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Abstract. In the stochastic context, an invariant set is decomposed into the union of ergodic basins, and each
of basin possesses the fractal structure determined by ergodic measures. This paper is to show that when a hyperbolic
SRB measure is mixing, the set of measures with zero entropy and the set of measures with positive entropy but
without SRB are both dense on the set of all invariant mezsson the closure of the ergodic basin in the Pesin set,
and moreover that in the set of invariant measures as above a measure with ergodicity and SRB exists uniquely.

1. [Introduction

The set of invariant Borel probability measures of a compact metric space is compact
convex with respect to the weaktopology and its extreme points are ergodic measures.
Every invariant measure is decomposed by the ergodic measures ([12]). This means that
ergodic measures play an important role in the study of stochastic dynamics.

The set of points satisfying Birkhoff’s ergodic theorem for any continuous function is
called theergodic basin. If the ergodic basin has the positive Lebesgue measure, then the
measure is said to be%nai-Ruelle-Bowen measure (abbrev. SRB measure). Sinai, Ruelle
and Bowen showed the existence of an SRB measure for a hyperbolic attractor ([6]). Our
aim of this paper is to investigate a characteristic of the set of ergodic measures under the
assumption of the existence of an SRB measure.

In the context of nonuniformly hyperbolic system, the theory of SRB measures has been
developed by Pesin, Katok, Ledrappier, Young and several other mathematicians ([15], [20],
[23]).

In [23] Pugh and Shub proved that a hyperbolic measure satisfying SRB condition is an
SRB measure. Here let us say that an invariant measwsatisfiesSRB condition if © has
absolutely continuous conditional measures on unstable manifolds.

Firstly, we shall show that if a hyperbolic ergodic measure satisfies SRB condition, then
its support is an SRB attractor (which is called an ergodic attractor in [23]) and that the
attractor has similar properties to hyperbolic attractors (Theorem 3.2).
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Secondly, under the same assumption, the set of ergodic measures will be divided into
several classes according to their entropy and some of them satisfy the properties as stated in
[27] (Theorem 4.1). A key point of the investigation is a theorem (Theorem 2.4), which is a
version of nonuniformly shadowing property obtained by Katok ([12], Theorem S.4.14) and
Pollicott ([22], Theorem 5.1).

Finally, we shall find several properties of measures satisfying SRB condition or absolute
continuity (Theorem 5.4, Theorem 5.7).

Throughout this paper, let be aC2-diffeomorphism of am-dimensional closed man-
ifold M andu be anf-invariant Borel probability measure avi. We denote byi(, -) and
|l - || the distance and the norm induced by the Riemannian metrjoon M respectively. Let
m denote the Lebesgue measureMn Thesupport of u is the set of alk € M satisfying
that u(U) > 0O for any neighborhood’ of x, and is denoted by Supp). To simplify the
notation we will often putS = Supgw).

An f-invariant setd is called anSRB attractor or aner godic attractor of p if the
setA has full u.-measure and there exists a BétC M with positive Lebesgue measure such
that (i) forw € W, dist( f"(w), A) = inf{d(f"(w), y) : y € A} — 0asn — oo, (ii)if we set

n—1
R(p) = {x € M‘ lim EZgo(f"(x)) = /(pdu (¢: M — R: continuou$}
n—oon
i=0

(which is called arr godic basin of 1), thenW C R(u) except for amn-null set. We remark
thatu is an SRB measure if and only if there exists an SRB attrattol n(Remark 3.1(a)).
By [19], there exists a self, C S = Supgu) with full u-measure such that every

x € Y, has aD, f-invariant decomposition JM = @fg E;(x) into subspaceg;(x) and
real numbers(1(x) > x2(x) > -+ > x;x)(x) (1 < #(x) < n) which satisfy the following
properties:

1
@D lim —logDx f" W)l = xi(x) (v € Ei()\OD),

. 1 .
@ lim p log sin(Z(Dx f"(Ei(x)), Dx f"(Ej(x))) =0 (i #j, 1<i,j=<1).

HereD, f denotes the derivative gfatx andZ(A, B) = min{ cos™ l"ff‘l"‘rgl" lueA, ve B}

for subspacesgl, B C R". Forx € Y,, dimE;(x) is the dimension of; (x), which means
the multiplicity of x; (x). We callx; (x) (1 <i < t(x) < n) Lyapunov exponents of u at
x € Y,. If pis ergodic, then (x), x;(x) and dimE; (x) are constants(x) = ¢, x;(x) = x;
and dinkE; (x) = dimk; for u-a.ex.

Aninvariant measurg is calledhyperbolic if all Lyapunov exponents gf are different
from 0.

Here after assume thatis ergodic and hyperbolic, and put

x'=maxy <0|1<i<t}, x"=min{;>0|1<i=<t},
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Exn) = P Ew, E'0 =P Ew.

i:x;<0 i:x;>0

Then these subspaces dbg f-invariant and satisifyM = E*(x) & E%(x). Fixe > 0
sufficiently small and writed; (I > 0) the set of all points satisfying the following:
(i) forve E*(x)andn >0

1Dy f" ()| < exp(2el) exp(n(x* + &)llvll,
(i) for v e E*(x)andn >0
Dy f7" ()l < exp(2el) expin(—x" + &) vl
(i) fornez
SiN(£(Dy f"(E* (x)), Dx f"(E"(x)))) > exp(—e(l + [n])) .

Then

(8) A;isaclosed set,

4) fA) C Appqforl >0,

(5) the above subspacé&s(x) andE"(x) depend continuously an e Ay,

(6) A=U2,Aris f-invariant.
A =2, A is said to be @esin set with respect tqu (abbrev. w.r.tu).

Itis well known (see [20]) that for every € A there exist théocal stable andunstable
manifolds W; (x) andW;; (x) such that

FOWE(0)) CWh (F),  fHWE () € WEL(fF 1)
andE? (x) = T, W .(x) (o = s, u). Thestable andunstable mani folds W* (x) andW" (x)
are defined by
W) = £ W (). Whe) = | £ VT )
n>0 n=>0

Let B be the Borelr algebra. For a measurable partitiprof M denote by3e the set
of all Borel subsets which consist of the unions of the elemens &f measurable partition

& defines a family of measuregi} (u-a.ex) such that foru-a.ex andB € B, Mi(B) is a
B:-measurable function of and

n(ENB) = /E w5 (Bydp(x) (E € Be) .

