWu(x) (µ-a.e.x). Since

0 = µ(Sc) =
∫
µux(S

c)dµ(x) ,

we haveµux(S
c) = 0 (µ-a.e.x). By (1.1)

mux(ξ
u(x) ∩ Sc) = 0 (µ-a.e.x ∈ M) . (3.2)

Forµ-a.e.x there exists anr = r(x) > 0 such thatUu(x, r) ⊂ ξu(x) becauseξu is subordi-
nate to theWu-foliation. Here

Uu(x, r) = {y ∈ Wu(x) | du(y, x) < r(x)}
anddu denotes the Riemannian distance inWu(x).

If Uu(x, r)∩Sc 
= φ, thenmux(U
u(x, r)∩Sc) > 0 sinceUu(x, r)∩Sc is open inWu(x),

and by (3.2)

0 = mux(ξ
u(x) ∩ Sc)

≥ mux(U
u(x, r) ∩ Sc)

> 0 .

This is a contradiction. Therefore

Uu(x, r) ⊂ S (µ-a.e.x ∈ M) ,
and soWu(x) ⊂ S (see the proof of Proposition 3.1 in [14]).

(d) follows from the fact thatµ satisfies(A)s (see [23]). By combining (b) and the proofs
of Theorem S.4.14 in [12] and Main lemma in [11], we have (e) and (f). Since the sizes of
the local stable and unstable manifolds ofΛ are not constant, it does not ensure thatf |S is
expansive. �

4. Ergodic Measures of SRB Attractors

Let µ be a hyperbolic ergodic measure ofM andΛ be a Pesin set w.r.t.µ. Denote by
M(M) the set of Borel probability measures onM. Let {ϕi}i≥1 be a sequence of continuous
functions which is dense inC(M,R). Forλ, ν ∈ M(M) define

D(ν, λ) =
∞∑
i=1

∣∣ ∫ ϕidν − ∫
ϕidλ

∣∣
2i‖ϕi‖0

.

Here‖ϕ‖0 = supx∈M{|ϕ(x)|} for ϕ ∈ C(M,R). ThenM(M) is compact. LetMf (M) be
the set off -invariant measures inM(M) and put

Mf (Λ̃) = {ν ∈ Mf (M) | ν(Λ̃) = 1}
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whereΛ̃ is a set defined as in (2.2). The set of all ergodic probability measures ofS =
Supp(µ), E(S), is decomposed into the union of subsets:

H(S) = {ν ∈ E(S) | ν is hyperbolic} ,
N (S) = {ν ∈ E(S) | ν is non hyperbolic} .

If S = Λ, thenN (S) = φ. On the other hand, in the case ofS 
= Λ, N (S) is not
empty in general. Indeed, there exists aC2-diffeomorphism ofT2, called an ’almost Anosov’,
described in [10].

As shown in Table 1, we can decomposeH(S) into the union of subsets where
(i) θ(S) is the set of measures with a point mass on the periodic orbits onS,
(ii) Z(S) is the set of measures with zero entropy and�(support) = ∞.
(iii) P1(S) is the set of measures with positive entropy, but not satisfy SRB condition

for bothf andf−1.
(iv) P2(S) is the set of measures satisfying SRB condition forf−1, but not SRB con-

dition for f ,
(v) P3(S) is the set of measures satisfying SRB condition forf , but not SRB condition

for f−1,
(vi) P4(S) is the set of measures satisfying SRB condition for bothf andf−1.

