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Abstract. We consider the Schrédinger and Schrédinger type operaitoes —A+V andHyp = (—A)24v2
with non-negative potential® on R". We assume that the potentidl belongs to the reverse Holder class which
includes non-negative polynomials. We establish estimates of the fundamental solutidndod show somé.”

estimates for Schrodinger type operators. Moreover, we show that the opﬁfa‘tqu is a Calder6n-Zygmund
operator.

1. Introduction and Theorems

Let V (x) be a non-negative potential and consider the Schrédinger and Schrodinger type
operatorsH; = —A + V andHp = (—A)2 + V2 onR". WhenV is a non-negative poly-
nomial, Zhong ([Zh]) proved the estimates of the fundamental solutiorf/foand H» and
showed some estimates féf; and Hp. He showed thd.” boundedness of the operators
v2-il2viHyt wherej = 0, 1, 2, 3, 4, and/*H, ¥, V=12V H ¥, wherek € N. He also
proved that the operatol@zHl‘1 andV“Hz‘1 are Calderén-Zygmund operators.

For the potentialV which belongs to the reverse Hoélder class, which includes non-
negative polynomials, Shen ([Sh1]) generalized Zhong's resultdpnActually, he estab-
lished estimates of the fundamental solution féf and showed thd.” estimates of the
operatorsV H; *, VY2V H !, V2H !, etc. On the operatoH; these Shen’s results were
generalized to other directions. See [KS1], [Su]. Moreover, in [KS2] the authors studied the
magnetic Schrodinger operator with potenti&lsvhich belong to a certain reverse Holder
class and showed some estimates. In particular they showed that the OW%HEB? is a
Calderén-Zygmund operator.

In this paper we studyd, with reverse Holder class potentials. We establish esti-
mates of the fundamental solution féf, and show thel.” boundedness of the operators
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v2-i/2viHyt wherej = 0, 1, 2, 3, 4. Moreover, we show that the operaidr, ! is a
Calderén-Zygmund operator.

To be precise, we recall the definitions of the reverse Holder class (e.g. [Sh1]). Through-
out this paper we denote By (x) the ball centered at with radiusr, and the lette” stands
for a constant not necessarily the same at each occurrence.

DEerFINITION 1 (Reverse Holder class). L&t> 0.
(1) Forl<p <oowesayV € (RH),, ifV e L,’LC(R”) and there exists a constant
C such that

1/p
V(y)”dy> < V(y)dy 1)

(lBr(x)l By (x) T B ()] JB )

holds for everyr € R" and O< r < oo.
(2) WesayV € (RH)x, if Ve LS°

loc

(R") and there exists a constafitsuch that

VI, ) < V(y)dy (2

| By (x)| JB,(x)

holds for everyr € R"and 0< r < oo.

REMARK 1. If P(x) is a polynomial andr > 0, thenV(x) = |P(x)|* belongs to
(RH)oo ([Fe]). For 1< p < oo, itis easy to Se€RH)oo C (RH) ).

In [Sh1], Shen defined the auxiliary functier(x, V) and established the estimates of the
fundamental solution off;. For the operatof,, we show the estimates of the fundamental
solution with Shen’s auxiliary functiom (x, V). We recall the definition of the function
m(x, V).

DEFINITION 2 ([Sh1, Definition 1.3]). LeV € (RH),/2 andV # 0. Thenitis well-
known that there exists > 0 such tha’ € (RH), 2+ ([Ge]). Then the functiom (x, V) is
well-defined by

1 r?
— = —suplr>0: V(y)dy <1
m(x,V) |Br(x)| JB,(x)

and satisfies &< m(x, V) < oo for everyx € R".

REMARK 2. If V € (RH)x then there exists a constaft such thatV(x) <
Cm(x, V)2 ([Sh1, Remark 2.9]). We also remark thatVif (RH)p, p = n/2, then there
exists a constan® such that

) 1/p 5
\% d <C ,V
(|Br(x)| i y) = Gmex V)

(cf.[Sh1, Lemma 1.8] and [KS1, Lemma 2.2(a)]).
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Now we state our theorems. In this paper we stidyand H, only forn > 3 andn > 5
respectively. We denote by, (x, y) the fundamental solution fa#;, j = 1, 2. The operator

Hj‘1 is the integral operator witﬁ‘Hj (x, y) as its kernel.