If there exists a sequenég };>1 of countable measurable partitions such that

§1 <& <---<Vi>1& =E,

theny,i (£(x)) = 1 wheret (x) denotes the element &fcontainingr. The family of measures
{/,Li} (u-a.ex) is said to behe canonical system of conditional measures of x w.r.t. &.
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We assume that a measurable partif8rof M is subordinate to the W"- foliation,
that is,&* satisfies that7) £ (x) c W*(x) and(8) £“(x) contains an open set i (x) for
pn-a.ex. Let{u%} (u-a.ex) denote a canonical system of conditional measureswfr.t. £*
andm? denote the Lebesgue measureWfi(x). If ¥ is absolutely continuous w.r.:% for
pn-a.ex (u¥ <« m%), then we say that satisfies SRB condition (for f).

It is well known thatu satisfies SRB condition fof if and only if the measure theoretic
entropyh, (f) has

hu(f) =) xidimE;

i:x;>0

([13] Theorem 4.8, [14] Theorem 1.2, [15] Theorem A). It follows from the proof of Theorem
Ain [15] that if u satisfies SRB condition fof then

py ~ milgney  (u-a.ex). (1.1)

Here the notationuy ~ m!|eu(,y indicates that both relations? <« m¥|eu() and p¥ >
mi|gn(x) hold. If a hyperbolic measure satisfies SRB condition fof, then its support is an
SRB attractor (Remark 3.1(b)).

2. Nonuniformly Shadowing Property

Let u be a hyperbolic ergodic measure ande a Pesin set w.r.iz. Forh € (0, 1] we
denote byB* (h) c RIME" (Bu () c RAIME" ) he an s-closed ball (u-closed ball) centered at
0 of radiusk w.r.t. the Euclidean norm. For € (0, 1), § > 0 andh € (0, 1] we define

Uy = (graphp) | ¢ : B“(h) — B*(h) is aC' map satisfying Dg| < v, |¢(0)| < 8},
83 = {graphip) |¢ : B*(h) — B"(h) is aC* map satisfyingDg| < y. [¢(0)| < 5}.

Forx € A we introduce an inner produét, -)'. of 7, M such that(-, -)’. depends con-
tinuously onx € A, for/ > 1, the angle betweeB* (x) and E*(x) in (-, -),. is w/2 and for
neN

IDx f* " < expin(x* +eNlvl” (v e E*(x)),
IDx f" " < expin(—x" +eNlvl” (ve E“(x),

where || - || is the norm induced by, -),.. By using a linear mapC,(x) satisfying
(Ce(x)(v), Ce(x)(w)), = (v, w) for everyu,v € R" ([12], p. 666 Theorem S.2.10), we
define the ma@, : R* — M by &, = exp, oC¢(x).

There exists a Borel measurable functipn A — R such that™® < g(x)/q(f(x)) <
e® ([12] p. 673 Theorem S.3.1 (1)) an®l. | B(¢(x)) is injective. HereB(q(x)) = B*(q(x)) x

B"(q(x)). We putf, = quj({c) ofod,andf 1= q)jf_ll(x) o f~1o ®,, and denote by f

andDo ! the derivative off, and f,~* at O respectively. Sincg is C?-class,f, — Do f, and
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f71— Do £ are the Lipschitz continuous maps fraiig (x)) to R” with Lipschitz constant
. For simplicity we replacé(« - g(x)) by B(x) forany O< « < 1.
We set

U = (@, (V)| V eug"?}, SV = (@ (V) |V eug"s}

forx € A. Fory > 0 small, the local stable (unstable) manifoldxoE A belongs toS}{"S
(249
REMARK 2.1 ([11], p. 153). Fof € N there exists; > 0 such that for, y € A with
v, f(x) € Ajifd(y, f(x)) < r; then,
@ forveul”, f(V)Na,(B() Ul
(b) forH e SV, f~Y(H)N &, (BQ) e SI°.
Forv = (v1, v2) € R" = RAIME" @ RIME" define a norm|| - ||| onR" by
vl = max{|vi|, |val}.
Here| - | denotes the Euclidean norm &4. Obviously
oIl < vl < V2]l -

LEMMA 2.2 ([11], p. 149). For V e U}’ H € Sy’ and x € 4,
@ expgx“ =29y —zlll < A0 = @I v,z e V),
(b) exp—x* —2o)lly —zlll < A7) = /7@l (v,z € H).

LEmmMA 2.3 ([12], p. 680). For ! > Othereexistsr; > 0 suchthat for x, y € A; with
dx,y)<n

[ 0@ (v) —v| < elv] (ve BD).
Fora € (0,1) and/ > 0O there exist®; > 0 such that iff (x), y € A; andd(f(x), y) < B,

then f (&, (B(a))) (f—l@y(B(a)))) intersects transversedy, (B(«)) (@« (B(w))) along the
unstable (stable) direction as shown in Figure 1 (Figure 2) (see [22], Lemma 5.1).

P, (Be)
D, (Blow)
= -1
£, f y
¢ fxo R °
Xo s ‘.
y
u
|—s

FIGURE 1. A transverse intersection FIGURE 2. A transverse intersection

(u-direction). (s-direction).
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A sequencdx;}icz C A is called a{g;};>1-pseudo-orbit if there exists a sequence
{sutn=1 C Nsuchthatfon € Z x, € Ay, |5, — spt+1] < Landd(f (x,), xp+1) < Bs,. Given
a > 0, apointx € M satisfyingd (f!(x), x;) < a fori e Z is called anx-shadowing point
for a{B;};>1-pseudo orbifx;}7°_ .

THEOREM 2.4 (Unigueness of Nonuniformly Shadowing Pointsfor « € (0, 1)
there exists a sequence {#;};>1 of positive real humbers such that for any {;};>1-pseudo
orbit there exists a unique shadowing point x with f/(x) e @, (B(a)) fori e Z.

Theorem 2.4 is a reformation of the nonuniformly shadowing lemma by Katok ([11],
Main lemma) and Katok-Hasselblatt ([12], p. 690, Theorem S.4.14).

PROOF OFTHEOREM2.4. As the existence of shadowing points is shown as in [11]
and [12], it remains only to show a uniqueness of the shadowing point.