Note thatMf (Λ̃) ⊂ Cl(θ(S)) ([9]). Since any element ofP3(S) or P4(S) satisfies
SRB condition, each element is an SRB measure (see Remark 3.1). Since there exist at most
countable SRB measures inE(S), P3(S) andP4(S) are at most countable sets and so isP2(S)

by applying the same argument forf−1.
In the case whenN (S) 
= φ, denote byP5(S) the subset ofN (S) which consists of the

elements satisfying SRB condition forf . Thenν ∈ P5(S) satisfies (a)–(c) in Theorem 3.2.
Denote byP6(S) the subset ofN (S) which consists of the elements satisfying SRB condition

for f andf−1. By Theorem 3.2 we have that forν ∈ P6(S)

Wσ (x) ⊂ S (ν-a.e.x, σ = s, u) .

f is said to beµ-mixing if lim n→∞ µ(f−n(A) ∩ B) = µ(A)µ(B) for Borel setsA andB.

TABLE 1. A classification ofE(S)

H(S) N (S)

zero entropy
finite support θ(S)

infinite support Z(S)

f : non SRB cond
f−1 : non SRB cond P1(S)

positive entropy
f−1 : SRB cond P2(S)

f : SRB cond
f−1 : non SRB cond P3(S) P5(S) ⊃ P6(S)
f−1 : SRB cond P4(S)
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THEOREM 4.1. Let µ be a hyperbolic ergodic measure satisfying SRB condition for
f . Assume that f is µ-mixing. Then the following holds:

(a) Z(S) is an uncoutable set and Mf (Λ̃) ⊂ Cl(Z(S)).
(b) P1(S) is an uncoutable set and Mf (Λ̃) ⊂ Cl(P1(S)).

(c) An ergodic measure satisfying SRB condition for f is unique in Mf (Λ̃).

The proof of Theorem 4.1 is decomposed into the following four parts.

PART (I). Z(S) is an uncoutable set.

PROOF. Using Theorem 2.5 forh = hµ(f ), we can findk, q ∈ N andΓ ⊂ S such that

f k|Γ : Γ → Γ andσ : YZ
q → YZ

q are topologically conjugate.

Now we construct a Sturmian shift (see [16], [18]) as follows: for an irrational number
β ∈ (0,1/q) the family of sets

Ii = [iβ, (i + 1)β) (i = 0, . . . q − 2) , Iq−1 = [(q − 1)β,1)

is a partition ofS1 = [0,1) (mod 1). DefineTβ : S1 → S1 by

Tβ(z) = z+ β (mod 1) (z ∈ S1) ,

andhiβ : S1 → Y2 by

hiβ(z) =
{

1 if T iβ(z) ∈ I0 ,
0 if T iβ(z) 
∈ I0

for i ∈ Z. Then the maphβ : S1 → YZ
2 defined by

hβ(z) = (hiβ(z))i∈Z ∈ YZ
2

is injective such thathβ ◦ Tβ = σ ◦ hβ . Let

C0 = {(xi)i∈Z ∈ YZ
2 | x0 = 1} and C1 = {(xi)i∈Z ∈ YZ

2 | x0 = 0} .
Then

h−1
β (C0) = [0, β) and h−1

β (C1) = [β,1)
and we have that

h−1
β

( n⋂
j=−m

σ−j (Ckj )
)

=
n⋂

j=−m
h−1
β ◦ σ−j (Ckj )

=
n⋂

j=−m
T

−j
β ◦ h−1

β (Ckj )

=
n⋂

j=−m
T

−j
β (S1\Ikj )
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for kj ∈ {0,1} (−m ≤ j ≤ n,m, n ∈ N). This implies thathβ is measurable.

We know that a Lebesgue measureλ onS1 is aTβ -invariant ergodic probability measure.
Define

µβ(E) = λ ◦ h−1
β ◦ h(E) (E ⊂ Γ )

whereh : Γ → YZ
q is the conjugacy. Thenµβ is f k-invariant andhµβ (f

k) = 0. Since

β = lim
n→∞

1

n

n−1∑
i=0

1E(f
kix) =

∫
1Edµβ µβ -a.e.x

for E = h−1(C0), we have thatµβ 
= µα if α 
= β. �

PART (II). For α ∈ (0, hµ(f )) there existsν ∈ P1(S) such that

hν(f ) = α .