THEOREM 1. (1) Let j = 0,1, 2,3 Suppose V € (RH),/2> and there exists a
constant C such that V (x) < Cm(x, V)2. Then there exist constants C 7 such that

V22 Hy  fllee ey < CillfllLe®) @A)

wherel < p <coand V/ = Vi = A /ax]10xg? - dxy", j = latl = o1+ o2+ -+ + oty
(2) Suppose V e (RH),/2 and there exists a constant C such that V(x) < Cm(x, V)2
Then there exists a constant C’ such that

IV*HS  fllLr@ey < C I lLrwn ()
wherel < p < o0.

For the operatoV*H 1, we prove that the operatéf*H ! is a Calder6n-Zygmund
operator under a little singer assumption (see Theorem 4).

To prove Theorem 1 estimates of the fundamental solution are needed. The following
Theorems 2 and 3 generalize the result§dh, Theorem 5.1 and Proposition 5.7] to the
operatorH, with potentialsV which belong to the reverse Holder class.

THEOREM 2. Suppose V € (RH),,2. Then for any positive integer N there exists a
constant Cy such that
Cn 1

L4+ m@, V)x —y}V  |x —yp—4" ®)

(O E)FHz(-xa )’) <

THEOREM 3. Letj =1,2,3 Suppose V € (RH), 2 and there exists a constant C
such that V(x) < Cm(x, V)2. Then for any positive integer N there exists a constant Cy
such that
Cy 1

Vi My (x, y)| < : -
Vil 06 ) =S e G VIl =Y T =y

(6)

REMARK 3. Estimate (6) can be proved under the assumpliog (RH)2,/4—j),
Jj =1, 2, 3 (see Theorem 6). When we assuvhe (RH), for someq > n/2 and use
Theorem 6 (also Theorem 2) and the same method as in [Sh1l, Theorem 4.13] (also [Sh1,
Theorem 3.1]), we can prove the operaters//2v/H, %, j = 0, 1, 2, 3, are bounded on
LP(R"), 1 < p < q. We note that, if we take the limij — +oo, then the clas$RH),

becomesRH)x andV € (RH) implies “V € (RH),2 andV (x) < Cm(x, V)2
REMARK 4. For I'g, (x,y), some exponential decay estimates are known ([Ku],

[Sh3]). Forly,(x,y), we only prove polynomial decay estimates, since it suffices to show
them to obtain ouL.” estimates.
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We prove Theorems 2 and 3 in Sections 3 and 4 respectively. In Section 2, we show an
estimate forH1 (Corollary 1) needed to prove Theorem 2. In Section 5, we prove Theorem 1
by using Theorems 2 and 3.

We now recall the definition of the Calderéon-Zygmund operator.ZVetenote the space
of distributions dual taCg° (R"™). An operatorT takingCg°(R") into D’ is called a Calderon-
Zygmund operator if

() T extends to a bounded linear opeator/GiiR"),
(i) there exists a kernek such that for every € C3°(R"),

Tf(x) = /R K@) f()dy ae. on (supps)’.

(iiiy there exist positive constanssandC such that for all distinck, y € R" and allz
such thatx — z| < |x — y|/2,

Kl = o W)

Clx —z|° 8

|K(X,}’)—K(Z,)’)|Sm, (8)
Clx —z|°

|K(y,x)—K(y,Z)|§m- 9

See e.g. [Ch, page 12].

THEOREM 4. Suppose V € C°(R"). Assume also that V e (RH)y /2 and there exists
a constant C such that

VIV (x)| < Cm(x, V)2, j=1,234,5. (10)

Then V*H, ! is a Calder6n-Zygmund operator.

Once we obtain Theorem 4, we can obtain the result that the opevéiar? is of
weak-type (1,1) under the same assumption as in Theorem 4.

REMARK 5. It is known that|VV (x)| < Cm(x, V)3 implies V(x) < Cm(x, V)?
([Sh2, Remark 1.8]). We note that the condition (10) hold¥ ifs a non-negative poly-
nomial and there exist potentials which satisfy our assumptions but are not non-negative
polynomials (see [KS2, Remark 5]). We also note that, in [KS2, Theorem 2], the authors
showed thaleHl‘1 is a Calderén-Zygmund operator under the assmuptioa (RH), 2
and|V/V(x)| < Cm(x, V)2, j=1,2,3.