A sequencéf;};>1 is chosen to satisfy the condition described as above. Assume that
andx’ be two distinct shadowing points for{#;};>1-pseudo orbifx;}*° such that

1=—00

i), fix) e @ (B@) (i €2Z).
Then we show that

”l(px_ol(x) - <1§x—ol(x/)”| < {(1_ 8) eXF(X" _ 28)}—171 (2 1)
+{@—e)exp(—x* —2)} " '

form € N. If we establish (2.1) and choose> 0 such thatl — ¢) exp(x* — 2¢) > 1 and
(1—e)exp(—x*® — 2¢) > 1, then (2.1) impliex = x’. This is a contradiction.
To prove (2.1), fixn € N and takeH,, € S}{);I‘s with f™(x") € H,. By Remark 2.1(2)
we have
") € Hyoa = f7H(Hw) N @, (B@) € S

and again
"2 € Hy2 = X Hpo1) NPy, ,(B(@) €S2,

Repeating this inductively, we can firfd; € S}’j’s (j = —m,...,m) suchthatf/(x') € H;
andf(H;) C Hj11.
Next takeV_,, € S}”‘S with f~"(x) € V_,,. By Remark 2.1(1) we have

—m

(B(a)) e UL

X—m+1 "

o) e Vopi= f(Vo) N

X—m+1

Using induction, we have that; € U}’ (j = —m,...,m) such thatf/(x) € V; and
f7HV) C Vi
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Forj = —m,...,mput{z;} = H; N V;. Thenf(z;) = z;4+1. Lemmas 2.2 and 2.3
ensure that

@5t x) — @ o)l < {(L— &) exp(x* — 20)} ™,
@5 ) — @ o)l < {(L—e)exp(—x* —20)} ",
from which (2.1) is concluded. O

Forn € N setY, = {0,...,n — 1} and denote by? the infinite product topological
space oft,. ThenY? is a compact metric space equipped with the metriefined by

o
lxi — yil
d(x,y) = Z lnlklyl (x = (x)iez, ¥ = ()iez € YF).
k=—o00

Define theleft shift map o : Y2 — YZ by o((x;)) = (xi+1) for (x)icz € Y*. An f-
invariant setl” C M is said to be aopological horseshoe if there existsn > 0 such that
o:Y? - Y?andf : I — I are topologically conjugate.

THEOREM 2.5. Let pu be a hyperbolic ergodic measure and assume that 7, (f) > O.
Thenfor « > 0and i € (0, 1, (f)) thereexist I' C M and n, ¢ € N such that

@ f":I' ->Trando: YqZ — YqZ are topologically conjugate,

(b) if " == f(IN), then |h(f|r) — h| < a. Here f| istherestriction of f on

I' and h(f| ) isthetopological entropy of f|r,
(c) if u satisfies SRB condition for f,then I' € S = Supp(w).

The estimation (b) of Theorem 2.5 is a some refined version of Theorem S.5.9 in [12],
whose proof is similar to that in [12].
Form e N, p > 0ands € (0, 1) let

Bu(x,p) ={yeM|d(f'(x), f/(y) <p, 0<i<m—1))}

and

k

Np(m, p.8) =inf{k| () Bu(xi. p) > 1 =8, (x1,...x, € M)}.
i=1

LEMMA 2.6 ([11] p. 143). Let v bean ergodic measure and assume that 7, (f) < oo.
Thenfor § € (0, 1)

1
ho(f) = Iimolim sup—logNy(n, p, )
p—>

n—oo N

o1
= lim liminf —logN¢(n, p, §).
n

p—0 n—>00
PROOF OFTHEOREM2.5. Fora > 0 choosep > 0 such that
(hu(f)=2p)/ X+ p) > hp(f) —/2, a>p.
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We define

A =Supfipls) (=D, A=|]JA. (2.2)
>1

Obviouslyu(A) = 1 andf(A) = A. Fors € (0, 1) there is/ € N such that
w(A) >1-35.
By lemma 2.6 we can find & r < 1 andmg € N such that

expim(h,(f) —p)) < Ny(m,r,8) < expim(hu(f)+ p)) (2.3)

for m > mo. Let& be a finite measurable partition & such thatt > {A;, M\ A;} and
diam&) < B;(r). Herep;(r) is the number in Theorem 2.4 apdr) < r, and for two finite
partitionsa = {A;}, B = {B;}, B = « means that for any\ € « there exists8 € g such that
B C A.

Let

A" ={x e Ajlm <3g <[(L+ p)m] s.t f9(x) € E(x)},

where [a] denotes the Gauss symbol. By Birkhoff's ergodic theorem we have that
H(ANAM) — 0 (m — o0). Thus there is a sef,, C A" such that

8(Em) = Ny(m, i(r), )

and B, (x, Bi(r)/2) N By (y, Bi(r)/2) = ¢ for x,y € E,, with x # y, whereg(A) denotes
the cardinality of a sett. Form > 1 sufficiently large it follows from (2.3) that

B(Em) = expim(h,(f) — p)), (2.4)
B(Em) < expim(h,(f) + p)) (2.5)
and
1 o
—log#(¢) < 5. (2.6)
m 2

Form < g < [(1+ p)m]let
Vg={x € En| f?(x) €£(x)}.
Then{Vq}([,(iﬁ,p)’"] is a finite cover of£,,. Denote byV,, be a set with the maximal cardinality
of {V, b&t»™ Obviously
8(Em) < (mp + Di(Vyo) -
Sincee* > x + 1, by (2.4) we have
1(Vgo) = expim(hyu(f) — 2p)). (2.7)
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Denote byV,, N &(zo) the set with the maximal cardinality ¢¥,, N &(x)|x € A} and put
b = #(Vy, N &(z0)) Wherezg € A;. Sincebi(§) > £(V,,), by (2.7) we have

logh > —logg(§) +m(hyu(f) —2p). (2.8)

Write V,,N&(z0) = {yo, ..., yp—1}andY, = {0, 1, ..., b—1}. We constructs;(6)};>1-
pseudo orbit as follows. Firstly fix = (a;)icz € sz. Theny,, returns toé(zp) by the
iteration of £9° such thatd (f9°(yg;), Ya;,,) < Bi1(8)/2 fori € Z. Combining the finite orbit

Yais - - -» £ (yg,) with the finite orbity,,,,, ..., f97(y4.,) for anyi € Z, we obtain the
following {8:(8)};>1-pseudo orbit.

s Yajs e fqo_l(ya,‘)v )’aHla D) fqo_l(ydlurl)s e C Al+q0 .
i—th (i+1)—th

Denote by;(a) the above sequence (see Figure 3). Theorem 2.4 ensures the existence of
a unique shadowing poiatfor z(a), and so defin@(a) = a. Putl” = (p(YbZ). Using (2.1)
in the proof of Theorem 2.4, we have that the mapYbZ — I is injective and continuous.
Therefores : Y7/ — YZ and f%| : I" — I are topologically conjugate.