PROOF. Forα ∈ (0, hµ(f )) takeρ > 0 so small thatα < hµ(f )− ρ. By Theorem 2.5

there existk, q ∈ N andΓ ⊂ S such thatf k|Γ : Γ → Γ andσ : YZ
q → YZ

q are topologically

conjugate andh(f |Γρ ) > α whereΓρ = ⋃k−1
i=0 f

−i(Γ ).
Fix γ > 0 and define a continuous functionϕγ onYZ

q by

ϕγ (x) =
{
γ if x0 = 0 ,
0 if x0 
= 0 .

Let νγ be the equilibrium state ofYZ
q for ϕγ . Put[i] = {(xi)i∈Z ∈ YZ

q | x0 = i} for 0 ≤ i ≤
q − 1. Then

νγ ([0]) = eγ

eγ + q − 1
, νγ ([i]) = 1

eγ + q − 1
(1 ≤ i ≤ q − 1)

(see [28]) and we have that

hνγ (σ ) =
q−1∑
j=0

−νγ ([j ]) logνγ ([j ])

and sohνγ (σ ) → 0 (γ → ∞). Then the entropy of an ergodic measure

ν̃γ = 1

k

k−1∑
j=0

νγ ◦ h ◦ f−i

is given by

hν̃γ (f ) = 1

k
hνγ ◦h(f k) = 1

k
hνγ (σ ) ,
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FIGURE 4. The graph ofhν̃γ (f ).

whereh is the conjugacy fromΓ to YZ
q . Thus in the case whenγ = 0 we have that

hν̃0(f ) = 1

k
hν0(σ ) = 1

k
logq > α

because ofhν0(σ ) = logq. Therefore we can findγ0 > 0 such thathν̃γ0 (f ) = α (see Figure

4). �

It is well known that a Borel set

Q(f ) =
{
x ∈ M

∣∣∣∣ there exists lim
n→∞

1

n

n−1∑
i=0

ϕ(f i(x)) for anyϕ ∈ C(M,R)
}
.

satisfiesν(Q(f )) = 1 for ν ∈ Mf (M).

PART (III). For ν ∈ Mf (Λ̃) andρ > 0 there existn ∈ N andΓ ⊂ S such that

(a) f n|Γ : Γ → Γ andσ : YZ
2 → YZ

2 are topologically conjugate, and

(b) D(ν, λ) < ρ for any f -invariant Borel probability measureλ of Γ̃ρ =⋃n−1
i=0 f

i(Γ ).

PROOF. Chooseν ∈ Mf (Λ̃) andρ > 0. Fix a dense subset{ϕi}i≥1 of C(M,R) and

setF = {ϕj }I0j=1 for I0 ∈ N. For convenience assume thatψ ∈ F satisfies‖ψ‖0 = 1. Since

ψ ∈ F is uniformly continuous, we can findδ0 > 0 such that|ψ(x) − ψ(y)| < ρ̄/4 for

x, y ∈ M with d(u, v) < δ0 andψ ∈ F . Putψ∗(x) = limn→∞(1/n)
∑n−1
i=0 ψ(f

i(x)) for
x ∈ Q(f ) andψ ∈ C(M,R), andρ̄ = ρ/I0. Then forx ∈ Q(f ) we can takeN(x) ∈ N such
that ∣∣∣∣1

n

n−1∑
i=0

ψ(f i(x))− ψ∗(x)
∣∣∣∣ < ρ̄

4
(n ≥ N) (4.1)
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for ψ ∈ F . Moreover, Birkhoff’s ergodic theorem ensures that∫
Q(f )

ψ∗dν =
∫
ψdν .