We note that the estimates (8) and (9) are implied by a condition

VK (x, < —
VK@= s



LP ESTIMATES FOR SOME SCHRODINGER TYPE OPERATORS 183

(ICh, page 12]). Hence, to prove Theorem 3, it suffices to show that the estimates

|V Ty, (x, y)| <

C
, ver, X, < —
S AR e

y|n+l

hold. In fact, stronger and higher order derivative estimates hold as the following theorem
states.

THEOREM 5. Let j be a positive integer and j > 4. Suppose V € C/(R"). Assume
alsothat V € (RH),/2 and there exists a constant C such that |V V (x)| < Cm(x, V)2t
i=1,2,3, -, j. Then for any positive integer N there exists a constant C such that

Cn 1
< . T .
= e Vil =)V =y

\VI Ty, (11)

We prove Theorem 5 in Section 6. Section 7, which is an appendix, is devoied to
boundedness of the operatof“ H, ¥, k € N.

2. Anestimatefor Hy
In this section we show an estimate for the opera@to(Lemma 2). Before we state it,
we recall the estimates related to the functiofx, V) sometimes needed later.

LEMMA 1 ([Shl, Lemma 1.4 (b), (c)]). Suppose V € (RH),/2. Then there exist con-
stants C1, C2, and kg such that

m(y, V) < Ci{l+ |x — ylm(x, V)}*om(x, V), (12)

V) > Com(x,V)
= L = ylmGx, V)Y

m(y, (13)

LEMMA 2 (cf.[Sh1, Theorem 4.13]). Suppose V € (RH)y, for somen/2 < go < n.
Thenfor 1 < p < pg there exists a constant C such that

lm (., VIVH fllLr@ey < Cllf Loy , (14)
where1l/po = 1/go — 1/n.
REMARK 6. Using the same way as in the proof of [Sh1, Corollary 2.8], we can obtain

L? boundedness of the operata(-, V)VHl‘1 with potentialsV which belong taRH),, for
SO0mego = n.

The following Corollary 1 is needed to prove Theorem 2.

COROLLARY 1. SupposeV € (RH), /2. Then there exists a constant C such that

lm G, VIVH Fll2gey < CIF lp2@m - (15)
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PrROOF OFLEMMA 2. We show Lemma 2 by a method similar to the one used in the
proof of [Sh1, Theorem 4.13]. Suppo®ee (RH),, for somegg > n/2. ThenV € (RH)y,
for somegy, satisfyingn > g1 > go. We denote by g, (x, y) the fundamental solution and
let

Tf(x)=m(x,V) /Rn Vilg (x, y) f(y)dy.
The adjoint ofT is given by
I = [ VTG om0y

By duality, it suffices to show that
IT*fllLr@yy < CllfllLegny for pg<p <oo, (16)

where ¥ po+1/py = 1. Letr = 1/m(x, V). We choose andp; suchthat 1r = 1/g1—1/n,
1/p1=1-1/q1+ 1/n. Thus ¥t + 1/p1 = 1. Hence, by Holder’s inequality,

+00
IT* fol< Yy /2 IVy Lay (y, X)Im(y, V)Lf (y)ldy

jm—0 J=lr<|y—x|<2/r

400 1/t
<y ( /2 AV Ty (0, ) Iy, V)}fdy>

j=—o0 J=lr<|y—x|<2/r

1/p1
(/ _ If(Y)IpldY) .
ly—x|<2/r

It follows from (12) and [Sh1, Lemma 4.6 and Theorem 2.7] that

1/t
( /2 1Y, T (. ) lm(y, V>}’dy>

J=lr <|y—x|<2/r

K 1/t
= Z <ﬁyk—x|=3.2f—zr {IV:Iy (2, x)|m(z, V)}’dZ>
k=1 lz—yl<2/~1r
< C@Ia=2(1 4 2/rm(x, V)}*om(x, V)  sup  |Twy(z,x)|
2€Bg ,j-3,. (k)
Cn 1
{14+ m@x, V)z—x}VN |z —x|"2
1 1
L+ 273N @32

< C(z.i—lr)n/ql—2(1+ 2.1')2k0} .
-

< CN(Zj_lr)”/ql_z(l + 2/')2k0} .
r

(27 pyr/ai—n

<ov~t @iy,
=Ny,
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whereK is a finite integer not depending grandr. Thus

I0 o+ 1 1/p
IT*fx)l<Cy > .3N{ : / IﬂwwW4
j A+2=2)8 @) I, )

< CIM(| fIP) ()P,

where we choos& > 2 + 2kg andM is the Hardy-Littlewood maximal operator. It follows
that

IT* fliLrgny < Cll fllLprny for p1<p<oo. (17)

Then (16) follows sincgy, > p1. O

3. Proof of Theorem 2

In this section we prove Theorem 2. It follows easily from the following Lemma 3.