Putr’ = U;’ial fiUI). ThenI"is f-invariant and

1
h(flr) = —h(f*Ir)
q0

1
= —logb.
q0

-

FIGURE 3. A pseudo orbit of(a).
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By (2.8) we have
1
h(flr) = ——=10g4(E) + —(hu(f) — 2p) .
q0 qo0

Sincem < qo < [(1+ p)m], by (2.6)

1 1
h(flr) z = log#(§) + m(hu(f) —2p)

>hu(f) —a.

The choice ofx > p ensures that

b < expim(hu(f) + )

because 0b < #(V,,) < #(E,) and (2.5). Therefore we have

1
h(f1r) = —logb
q0

m
< —(hu(f) +a)
q0

<h,(f)+oa.

This completes the proof of (a) and (b) in the casé ef /1, (f).

To obtain (c), it suffices to show that every unstable manifold of V,, N £(zo) is
contained inS = Suppw) (see [12], p. 690 Theorem S.4.14).

SinceV,, C A; = Supp|4,), we haveu(U(y) N A;) > 0fory € V,, N &(z0) and
any open neighborhood (y) of y. By SRB condition ofu we haveW*(x) c S for u-a.ex
(Theorem 3.2(b) in the next section). Thus there exists a seqyepce1 C SN A; such
thatx, — y (n - oo) andW"(x,) C S. Therefore we hav&"(y) C S = Supfu) since
local unstable manifolds depend continuouslyAn This concludes (c) fok = &,.(f).

Finally we continue the proof for & i < h,(f). By the above construction we can find
I satistying|h(f ) —hu (f)| < afor0 < a < h,(f) —h. Sinceh(f|r) > hu(f) —a >
h, we can take an equilibrium stateon I"” with &, (f| ) = & (in the same way as Theorem
4.1, Part (11)). Applying the argument aboveit@gain, we obtaidy c I’ andk, j € N such
that f* : I — I ando : Y# — Y# are topologically conjugate. Put = U\ f'(I').
Then

R(flrp) = bl = 1h(flr) = ()] <.

This completes (a) and (b) for@ h < h,(f). If u satisfies SRB condition, then it is checked
thatI”” c S. And sol'y C S. The theorem is concluded. O
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3. Hyperbolic Attractorsand SRB Attractors

An f-invariant closed sef’ is said to be amztractor if there exists a neighborhood
v of I' such thatf(CI(V)) C V and();~4 fi(V) = I'. Here ClA) denotes the closure of
a setA. An attractorl” is said to be a&yperbolic attractor if I' is hyperbolic andf|y is
topologically transitive. The map : I’ — I is said to beopologically transitive if there
exists a poink € I" such that its orbif /" (x)},cz is dense inl". An f-invariant closed set
I' is said to be dyperbolic set if there existC > 0 and O< A < 1 such that for any € I
there exists a decomposition ¥ = E*(x) & E*(x) into subspace&” (x) and E*(x) such
that the following properties hold: (. f (E° (x)) = E°(f(x)) for o = s, u, and (ii)

IDx f* )l = CAM[Iv]l - (v € E*(x)),
IDx f7" () = CA* vl (v € E*(x))

forn e N.

Denote byP(f, ¢) theropological pressure of f w.rt. ¢ € C(M,R) (see [21] for
the definition), whereC (M, R) denotes the set of real valued continuous functiongvon
An f-invariant probability measure on M is said to be arequilibrium state for ¢ if
P(f,¢) = hy(f) + [ @dv holds. Denote byPr (f, ¢*) the topological pressure of w.r.t.
¢"|r. Herep"(x) = —log|det(Dy f| g« (). If I" is a hyperbolic attractor, then the following
properties hold:

(9) Pr(f.¢")=0.

(10) W*(x) c I''foranyx e I'.

(11) f|r istopologically transitive (by thdefinition of hyperbolic attractors).

(12) m(W*(I")) > 0.

Here W* (I") denotes the union of all stable manifolds at the pointg'irin [6] (p. 99 Theo-
rem4.11) Bowen showed that both (9) and (12) are equivalent.

(13) f|r satisfies the uniformly shadowing property.

(14) The set of periodic points fof| -, P(f|r), is dense in".

(15) fIr is expansive.

(16) f|r has a unique equilibrium state fof'.

A sequencéyx;}icz C I' is called as-pseudo orbit for f if d(f(x;), xi+1) < & fori € Z.
A point x is called arx-shadowing point for as-pseudo orbifx;};cz if d(fi(x),x;) < «
fori € Z. We call thatf | satisfies thewni formly shadowing property if foranya > 0
there exist$ > 0 such that for any-pseudo orbit there exists at least @enshadowing point
inI.

Throughout this section, let be an ergodic measure aridbe the Pesin set w.r.i.. For
a Borel setR put

WiR) = Wi, wrR) = W),

XeR xXeR
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We say thaj satisfies theondition (A)s (condition (A),) if m(W*(R)) > 0 (m(W*(R)) >
0) for any Borel se®k with u(R) = 1.

If u is an ergodic hyperbolic measure satisfying SRB conditionffothen it follows
from the proof of Theorem 3 in [23] that satisfies the conditiofA);.

REMARK 3.1. The following statements hold:

(&) wisan SRB measure if and only if there exists an SRB attractar, of

(b) if uis a hyperbolic measure and satisfies SRB conditioryfahenS = Suppi)
is an SRB attractor oft.

PrROOF. (a) is clear by the definition of SRB attractors. (fsatisfies SRB condition,
then (b) follows from(A); (see [23]). ]

If uis ergodic, then
Pegn(£.0) =hu(H + [ edn (0 € C(5.R) 3.1)
([21]).