PutA = sup{|ψ∗(x)| | x ∈ Q(f ), ψ ∈ F } and define

Qj(ψ) =
{
x ∈ Q(f )

∣∣∣∣ − A+ j − 1

4
ρ̄ ≤ ψ∗(x) < −A+ j

4
ρ̄

}
for j = 1, . . . , [8A/ρ̄]+1 andψ ∈ F . SinceF is a finite set, we can define a finite measurable
partitionQ = {Qi}ki=1 ofQ(f ) by

Q ≡ {Qi}ki=1 ≡ ∨ψ∈F {Q1(ψ), . . . ,Q[8A/ρ̄]+1(ψ)}
whereα ∨ β = {Ai ∩ Bj |Ai ∈ α, Bj ∈ β} for two finite partitionsα = {Ai}, β = {Bi}.

Here after notice thatk be fixed. Without loss of generality, we may assume thatν(Qi) >

0 forQi ∈ Q. Then we can findl > 0 such thatν(Qj ∩ Λ̃l) > 0 for j = 1, . . . , k. By the

definition ofΛ̃l there existszj ∈ Qj ∩ Λ̃l such thatµ(U(zj ) ∩Λl ∩Qj) > 0, whereU(zj )
is a neighborhood ofzj with radius less thanβl(δ0) in Theorem2.4 and so, by Poincare’s

recurrence theorem we can findxj ∈ U(zj ) ∩ Qj ∩ Λ̃l andnj > N(xj ) sufficiently large
such that

d(xj , f
nj (xj )) < βl(δ0) (j = 1, . . . , k) . (4.2)

By the definition ofQ = {Qi}ki=1,∣∣∣∣
∫
Q(f )

ψ∗dν −
k∑
j=1

ν(Qj )ψ
∗(xj )

∣∣∣∣ < ρ̄

4

and by (4.1) ∣∣∣∣
∫
ψdν −

k∑
j=1

ν(Qj )
1

nj

nj−1∑
i=0

ψ(f i(xj ))

∣∣∣∣ < ρ̄

2
. (4.3)

For a fixed large integers with 0 < 1/s < ρ̄/2k we can finds̃1, . . . , s̃k ∈ N such that

s̃j /s ≤ ν(Qj ) ≤ (s̃j + 1)/s. Chooses1, . . . , sk ∈ N such thats = ∑k
j=1 sj andsj = s̃j or

s̃j + 1. Then we have ∣∣∣∣ν(Qj )− sj

s

∣∣∣∣ < ρ̄

2k

and so, by (4.3) ∣∣∣∣
∫
ψdν − 1

s

k∑
j=1

sj
1

nj

nj−1∑
i=0

ψ(f i(xj ))

∣∣∣∣ < ρ̄ . (4.4)
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Takey0, y1 ∈ Λ̃l andm0,m1 > 0 such that

d(y0, y1) < βl(δ0), d(yi, f
mi (yi)) < βl(δ0) (i = 0,1) . (4.5)

Sincey0, y1 ∈ Λ̃l , we haveµ(U(yi) ∩ Λl) > 0 for any open neighborhoodU(yi) of yi . By

the assumption ofµ-mixing, there existM > 0 andw0, w1, . . . , wk ∈ Λ̃l such that

d(f mi (yi), w0) < βl(δ0) (i = 0,1) ,

d(fM(w0), x1) < βl(δ0) ,

d(f nj (xj ),wj ) < βl(δ0) (1 ≤ j ≤ k) , (4.6)

d(fM(wj ), xj+1) < βl(δ0) (1 ≤ j ≤ k − 1) ,

d(fM(wk), yi) < βl(δ0) (i = 0,1) .

For simplicity put

n =
k∑
j=1

sjnj + (k + 1)M +m0m1 .