LEMMA 3. Suppose V € (RH),,2 and (—A)%u + V2u = 0in Bg(xp) for some
xo € R". Then for any positive integer N there exists a constant Cy such that

Cy
sup  u(y)| < sup u(y)l. (18)
yeBr/2(x0) {1+ Rm(xo, VIV yeBrizg)

Assuming Lemma 3 for the moment, we give

PROOF OF THEOREM 2. Fix xp, yo € R" and putR = |xo — yo|. Thenu(x) =
Ty, (x, yo) is a solution of(—A)?u 4+ V?u = 0 on Bga(xo). Using the estimate O<
Ty, (x, y) < C/|x — y|"~*and (18), we arrive at the desired estimate. a

To prove Lemma 3 we need some lemmas.

LEMMA 4. LetV € (RH),/2. Thenthere exists a constant C such that
/ m(x, V)4|u(x)|2dx+/ m(x, V)2 Vu(x)|?dx
RN RN

< C/ |Au(x)|2dx+C/ V()2 |u(x)|%dx
RN RN

whereu € C°(R").
PrRooF By Corollary 1 and [Sh1, Corollary 2.8] we have

/m(x,V)4|u(x)|2dx+/ m(x, V)2|Vu(x)|%dx
RN RN

SC/IGA+VmuWM
Rn
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< cf |Au(x)|2dx+C/ V(x)?|u(x)|%dx . O
Rn RN

LEMMA 5 ([Zh, Lemma 5.5])(Caccioppoli type inequality)Assume  (—A)2u  +
V2yu = 0in Bg(xg). Then there exists a constant C such that

/ | Aux)Pdx + / V(o) 2u o) 2
B 2(x0)

Bpy2(x0)

C C
<— |u(x)Pdx + — [Vu(x)|?dx . (19)
Br(xo) R< JBr(xo)

LEMMA 6 ([Zh, Corollary 5.6]). Assume (—A)%u+V2u = 0,u > 0,in Bg(xg). Then

1/2
|u(x)|2dx)

lu(x0)| < C(
|Br(x0)| J Bk (x0)

, 1/2
R \Y d . 20
(IBR(XO)I Br(x0) Vutol x) (20)

REMARK 7. From (20) we have for alt € Bg/2(xo),

1/2
lu(y)| < C( |u(x)|2dx>

|BR/a()| JBjaty)
1/2
+CR(— |Vu(x)|2dx) ) (21)
IBr/a)| JBgaty)

Then we have

1/2
|u(x)|2dx)

1/2
|Vu(x)|2dx) : (22)

sup  u(y)| = C(

YEBR/2(x0) [BR(x0)| JBg(xo)

+ CR(i
|Br(x0)| JBg(xo)

LEMMA 7. Letj=1,2,3 SupposeV € (RH),, for somen/2 < go < 2n/(4— j).

Assume also that (—A)2u + V2u = 0in Bg(xg) for some xo € R". Then there exists a
constant C such that

) 1/t
</ |v-/u(x)|’dx> < CR@Y9~%1 4+ Rm(xo, V)}* sup |u(y)l, (23)
Bpy2(x0) YEBR(x0)

where 1/t = 2/go — (4 — j)/n.
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PrROOF We show Lemma 7 by a method similar to the one used in the proof of [Sh1,
Lemma 4.6]. Lety € C3°(Bg(x0)) such thaty = 1 on Bag,4(xo) and|Vn| < C/R, |V?y| <

C/R?,|V(An)| < C/R3, and|A%)| < C/R*. We denote byiy, o(x, y) the fundamental
solution for(—A)2. Note that

u(x)n(x) = /R" Ty 00, y)(=2)*(un) (y)dy

_ /R Ty ol M=V u(n) +4A(Tu(y) - V()
+2Au(y) An(y)) — 4V2u(y) - V2n(y) — 4Vu(y) - V(An(y))
—u(y)(A%(y))dy, (24)

whereV2u(y) - V2n(y) = 3 x_1 9%u(y)/dy;dyx - 9%n(y)/dy,;dyx. Then by integration by
parts, forx € Bg/2(xo) we have