Fory e L(u) define the norm ol (w) by [|¥/]l1 = [ |¥|du. SinceC(S, R) is dense

in LY(w) w.rt. || - ||, for ¥ e LY(u) there is{g;}i=1 € C(S, R) such that|g, — |1 — O
(n — 00), and so define

Prw (f, V) = n”_)moo Priwy (fs on)

= lim <hu(f) + / wndu>

B () + / vdu.

THEOREM 3.2. Let u be an ergodic measure satisfying SRB condition for f and put
S = Supp(r). Then

(@ Pr(fie*) =0,

(b) wW(x)c S for u-aex,

(c) flsistopologically transitive.
Moreover, if u ishyperbolic, then S isan SRB attractor of u and

(d) m(WS(R)) > 0for R C SN A with u(R) = 1,

(e) fls satisfiesthe nonuniformly shadowing property,

(f) theset of all hyperbolic periodic pointsof f|s isdensein S,

(g) ingeneral f|s isnot expansive.

PrRoOOF. (@) follows from the SRB condition gf (see [15], theorem A). The ergodicity
of u implies (c).

To show (b), lett” be a measurable partition which is subordinate toWHefoliation
as in Sect.1," be the canonical system of conditional measurg @f.r.t. £* andm? be the
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Lebesgue measure ai“ (x) (u-a.ex). Since
0=u(s) = /uﬁé(Sc)du(X),

we havep(S¢) = 0 (u-a.ex). By (1.1)
miE"(x)NS)=0 (pn-aexeM). (3.2)

For u-a.ex there exists am = r(x) > 0 such thatU/*(x, r) C & (x) becausé&" is subordi-
nate to thew"-foliation. Here

U (x,r) ={y € W) |d“(y,x) <r(x)}

andd" denotes the Riemannian distanceWt{ (x).
If U*(x,r)NSC # ¢, thenm (U*(x, r)NS) > 0sinceU*(x, r)NS¢ is openinW" (x),
and by (3.2)

0= mﬁ(su(x) NS
> mi(U*(x,r)N S
> 0.

This is a contradiction. Therefore
Ut(x,r)Cc S (u-aexeM),

and soW*(x) C S (see the proof of Proposition 3.1 in [14]).

(d) follows from the fact that satisfieg A), (see [23]). By combining (b) and the proofs
of Theorem S.4.14 in [12] and Main lemma in [11], we have (e) and (f). Since the sizes of
the local stable and unstable manifolds/fare not constant, it does not ensure tfigd is
expansive. O

4. Ergodic Measuresof SRB Attractors

Let 4 be a hyperbolic ergodic measure Mfand A be a Pesin set w.r.fz. Denote by
M (M) the set of Borel probability measures dh Let{g;};>1 be a sequence of continuous
functions which is dense i@(M, R). Forx, v € M (M) define

dv — [ gidA|
2¢illo .

D=3 o
i=1

Herellpllo = sup.cpile )]} for ¢ € C(M, R). ThenM (M) is compact. LetM (M) be
the set off-invariant measures M (M) and put

My(A) ={v e Mp(M)|v(A) =1}
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where A is a set defined as in (2.2). The set of all ergodic probability measur@s-of
Supfp), £(S), is decomposed into the union of subsets:

H(S) = {v € £(S) | v is hyperboalic},
N(S) = {v € £(5) | v is non hyperbolig .

If S = A, thenN(S) = ¢. On the other hand, in the case $f£ A, N(S) is not
empty in general. Indeed, there exisi§&diffeomorphism ofT 2, called an "almost Anosov’,
described in [10].

As shown in Table 1, we can decompdsé€S) into the union of subsets where

(i) 6(9S) is the set of measures with a point mass on the periodic orbifs on

(i) Z(S) is the set of measures with zero entropy a(slippori = co.

(i) P1(S) is the set of measures with positive entropy, but not satisfy SRB condition
for both f and f 1.

(iv) P2(S) is the set of measures satisfying SRB condition fo, but not SRB con-
dition for f,

(v) P3(S) is the set of measures satisfying SRB conditionfpbut not SRB condition
for 1,

(vi) P4(S) is the set of measures satisfying SRB condition for botmd f 1.

Note that/\/lf(/I) c CI@(S)) ([9]). Since any element dP3(S) or Pa(S) satisfies
SRB condition, each element is an SRB measure (see Remark 3.1). Since there exist at most
countable SRB measuresdns), P3(S) andP4(S) are at most countable sets and s@i%S)
by applying the same argument fpr?.

In the case whe\/ (S) # ¢, denote byP5(S) the subset ofV'(S) which consists of the
elements satisfying SRB condition fgr. Thenv € P5(S) satisfies (a)—(c) in Theorem 3.2.
Denote byPg(S) the subset al/(S) which consists of the elements satisfying SRB condition
for f and f 1. By Theorem 3.2 we have that fore Pgs(S)

Wo(x)CS (v-aex,o=s,u).

fissaid to beu-mixing if lim,— . u(f~"(A) N B) = u(A)u(B) for Borel setsA andB.

TABLE 1. Aclassification of(S)

H(S) N(S)
" finite support a(S)
zero entropy infinite support Z(S)

£~1: non SRB cond| P1(S)
f~1:SRBcond | Po(S)
#~1: non SRB cond| P3(S)
F~1:SRBcond | P4(S)

f :non SRB cond

positive entropy

f: SRB cond Ps(S) D Pe(S)
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THEOREM 4.1. Let u be a hyperbolic ergodic measure satisfying SRB condition for
f. Assumethat f is u-mixing. Then the following holds:

(@) Z(S) isanuncoutable set and M ;(A) c CI(Z(S)).

(b) P1(S) isan uncoutable set and M (A) C ClI(P1(S)).

(c) Anergodic measure satisfying SRB condition for f isuniquein M s (A).

The proof of Theorem 4.1 is decomposed into the following four parts.

PART (1). Z(S) is an uncoutable set.

PROOF. Using Theorem 2.5 fot = £, (f), we can findk, ¢ € Nandl” C S such that
fHlr: ' — I'ando : Y/ — Y7 are topologically conjugate.