Sincen1, . . . , nk are large enough,

1

n
{(k + 1)M +m0m1} < ρ̄

4
. (4.7)

In the same way as stated in the proof of Theorem 2.5 we construct a{βl(δ0)}l≥1-pseudo

orbit. To do so, fixa = {ai}i∈Z ∈ YZ
2 and setbi = 1 − ai (i ∈ Z). For i ∈ Z and the finite

orbit yai , ... ,fmai−1(yai ) we firstly construct a finite{βl(δ0)}-pseudo orbit

yai , . . . , f
mai−1(yai )︸ ︷︷ ︸, . . . , yai , . . . , f mai−1(yai )︸ ︷︷ ︸︸ ︷︷ ︸

mbi -times

which passesmbi -times through the orbityai , . . . , f
mai−1(yai ).

Next, for 1≤ j ≤ k we also construct a finite{βl(δ0)}-pseudo orbit

xj , . . . , f
nj−1(xj )︸ ︷︷ ︸, . . . , xj , . . . , f nj−1(xj )︸ ︷︷ ︸︸ ︷︷ ︸

sj -times

which passessj -times through the orbitxj , . . . ,f nj−1(xj ). Under these pseudo orbits and

the orbitswj , . . . ,fM−1(wj ) for 0 ≤ j ≤ k, we construct a finite{βl(δ0)}-pseudo orbit as
follows:

z(ai) =
(
yai , . . . f

mai−1(yai )︸ ︷︷ ︸, . . . , yai , . . . f mai−1(yai )︸ ︷︷ ︸︸ ︷︷ ︸
mbi -times

, w0, . . . , f
M−1(w0) ,
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FIGURE 5. A pseudo orbit ofz(a).

x1, . . . f
n1−1(x1)︸ ︷︷ ︸, . . . , x1, . . . f

n1−1(x1)︸ ︷︷ ︸︸ ︷︷ ︸
s1-times

, w1, . . . , f
M−1(w1) ,

...

xk, . . . f
nk−1(xk)︸ ︷︷ ︸, . . . , xk, . . . f nk−1(xk)︸ ︷︷ ︸︸ ︷︷ ︸

sk-times

, wk, . . . , f
M−1(wk)

)

(see Figure 5).
It follows from (4.2), (4.5) and (4.6) that

z(a) = {. . . , z(a−1), z(a0), z(a1), . . . }

is a {βl(δ0)}l≥1-pseudo orbit. By Theorem 2.4 there exists a unique shadowing pointā for

z(a), and so defineϕ : YZ
2 → M by ϕ(a) = ā and putΓρ = ϕ(YZ

2 ). By using (2.1) in the
proof of Theorem 2.4, we have thatϕ is a continuous map such thatϕ ◦ σ = f n ◦ ϕ. Using

the same arguments in the proof of Theorem 2.5 (c), it follows thatΓ̃ρ = ⋃n−1
i=0 f

i(Γρ) ⊂ S.

Denote byE(Γ̃ρ) the set of ergodic probability measures ofΓ̃ρ and byR(λ) the ergodic

basin ofλ. Fix λ ∈ E(Γ̃ρ) and choosez ∈ Γρ ∩ R(λ). Then there existsp0 ∈ N such that

∣∣∣ 1

pn

pn−1∑
i=0

ψ(f i(z))−
∫
ψdλ

∣∣∣ < ρ̄

4
(4.8)

for p ≥ p0 andψ ∈ F . Sincen1, . . . , nk andn are integers of (4.7), we have

∣∣∣∣ 1

pn

pn−1∑
i=0

ψ(f i(z))−
{

1

s

k∑
j=1

sj
1

nj

nj−1∑
i=0

ψ(f i(xj ))

}∣∣∣∣ < 3ρ̄

4
. (4.9)
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By (4.4), (4.8) and (4.9) ∣∣∣∣
∫
ψdν −

∫
ψdλ

∣∣∣∣ < 2ρ̄ .

�

LetW1 andW2 be the unstable manifolds, and letπ : W1 → W2 be a holonomy map
defined by sliding along the stable manifolds, i.e., forx ∈ W1, π(x) ∈ W2 ∩Ws(x). Then it
is known (see [3], [23]) thatπ is absolutely continuous i.e. mu2 ◦ π � mu1, wheremu1 and
mu2 be the Lebesgue measure onW1 andW2 respectively.