, V)2 ulnG) C
|v1u(x)|sC/ i Ay o lu(y)ldy
Brxo) 1X — VI J R") JBr(xo)

V(»?n(y)|
<C sup |u(y)l- ey + - u()ldy .
yeBg(x0) Br(xo) 1X — I R BR(x0)

It then follows from the well known theorem on fractional integrals that

] 1/t
</ |V]u(x)|tdx>
Bpy2(x0)

2/q0
<C sup |u(y)|</ V(x)qodx> + CR®19~% sup |u(y)|
Yy€BR(x0) Br(xo) YEBR(x0)

< CR@Y90~41 4 Rm(xo, V)}* sup |u(y)l,
yeBR(xp)

where Yt = 2/qo — (4 — j)/n and we have used Remark 2. a
Sincen > 5, we have

COROLLARY 2. Letj = 1,2 Suppose V € (RH),2 and (—A)%u + V?u = 0in
B (xg) for some xg € R". Then there exists a constant C such that

_ Viuwar ) < CAFRme It o)
|Br/2(x0)| J Bg2(x0) N R/ y€Bg(xo)

Now we are ready to give

PROOF OFLEMMA 3. Letn € C3°(Bg/2(x0)) such thaty = 1 on Bg/a(xo), |Vn| <
C/R, and|V?y| < C/R?. Applying Lemma 4 ta:n and using Lemma 5 we have
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/ m(x, V) u(x)|?dx +/ m(x, V)2 Vu(x)|?dx
BR/a(xo) BRra(xo)

c
lu(x)|%dx + = [Vu(x)|%dx .

=72
R* JBr(xo) BR(x0)

By (13) it follows that

f |u(x)|?dx
BRra(xo)

_ C{1+ Rm(xo, V) }4ko/ (k1) (/
- R%m(xo, V)* Bg(x0)

c / 2 2 2
< lu(x)|“dx + R / [Vu(x)|“dx | .
{1+ Rm(xq, V)}#/ kot ( Br(x0) Bg(x0)

Then we have

1 1/2 C
(7 |u(x)|2dx> <
| BR/4(x0)| J Bg 4(x0) = {1+ Rm(xq, V)}2/tkotD)

1 5 \Y? 1 L\ M2
’ d + R \V4 d '
| (e b )+ (i mew )

Similarly

1 12 c
2
R<7 [Vu(x)| dx) i T/(kot L
|Br/a(x0)| J B ax0) {14+ Rm(xo, V)}/(kotD)

1 1/2 1 1/2
{( |u(x)|2dx) + R< |Vu(x)|2dx> } .
|BRr(x0)| JBg(xo) |BR(x0)| JBg(x0)

By repeating above argument, for aNy> 0 we have

1 12 1
(7/ |u(x)|2dx) +R<—/ |Vu(x)|2dx)
|BR/4N (x0)| B 4N (x0) |BR/4N (x0)| B 4N (x0)

C 1 1/2
< il NGt {( Iu(x)lzdx)
{1+ Rm(xo, V)}N/Uo+D |\ |Br(x0)| JBp(xo)

1 1/2
+R<— |Vu(x)|2dx> } . (26)

| BR(x0)| JBr(xo)

u(x)|%dx + RZ/

Br(x0)

|Vu(x)|2dx)

1/2

Then using Estimates (22), (25), arb] we arrive at the desired estimate. O
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4. Proof of Theorem 3

In this section we prove Theorem 3 which states the first, second, and third order deriv-
ative estimates of the fundamental solution . We arrive at Theorem 3 combining the
following Lemma 8 with Lemma 3.