Now we construct a Sturmian shift (see [16], [18]) as follows: for an irrational number
B € (0,1/q) the family of sets

i =[ip,@+DB) (i=0,...9q-2), ILi1=[¢g—-DBD
is a partition ofS* = [0, 1) (mod 1). Definel} : ST — s by
Ts(z) =z+B (modd (zesh,
andh"ﬂ : 81— Yo by
, 1 if Ty(2) € Io,
p(2) = o
0 if Té(z) ¢ Ip

fori € Z. Thenthe mapg : S* — Y defined by
hp(2) = (hy(2)iez € Y5
is injective such thakg o Tg = o o hg. Let
Co={(xiez € Y5 |x0=1} and C1={(x)iez € Y} |x0o=0}.
Then
hz'(Co)=10,8) and hz'(C1) =B, 1)
and we have that
hil n

j:—m j=7m

n
= (] ﬁ;johglakﬂ

j=—m

= () 75/ "k

j==m
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fork; € {0,1} (—m < j < n,m,n € N). This implies that:g is measurable.
We know that a Lebesgue measiren St is aTg-invariant ergodic probability measure.
Define

up(E) =hohgtoh(E) (ECT)

whereh : I' — YZ is the conjugacy. Theng is f*-invariant andz,,, (f*) = 0. Since

=S
B :n!)mm;;lE(f X) =/1Edp,,3 np-a.ex
1=

for E = h=1(Co), we have thatig # uq if o« # B. |
PART (I1). Fora e (0, h,(f)) there exist € P1(S) such that
hif)=a.

ProoOF. Fora € (0, h,(f)) takep > 0 so small thatv < /,(f) — p. By Theorem 2.5
there exisk, g € NandI” C S suchthatf*|r : I' — I"ando : Y7 — YZ are topologically
conjugate and(f|r,) > a« wherel, = {3 £~/ (I").

Fix y > 0 and define a continuous functign on YqZ by

|y if xo=0,
¢y (x) = { 0 if xo#0.

Letv, be the equilibrium state dfqz for @,. Put[i] = {(x;)icz € YqZ [xo=i}for0<i <
g — 1. Then

Y

vy, ([0]) = mv vy ([i]) = m 1l<i<qg-1
(see [28]) and we have that
q—1
hy, (@) =Y =vy,(Lj]) log vy (1j])
j=0

and soi,, (o) — 0 (y — o0). Then the entropy of an ergodic measure

= '
GV = EZUY OhOfil
j=0
is given by

1 1
s, (F) = 2o, on(F) = The, (@),



ERGODIC MEASURES OF SRB ATTRACTORS 273

ho(f)

Yo

FIGURE 4. The graph ohﬁy(f).

wheren is the conjugacy froni” to Yqz. Thus in the case when = 0 we have that

1 1
hio(f) = %hvo(cr) =3 logg > «

because of,,(c) = logq. Therefore we can fingy > 0 such tha’h%(f) = « (see Figure
4). O

It is well known that a Borel set

n—1
0(f) = {x eM ‘ there exists lim— Z(p(fi(x)) foranyy € C(M, R)} .
n—00 n
i—0

satisfieso(Q(f)) = 1forv e My (M).

PART (Il1). Forv e Ms(A)andp > Othere exist € N andI" C S such that

(@ f"r:I — I'ando : Y — YZ are topologically conjugate, and

(b) D(v,x) < p for any f-invariant Borel probability measure of fp =

Uiz £,

ProoOF. Choosev € Mf(/i) andp > 0. Fix a dense subsép;};>1 of C(M, R) and
setF = {g; 5021 for Ip € N. For convenience assume thate F satisfieg|y|o = 1. Since
¥ € F is uniformly continuous, we can findh > 0 such thafy (x) — ¥ (y)| < p/4 for
X,y € M with d(u,v) < o andy € F. Puty*(x) = lim,—oo(1/n) Y125 ¥ (f(x)) for
x € Q(f)yandy € C(M,R),andp = p/Ip. Thenforx € Q(f) we can takeV(x) € N such
that

n—1

1 i *
‘; DY) -y <5 = N) (4.2)
i=0

N
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for ¢ € F. Moreover, Birkhoff’s ergodic theorem ensures that
Y¥dv = / Ydv .
0N
PutA = sug|y*(x)||x € Q(f), ¥ € F} and define

L |
o =lrean|-a+ it cviw <—at s}

forj=1,...,[8A/p]+1andy € F. SinceF is afinite set, we can define a finite measurable
partitionQ = {Q;}_, of Q(/) by

Q={0i}i_1 = Vyer(Qi1(¥), ..., Qma/p+1(¥))}
wherea v 8 = {A; N Bj | A; € a, Bj € B} for two finite partitionsy = {A;}, 8 = {B;}.
Here after notice thatbe fixed. Without loss of generality, we may assume tiigt;) >
0 for Q; € Q. Then we can find > 0 such thab(Q; N Ay > 0forj=1,...,k Bythe

definition of A, there exists; € Q; N A; such thaw(U(z;) N A; N Q) > 0, whereU (z;)
is a neighborhood of; with radius less thai;(§g) in Theorem2.4 and so, by Poincare’s

recurrence theorem we can fing € U(z;) N Q; N A; andn; > N(x;) sufficiently large
such that

d(xj, ffi(x;)) < piBo) (=1,....k). (4.2)

By the definition ofQ = {Q;}%_,,

k
0
Yyrdv =) v(@)YT(x))| <
‘/Qm ; AR
and by (4.1)
k I’lj—l ) [)
‘/wdv - Zv(Qj)n—j PVIGENIETS (4.3)
j=1 i=0
For a fixed large integer with 0 < 1/s < p/2k we can findsy, ...,5x € N such that
5i/s <v(Qj) < (§; + 1)/s. Choosesy, ..., s, € Nsuch that = Z’;zlsj ands; = §; or

§j 4+ 1. Then we have

b
2k

Sj
v(Qj) — i

and so, by (4.3)

nj—1

18 1 .
Ydv — - i — V(f' (x;)) 0. (4.4)
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Takeyo, y1 € A; andmg, m1 > 0 such that
d(yo. y1) < Bi(60), d(yi, f™(y)) < Bi(do) (=0,1). (4.5)