PART (IV). This part is to prove (c) of Theorem 4.1.

PROOF. Let ν be a hyperbolic ergodic probability measure supported oñΛ which sat-

isfies SRB condition forf and putΛ̃l(ν) = Supp(ν|Λl ) (l ≥ 1) andΛ̃(ν) = ⋃
l≥1 Λ̃l(ν).

If l ∈ N is large enough, then we haveν(Λ̃l ∩ Λ̃l(ν)) ≈ 1 because ofν(Λ̃ ∩ Λ̃(ν)) = 1.

Sinceν(R(ν)) = 1, by the Borel Density Lemma there existsx ∈ Λ̃l(ν) such that

ν(B(x, r) ∩ Λ̃l ∩ Λ̃l(ν) ∩ R(ν)) ≈ ν(B(x, r)) > 0

for r > 0 small enough.ξν(z) denotes the connected component ofz ∈ B(x, r)∩Λ̃l (ν)whose

unstable manifold intersectsB(x, r) and putξν = {ξν(z)|z ∈ B(x, r)∩Λ̃l (ν)}. Let{νuz } be the

canonical system of conditional measures ofν w.r.t. ξν . Then there existsy ∈ B(x, r)∩Λ̃l(ν)
such that

νuy (ξν(y) ∩ Λ̃l ∩ Λ̃l(ν) ∩ R(ν)) ≈ νuy (ξν(y)) > 0 .

Sinceν satisfies SRB condition forf , it follows from (1.1) thatνuw ∼ muw|ξν(w) for ν-a.e.w ∈
B(x, r). Therefore

muy(ξν(y) ∩ Λ̃l ∩ Λ̃l(ν) ∩ R(ν)) ≈ muy(ξν(y)) > 0 . (4.10)

On the other hand, sincel > 0 is large enough, we may assume that

µ(B(x, r) ∩ Λ̃l ∩ R(µ)) ≈ µ(B(x, r)) > 0 .

Let ξ(y) be the connected component ofy ∈ Λl ∩B(x, r) whose unstable manifold intersects
B(x, r) and putξ = {ξ(y)|y ∈ Λl∩B(x, r)}. Let {µuz } be the canonical system of conditional

measures ofµ w.r.t. ξ . Then there existsy ′ ∈ B(x, r) ∩ Λ̃l ∩ R(µ) such that

µuy ′(ξ(y ′) ∩ Λ̃l ∩ R(µ)) ≈ µuy ′(ξ(y ′)) > 0 .

Sinceµ satisfies SRB condition forf , by (1.1) we have

muy ′(ξ(y ′) ∩ Λ̃l ∩ R(µ)) ≈ muy ′(ξ(y ′)) > 0 . (4.11)
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Since the holonomy mapπ : ξν(y) → ξ(y ′) is absolutely continuous, by (4.10) and (4.11)

we can findz ∈ ξν(y) ∩ Λ̃l ∩ Λ̃l(ν) ∩ R(ν) such that

π(z) ∈ ξ(y ′) ∩ Λ̃l ∩ R(µ), d(f i(z), f i(π(z))) → 0 (i → ∞) .

Therefore we have ∫
ϕdν = lim

n→∞
1

n

n−1∑
i=0

ϕ(f i(z))

= lim
n→∞

1

n

n−1∑
i=0

ϕ(f i(π(z)))

=
∫
ϕdµ

for ϕ ∈ C(M,R), sincez ∈ R(ν) andπ(z) ∈ R(µ). This implies thatµ = ν. �

5. SRB condition and absolute continuity of probability measures

We shall investigate the further properties of ergodic measures satisfying SRB condition.

REMARK 5.1. There exists a unique measure satisfying SRB condition forf on every
hyperbolic attractor (see [6], Theorem 4.12).