LEMMA 8. Letj=1,2,3 SupposeV e (RH), 2 and there exists a constant C such

that V (x) < Cm(x, V)2. Assume also that (—A)2u + V2u = 0in Bg(xo) for somexg € R".
Then there exist constants C; and C'; such that

C’
: Ci{1+ Rm(xo, V)
sup  [VVu(y)| = = T sup fu(y)l. (27)
YEBR/2(x0) YEBR(x0)

PROOF. Letn € C3°(Bgj2(x0)) such thaty = 1 on Bgys(xo) and|Vy| < C/R,
|V2n| < C/R?,|V(An)| < C/R3, and|A%y| < C/R*. From (24) and (12) we have

: V)?uy)l C
IV’u(xo)IEC/ dy + / u(y)ldy
Br(xo) 10— )’|n74+j Rn+J Br(x0)

< C{1+ Rm(xo, V)}¥om(xo, V)*R* sup |u(y)|

Y€BR(x0)
c /1 172
+—.<—n/ |u(x)|2dx>
R/ \ R BR(x0)

C{1+ Rm(xg, V)}*kotD
< i sup |u(y)l, (28)
YEBR(xp)

From (28) we have for aly € Bg/2(xo),

4(ko+1)
C{1+Rm(y? )} sup 1)

IV u(y)| <
R/ x€BRa(y)

Using (12) we have

C{1+ Rm(xo, V)}4ko+?

sup |VVu(y)l = ; sup [u(y)l.
VEBg2(x0) R veBg(x0)

Then the proof is complete. O

As we mentioned in Section 1, we can proweridative estimates of the fundamental
solution under another assumption as the following theorem states.

THEOREM 6. Letj =1, 2, 3,and suppose V € (RH)2,,(4—jy. Then for any positive
integer N there exists a constant Cy such that
Cy 1

(1+mx, V)x — yIV  |x — yjn—a+i (29)

Vi T, (x, y)| <
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We arrive at Theorem 6 combining the following Lemma 9 with Lemma 3.

LEMMA 9. Let j = 1, 2, 3,and suppose V € (RH)2,/4—j). Assume also that
(=A)2u + V2u = 0in Bg(xo) for some xo € R". Then there exist constants C; and C;
such that

Ci{1+ Rm(xo, V)}<i

RJ

sup  [VVu(y)| <
YEBR/2(x0)

sup u(y)l. (30)

ye€BR(x0)

PROOF. As in the proof of Lemma 7, we have

, V()2 u®y)l C
VY u(xg)| < C/ -dy + —— lu(y)ldy .
Br(xg) 10— y[1=4+ R"™T g (xo)

SinceV € (RH)2,/4—j), it follows thatV e (RH), for someg > 2n/(4 — j). We choose
suchthat2¢ + 1/r = 1 andr > 1. By Holder’s inequality, it follows that

2/q 1/r
IV u(xo)] < CR"(i / V(y>"dy> (i / d—y4>
R" JBrxo) R" Jppxg) X0 — y|=4H00r

C
<osup u(n|+ R”ﬂ'/ lu(y)|dy
YEBR(x0) Br(xo0)

_ Cl1+ Rm(xo, V))*
< 7

sup |u(y)l, (31)

YEBR(x0)

where we have used Remark 2. Then as in the proof of Lemma 8, we arrive at the desired
estimate. a

5. Proof of Theorem 1

Theorem 1(1) immediately follows from the following Lemma 10.

LEMMA 10. (1) SupposeV e (RH),/2. Thenthereexists a constant C such that
|m(x, V)4H2_1f(x)| <CM(f)(x) for feC5R"M, (32)

where M isthe Hardy-Littlewood maximal operator.
(2) Letj=1,2,3 Suppose V € (RH), /> and there exists a constant C such that

V(x) < Cm(x, V)2. Then there exists a constant C’ such that
im e, VY*IVIH; T f (0] < C'M(fD(x) for f e CFRY, (33)

where M isthe Hardy-Littlewood maximal operator.



LP ESTIMATES FOR SOME SCHRODINGER TYPE OPERATORS 191

PROOF OFLEMMA 10. Estimate (32) can be proved as follows. ket 1/m(x, V).
Then it follows from Theorem 2 that

m(x, V¥ £ ()]

WAH Yo < C
Im e VY OIS CN | e Vi = vV o = y 2

+
<Cy f / [f (I dy
- Je e S <y <2 rA L+ rYx —yPV|x — y|n—4

+00 24(j=D+n 1
<Cy - L
P € 2i=HN@2iryn Jiv—yi<2ir
+00 4

=COv ). T M.
j=—00

Therefore we obtain the desired estimate, if we tikke: 5 for example.
The proof of (33) can be done in the same way as above by using Theorem 3. O