Sinceyo, y1 € A;, we havew (U (y;) N A;) > 0 for any open neighborhodd (y;) of y;. By
the assumption gf-mixing, there exist/ > 0 andwg, w1, ..., wx € A; such that

d(f™ (yi), wo) < Bi(d0) (i =0,1),
d(f™(wo), x1) < Bi(d0) .
d(f" (xj), wj) < Bido) (1< j=<k), (4.6)
d(fMwj). xj41) < B L=<j<k-1),
d(f™wr), yi) < Bido) (i =0,1).
For simplicity put

k
n= Zsjnj + (k+2DM + mom1 .
j=1
Sincens, ..., n; are large enough,
1 o
;{(k + DM + mom1} < 2 4.7)

In the same way as stated in the proof of Theorem 2.5 we const{gptsa) };>1-pseudo
orbit. To do so, fixa = {a;}icz € Y2Z andset; = 1—gq; (i € 2). Fori € Z and the finite
orbit yg,, ... ,f™i *l(ya,.) we firstly construct a finit¢s; (o) }-pseudo orbit

ya,‘v R} fma"_l(ym): LN )’a,-: RN fmai_l(ydi)

mp, -times

which passesuy,-times through the orbig,,, . . ., f’"“f‘l(yal.).
Next, for 1< j < k we also construct a finitgs; (o) }-pseudo orbit
Xjo oo FU7H), g T )

sj-times
which passes;-times through the orbit;, ... ,f" ~(x;). Under these pseudo orbits and
the orbitswy, ... ,fM_l(U)j) for 0 < j < k, we construct a finitg¢s; (8o)}-pseudo orbit as

follows:

Z(ai) = ()’a,-a s fmai_l(ya,‘)v ceey )’a,-: s fmai_l(ydi)v wo, -« - fM_l(wO) 9

mp, -times
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£ £ i

i

FIGURE 5. A pseudo orbit of (a).

-1 -1 M-1
X1, M), X YT (), we ., YT (W)

s1-times

Xiy oo f”kil(xk), U 7 S f”kil(xk), Wiy vt fMl(wk))

si-times

(see Figure 5).
It follows from (4.2), (4.5) and (4.6) that

z(a) =1{...,z(a-1), z(ap), z(a1), ...}

is a{Bi1(80)}i>1-pseudo orbit. By Theorem 2.4 there exists a unique shadowing @pdort
z(a), and so defing : Y — M by ¢(a) = a and putl’, = ¢(¥¥). By using (2.1) in the
proof of Theorem 2.4, we have thatis a continuous map such thab o = f" o ¢. Using
the same arguments in the proof of Theorem 2.5 (c), it follows Ehat | J/—) f*(I',) C S.
Denote byE(fp) the set of ergodic probability measuresl@fand byR (1) the ergodic
basin ofi. Fix A € E(fp) and choose € I, N R(1). Then there existpg € N such that

pn—1

1 ' -
Y v - [ua| <4 (4.8)
P 0 4

for p > poandyr € F. Sinceny, ..., n; andn are integers of (4.7), we have

pn—]_ n;i—1

k j
Yo v @) - {%Zs,- . > w(ff(xj>)}
i=0 j=1 i=0

1 3p
‘— il <22 (4.9)
pn = nj = 4




ERGODIC MEASURES OF SRB ATTRACTORS 277

}/wdv—/wdk

Let W1 and W» be the unstable manifolds, and fet: Wi — W be a holonomy map
defined by sliding along the stable manifolds, i.e.,sfoe W1, 7 (x) € Wo N W¥(x). Theniit
is known (see [3], [23]) that is absolutely continuous i.e. m4 o m <« mY, wheremj and
m4 be the Lebesgue measure h and W» respectively.

By (4.4), (4.8) and (4.9)

<2p.

a

PART (IV). This partis to prove (c) of Theorem 4.1.

PROOF. Letv be a hyperbolic ergodic pbability measure supported ofwhich sat-
isfies SRB condition foy and putA; (v) = Suppv|4,) ( > 1) andA(v) = ;o1 Ai(v).

If I € N is large enough, then we havéA; N A;(v)) ~ 1 because of (A N A(v)) = 1.
Sincev(R(v)) = 1, by the Borel Density Lemma there exist& A;(v) such that

v(B(x,r) N A; N A;(v) N R(V)) ~ v(B(x,r)) > 0

for» > 0 small enoughé, (z) denotes the connected componens af B(x, r)NA; (v) whose
unstable manifold intersecB(x, r) and put, = {£,(z)|z € B(x, )NA;(v)}. Let{v"} be the

canonical system of conditional measures ofr.t. £,. Then there exists € B(x, r) N A;(v)
such that

VEE () N AN A(v) N R() & (€, (y) > 0.

Sincev satisfies SRB condition fof, it follows from (1.1) thabl ~ m? |¢, ) for v-a.ew €
B(x, r). Therefore

mYy (&, (y) N Ar N Aj(v) N R)) ~ mij (€, (y)) > 0. (4.10)
On the other hand, sinde> 0 is large enough, we may assume that
uw(B(x,r) N AN R(w)) ~ u(B(x,r)) > 0.

Let&(y) be the connected componentyo€ A; N B(x, r) whose unstable manifold intersects
B(x,r)and put = {£(y)ly € A;NB(x, r)}. Let{u?} be the canonical system of conditional

measures oft w.r.t. £. Then there exists’ € B(x, r) N A; N R(w) such that
WL EG) N AN R(w) ~ i (€(y) > 0.
Sincep satisfies SRB condition fof, by (1.1) we have

m'y (§(y") N A N R(w) ~ mly (€(y)) > 0. (4.11)



278 JIN HATOMOTO

Since the holonomy map : £,(y) — £(y’) is absolutely continuous, by (4.10) and (4.11)
we can findz € &,(y) N A; N A;(v) N R(v) such that

m(2) €EGNYNAINRW, d(f' @), f'(@(2)) >0 (i > 00).
Therefore we have

- 1 n—1 ,'
/ pdv = lim = ; (')
n—1

= lim_ % ;)w(fi (7(2)

=f<pdu

forp € C(M, R), sincez € R(v) andn(z) € R(w). This implies thaju = v. O

5. SRB condition and absolute continuity of probability measures

We shall investigate the further properties of ergodic measures satisfying SRB condition.