Throughout this section, assume thatµ is a hyperbolic ergodic measure andΛ is a Pesin
set w.r.t.µ. Let ξu be a measurable partition ofM which is subordinate to theWu-foliation
and{µux} (µ-a.e.x) be a canonical system of conditional measures ofµ w.r.t. ξu. Forx ∈ Λ
andσ = s, u denote byBσ (x, ρ) the ball centered atx with radiusρ in Wσ (x). Then there
exists

δσ = lim
ρ→0

logµσx (B
σ (x, ρ))

logρ
(µ-a.e.x, σ = s, u) ,

andδσ ≤ dimEσ holds ([15]).
Let F0 ⊂ M be such thatµ(F0) = 1, andµux andδu(x) exist forx ∈ F0. LetB(x, ρ)

denote the ball centered atx with radiusρ.

LEMMA 5.2 ([29]). Let ν be a finite Borel measure on M and Z ⊂ M be ν(Z) > 0.
Assume that there exist 0 ≤ δ ≤ δ̄ such that

δ ≤ lim inf
r→0

logν(B(x, r))

logr
≤ lim sup

r→0

logν(B(x, r))

logr
≤ δ̄

for x ∈ Z. Then

δ ≤ HD(Z) ≤ δ̄.

Here HD(Z) is the Hausdorff dimension of Z.
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LEMMA 5.3 ([15]). µ satisfies SRB condition for f if and only if δu = dimEu.

THEOREM 5.4. µ satisfies SRB condition for f if and only if µ satisfies the following
condition.
(B) : for N ⊂ M with µ(N) = 0,mux(N ∩ ξu(x)) = 0 (µ-a.e.x) where mux be the Lebesgue
measure on Wu(x).

PROOF. Assume thatµ satisfies SRB condition forf and fixN ⊂ M with µ(N) = 0.
Then we have

0 = µ(N) =
∫
µux(N)dµ(x)

=
∫
F0

µux(N)dµ(x) .

Thus there existsF ′ ⊂ F0 with µ(F ′) = 1 such thatµux(N) = 0 (x ∈ F ′) and somux(N ∩
ξu(x)) = 0 (x ∈ F ′) by (1.1). Thereforeµ satisfies the condition(B).

Conversely, assume thatµ satisfies the condition(B). Sinceµ(F0) = 1, we have

1 = µ(F0) =
∫
µux(F0)dµ(x)

=
∫
F0

µux(F0)dµ(x) .

Then there existsF ′′ ⊂ F0 with µ(F ′′) = 1 such that

µux(F0) = 1 (x ∈ F ′′) . (5.1)

Sinceµ satisfies the condition(B), we can findF ′′′ ⊂ M with µ(F ′′′) = 1 such thatmux(F
c
0 ∩

ξu(x)) = 0 (x ∈ F ′′′), from which

mux(F0 ∩ ξu(x)) > 0 (x ∈ F ′′′) . (5.2)

Forx ∈ F ′′ ∩ F ′′′, we have that by applying Lemma 5.2 to (5.1) and (5.2)

δu = HD(ξu(x) ∩ F0) = dimEu (x ∈ F ′′ ∩ F ′′′) .

Thereforeµ satisfies SRB condition forf by Lemma 5.3. �

If

dµ(x) = lim
ρ→0

logµ(B(x, ρ))

logρ
,

thendµ(x) is said to be thepointwise dimension of µ atx. We have (see [29]) thatdµ(x) =
inf{HD(Z) |µ(Z) = 1} if dµ(x) is constant forµ-a.e.x.

THEOREM 5.5 ([4], [15] p. 548). dµ(x) = δs + δu holds for µ-a.e.x.

REMARK 5.6. If ν ∈ M(M) and is absolutely continuous (w.r.t.m), thendν(x) =
dimM for ν-a.e.x.
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THEOREM 5.7. µ is an absolutely continuous measure (w.r.t. m) if and only if it sat-
isfies SRB condition for f and the condition (A)u (which is defined in Sect.3).