PROOF OFTHEOREM 1(1). SinceV (x) < Cm(x, V)2, Estimate (3) immediately fol-
lows from (32), (33), and the fact that the Hafdigtlewood maximal opeator is bounded on
LP(RM, 1< p < oo. O

PROOF OFTHEOREM 1(2). SincevV4(4A2)~1is bounded onL.”, 1 < p < oo, we
obtain

IV*HS fllr ey < CIAZ = VE+ VA HS Fllrgey

<Clflrrrn - O

6. Proof of Theorem 5
In this section we prove Theorem 5. First we show some lemmas needed to prove it.

LEMMA 11 (Caccioppoli type inequality). Assume (—A)2u + V2u = f in Br(xo).
Then there exists a constant C such that

/ IV (Au(x))|%dx +/ V()2 |u(x)|| Au(x)|dx
BRry2(x0)

Bpr2(x0)

C
< / | Auo)ldx + - |Au(x) Pdx
BR(xo) Bg(x0)

LEMMA 12 (cf. [Sh2, Lemma 1.3]). Assume (—A)2u + V2u = f in Bg(xg). Then
there exists a constant C such that

1 1/q
<— |u(x>|qu)
|Br/16(xX0)| J B j16(x0)
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1/2 1/2
|u(x)|2dx) +CR< |Vu(x)|2dx)

_c(
|Br(x0)| JBg(xo) |BR(x0)| JBg(xo)

1/2 1/p
|v2u<x>|2dx) +CR4< If(x)l”dx> ,

(34)

+CR2(
|Br(x0)| JBg(xo) |Br(x0)| JBg(xo)

where2 < p<g <ocandl/q >1/p —4/n.
PROOF. Letn e Cg°(Brss(xo)) such thaty = 1 on Bg12(x0) and|Vn| < C/R,
|V2n| < C/R2, |V(An)| < C/R3, and|A%| < C/R*. Note that
{(= )%+ V2 un) = n{(=2)? + VZ}u + 4V (Au) - V1 + 2(Au)(An)
+AV?%u - V2 4+ 4Vu - V(An) + u(A%y) .
It follows that
u(x)n(x)]

1
=< C/Rn m{lf(y)n(y)l + IVQAuNIIV ()] + [Au(y)]|An(y)]

+IVZuWIIVZ )]+ [VuWIIV(AnO)] + )1 A% (»)1}dy .

Thus, forx € Bgr/16(x0),

£ O] c
uei=c [ PO syt s [ Ivcautmiay
Brja(xo) 1¥ = VI R Brya(xo)

C / C 2
R |Au(y)ldy + —,/ [Veu(y)ldy
R"—2 BRya(xo) R"—2 Bga(xo)

c / c
Rai— [Vu(y)ldy + — lu(y)|dy
R gy a0 R"™ JBga(xo)

IF ) 1 L2
<c / NSNS F )Py
BR/4()C0) |.X - )’| |BR (XO)| BRr(x0)

1/2
|w(y>|2dy>

1/2
|u(y>|2dy> + CR<

C N
(IBR(XO)I Br(x0) |Br(x0)| JBg(xo)

2 2 2 \"?
+ [Vu(y)l dy) ,
<|BR(X0)| Br(x0)

where we have used Lemmas 5 and 11 in the second inequality. Now by Young’s inequality,
f2<p<g=<oo,1/g=1/r+1/p—1,and(n — 4)r < n,

||”||L‘1(BR/16(XO))

1/2
< CR™" VI £l By + CR"/q+4< |f(y>|2dy>

|Br(x0)| JBg(xo)
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1
|BR(x0)| JBg(xo)

1/2
+ CR"/q( Iu(y)lzdy>

1/2
+ CR"/4+1< |Vu(y)|2dy)

|Br(x0)| JBr(xo)

1/2
+ CR"/q+2< |V2u(y)|2dy> )

|Br(x0)| JBr(xo)
The lemma then follows since > 2. |

LEMMA 13. Let j be a positive integer and j > 2. Suppose V e C/~?(R") and
(—=A)2u + V2u = 0in Bg(xo) for some xo € R". Assume alsothat V e (RH), 2 and there

exists a constant C such that |V V (x)| < Cm(x, V)% wherei = 1, 2,3,..., j — 2.Then
there exist constants C; and C’; such that

1/2 C’
éf IV u(x) P # _ Cillt Rmxo, V))© sup u(y)|. (35)
|BR/2./(XO)| B, i (x0) B RJ YEBR(x0)
R/2]