REMARK 5.1. There exists a unique measure satisfying SRB conditiofi tor every
hyperbolic attractor (see [6], Theorem 4.12).

Throughout this section, assume thaits a hyperbolic ergodic measure ands a Pesin
set w.r.t.u. Let&" be a measurable partition 8 which is subordinate to th#“-foliation
and{u%} (u-a.ex) be a canonical system of conditional measureg of.r.t. . Forx € A
ando = s, u denote byB? (x, p) the ball centered at with radiusp in W° (x). Then there
exists

57 — lim log s (B? (x, p))
p—0 logp

ands? < dimg? holds ([15]).
Let Fo C M be such thag(Fo) = 1, andu® ands*(x) exist forx € Fo. Let B(x, p)
denote the ball centered atwith radiusp.

LEMMA 5.2 ([29]). Let v beafinite Borel measureon M and Z ¢ M bev(Z) > 0.
Assume that there exist 0 < § < § such that

L 10gv(BEr )

(n-a.ex,o =s,u),

logv(B(x,r))

s <limin < limsup <$
r—0 logr >0 logr
for x € Z. Then
§<HD(Z) <.

Here H D(Z) isthe Hausdorff dimension of Z.
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LEMMA 5.3 ([15]). u satisfies SRB conditionfor f if and onlyif §* = dimE*.

THEOREM 5.4. pu satisfies SRB condition for f if and only if o satisfies the following
condition.
(B) : for N C M with w(N) = 0, m%(N N &"(x)) = 0 (u-a.ex) where m! be the Lebesgue
measure on W*(x).

PROOF. Assume thaj: satisfies SRB condition fof and fix N ¢ M with ©(N) = 0.
Then we have

0= (V) = / WEN)dp(x)

= / PN (x) .
Fo

Thus there exist$” C Fo with n(F') = 1 such thap2(N) = 0 (x € F’) and som¥(N N
&"(x)) =0 (x € F') by (1.1). Therefore: satisfies the conditiotB).
Conversely, assume thatsatisfies the conditiofiB). Sinceu(Fp) = 1, we have

1=pFo) = /M?(Fo)du(X)

= / Wi (Foydp(x) .
Fo

Then there exist&” C Fo with uw(F”) = 1 such that
pi(Fo)=1 (xeF"). (5.1)

Sincey satisfies the conditio(), we can findF”” C M with u(F") = 1 such that¥ (F§N
&"(x)) =0 (x € F"), from which

m“(FoN&“(x)) >0 (xeF"). (5.2)
Forx € F” N F"”, we have that by applying Lemma 5.2 to (5.1) and (5.2)

8" = HD(§"(x) N Fg) = dimE* (x € F"NF").
Thereforeu satisfies SRB condition fof by Lemma 5.3. O
If

log i (B(x, p))
log p

thend,, (x) is said to be theointwise dimension of u atx. We have (see [29]) thal, (x) =
inf{HD(Z) | u(Z) = 1} if d,.(x) is constant fop-a.ex.

THEOREM 5.5 ([4], [15] p. 548). d,(x) = 8° + §* holdsfor p-a.ex.

dy(x) = lim
p—0

REMARK 5.6. Ifv € M(M) and is absolutely continuous (w.riz), thend, (x) =
dimM for v-a.ex.
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THEOREM 5.7. wu isan absolutely continuous measure (w.r.t. m) if and only if it sat-
isfies SRB condition for f and the condition (A),, (which is defined in Sect.3).
PROOF. Assume thaj satisfies both SRB condition fgt and the conditior{A),. By

SRB condition ofu, we haveufsu ~ mi| pigu(yy (n-a.ex)fori € Z.

In order to show that is an absolutely continuous measure, it is enough to prove that if
w(E) > 0for E € Bwith E C Fgthenm(E) > 0.

Sinceu(E) > 0, we can findF, C E with w(F1) = w(E) such that

ul*(E) >0
forx € Fp andi € Z. By the regularity ofu, there exists a monotonically increasing
sequencegC,},~1 C F1NY, of closed sets such that(Upzl Cp) = n(E). Sincep is
ergodic,|,~o /" (U,>1Cp) hasu-measure 1 and so is

A:Uf"(Uc,,)mA

n>0 p>1

=JUUurcnnan.

n>0p>1/>1

Sinceu satisfies the conditiod),, we havem(W*(A)) > 0. Then there existi € N,
k1 € Z,x1 € Ay, andry; > 0 such thain(B") > 0 where

B" = U n"(y)
YEB(x1,n N fRL(CHNAY
andn“(y) is the connected component ¥ (y) N B(x1, r;;) which containsy. Sincen* =
{n"(y) | y € B(x1, r;l)ﬂf"l(Cp)ﬂAll} is a measurable partition &%, we can takeg, C B"
with m(F2) = m(B") and a canonical system of conditional measm{meg | we Fo} of m
w.r.t. n*. Forw € F» we have thatn® |, ~ m (see [1], p148), and so

ml' (fF(E) >0 (weF). (5.3)

Indeed, forw € F>there exists € B(x1, r;l)ﬁf"l(cp)rmll such thag*(w) = n*(w).

Since f A1 (w) € C, C F1NY,, we haveu;:ﬁf;)(E) > 0, and by SRB condition of,
My, ) (EN SR (F7R@))) > 0. Because oy |y ~ miy iy (f4(E)NE" (D)) >
0. Sincen’, = m" , we haven (fX1(E)Ng"(i)) > 0and them, (f*(E)) > 0. Therefore
(5.3) holds.

Using (5.3) we have

m(B" A fR(E)) = /B m (F4(E)dm
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- f il (fY(E)dm
F2

> 0.

Thereforem(f*1(E)) > 0 and san(E) > 0. u is absolutely continuous.

Conversely, assume thatis absolutely continuous. It follows from Theorem 5.5 and

Remark 5.6 that = §* + §°. Sinces? < dimE® (o0 = s,u) andn = dimE"* + dimE*, we
have thatt* = dimE* ands® = dimE®. By Lemma 5.3u satisfies SRB condition fof.
Moreover, applying Lemma 5.3 61, we have thau satisfies SRB condition fof =1 and
sou satisfies the conditiofd), (see [23]). O

REMARK 5.8. A non-hyperbolic measuneis not always an absolutely continuous

measure even if satisfies SRB condition fof and f L.
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