PROOF. Assume thatµ satisfies both SRB condition forf and the condition(A)u. By

SRB condition ofµ, we haveµf
iξu

x ∼ mux |f iξu(x) (µ-a.e.x) for i ∈ Z.
In order to show thatµ is an absolutely continuous measure, it is enough to prove that if

µ(E) > 0 forE ∈ B with E ⊂ F0 thenm(E) > 0.
Sinceµ(E) > 0, we can findF1 ⊂ E with µ(F1) = µ(E) such that

µ
f iξu

x (E) > 0

for x ∈ F1 and i ∈ Z. By the regularity ofµ, there exists a monotonically increasing
sequence{Cp}p≥1 ⊂ F1 ∩ Yµ of closed sets such thatµ(

⋃
p≥1Cp) = µ(E). Sinceµ is

ergodic,
⋃
n≥0 f

n(
⋃
p≥1Cp) hasµ-measure 1 and so is

A =
⋃
n≥0

f n
( ⋃
p≥1

Cp

)
∩Λ

=
⋃
n≥0

⋃
p≥1

⋃
l≥1

(f n(Cp) ∩Λl) .

Sinceµ satisfies the condition(A)u, we havem(Wu(A)) > 0. Then there existl1 ∈ N,
k1 ∈ Z, x1 ∈ Λl1 andrl1 > 0 such thatm(Bu) > 0 where

Bu =
⋃

y∈B(x1,rl1)∩f k1(Cp)∩Λl1
ηu(y)

andηu(y) is the connected component ofWu(y) ∩ B(x1, rl1) which containsy. Sinceηu =
{ηu(y) | y ∈ B(x1, rl1)∩f k1(Cp)∩Λl1} is a measurable partition ofBu, we can takeF2 ⊂ Bu

with m(F2) = m(Bu) and a canonical system of conditional measures{mηuw | w ∈ F2} of m

w.r.t. ηu. Forw ∈ F2 we have thatmuw|ηu(w) ∼ m
ηu

w (see [1], p148), and so

mη
u

w (f
k1(E)) > 0 (w ∈ F2) . (5.3)

Indeed, forw ∈ F2 there exists̄w ∈ B(x1, rl1)∩f k1(Cp)∩Λl1 such thatηu(w) = ηu(w̄).

Sincef−k1(w̄) ∈ Cp ⊂ F1 ∩ Yµ, we haveµf
−k1ξu

f−k1(w̄)(E) > 0, and by SRB condition ofµ,

mu
f−k1(w̄)(E∩f−k1ξu(f−k1(w̄))) > 0. Because ofmuw|ηu(w) ∼ m

ηu

w ,muw̄(f
k1(E)∩ξu(w̄)) >

0. Sincemuw = muw̄, we havemuw(f
k1(E)∩ξu(w̄)) > 0 and thenmη

u

w (f
k1(E)) > 0. Therefore

(5.3) holds.
Using (5.3) we have

m(Bu ∩ f k1(E)) =
∫
Bu
mη

u

w (f
k1(E))dm
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=
∫
F2

mη
u

w (f
k1(E))dm

> 0 .

Thereforem(f k1(E)) > 0 and som(E) > 0. µ is absolutely continuous.
Conversely, assume thatµ is absolutely continuous. It follows from Theorem 5.5 and

Remark 5.6 thatn = δu + δs . Sinceδσ ≤ dimEσ (σ = s, u) andn = dimEu + dimEs , we
have thatδu = dimEu andδs = dimEs . By Lemma 5.3µ satisfies SRB condition forf .

Moreover, applying Lemma 5.3 tof−1, we have thatµ satisfies SRB condition forf−1 and
soµ satisfies the condition(A)u (see [23]). �

REMARK 5.8. A non-hyperbolic measureν is not always an absolutely continuous

measure even ifν satisfies SRB condition forf andf −1.
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