PrROOF We prove (35) by induction op. If j = 2, 3, Estimate (35) holds under weaker
assumption than that of Lemma 13 (see Corollary 2 and Lemma 8); Bod we assume it
is true for 2, 3, 4, .., j — 1, and show the case Note that

(=A% 4+ VAIVI=2y = VI72{(—= A)%u} + V2VIi~2y
. . ]72 k .
= VIV + VAV T2 = 3N el (VYT V)V R (36)
k=11=0
wherec(l, k) is a constant depending érandk. Letn € CSO(BR/z_/—l(XO)) suchthaty = 1
on By, »i (xo) and|Vn| < C/R, |[V?n| < C/R?. Multiplying the equation (36) by*v/~%u
and integrating oveR" by integration by parts, we have

/ D 002V 2u(x)) 0, (' VI 2u(x))dx
5 s,t=1

j—2
<C / > ome, VPV T2 R0 (o (0 a0 dx (37)
R =1

whered, = 3/dx;, 32 = 92/0x2, 1 <t < n,1 < s < n. The left hand side of (37) is equal to

/ D @0V u(0) () o (085 V2 0) (40 ()20 () (8 V) u(x))

s,t=1

4 ()33, (x)) (3 VI 2u(x)) + 120(x)2(Ds7(x)) (37 (x) VI ~2u(x)
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+41(x) 3358, (X)) (VI 2u(x)) }dx .
Then we have

/ IV u(x) 1P (x)tdx
Rn

= C/Rn{|v77(x)|2|Vj—lu(x)|2+n(x)z(lvn(x)|2+ |V277(X)|)2|Vj_2u(x)|2

j—2
+ > m, VPV R ()1 ()Y 2u ) V.
k=1

By (12) we obtain

/ IV u(x)2dx
Bpai (*0)

c . c .
< —2/ VI~ (x)2dx + —4/ IV ~2u(x)|%dx
R Bp 2i-1(x0) R Bp 2i-1(x0)

j—2
+C ) {1+ Rm(xo, V)}Hkom (xg, V) / V72 U () |V~ 2u ) |dx
k=1 B i-1(x0)
C  Cj_1{l+ Rm(xo, V)}Cit 2
< o ! 2(,-51? L ‘Rn( sup Iu(y)|>
R R Y€BR(x0)
C  Cj_o{l+ Rm(xo, V)}Ci-2 2
+ ﬁ e 2(j—2) -R" sup |M(y)|
R y€BR(x0)
j—2
+C ) {1+ Rm(xo, V) H0%m(xo, V)HRE
k=1

. 1 .
. </ IV 2u(x)] - _k|vf—2—"u(x)|dx)
By /pi-1(x0) R
j—2

C’. 2
C{1+ Rm(xq, V)} i1
<& (29 ) 'R"< sup |u<y>|) +C Y {14 Rm(xo, V)} ko
R2J
YEBR(x0) k=1

R4

1 .
+ —Zk/ |Vf—2—ku(x)|2dx>
R By pi160)

Ci{1+ Rm(xo, V)}Si 2
T 'R”( sup |u<y>|),

Y€BR(x0)

1 .
-{Rm(xo, V)}“*k—( / |V =2u(x)|%dx
BR/ijl(XO)
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whereC’; = C;_, + (j +2)(ko + 1). -
Theorem 5 immediately follows fra the following Lemma 14 and Lemma 3.

LEMMA 14. Letjbeapositiveinteger. SupposeV € C/(R™ and (—A)%u+V2u =0
in Bg(xp) for some xo € R". Assume also that V € (RH), 2 and there exists a constant C
suchthat [V V (x)| < Cm(x, V)>*, wherei = 1, 2, 3,.. ., j. Then there exist constants C;
and C}’ such that

~ Ci{1+ Rm(xo, V)%
sup  |VVu(y)| = = i sup fu(y)l. (38)
YEBR/2(x0) YEBR(x0)

PROOF. We prove (38) by induction ori. If j = 1, 2, 3, Estimate (38) holds under
weaker assumption than that of Lemma 14 (see Lemma 8),; Bod, we assume it is true
forl,2,3,...,j — 1, and show the case Note that

J k
()2 + VAV =" "l (V' V)V V)VITH. (39)
k=11=0

Let p > 2 andp > n/4. Then it follows from (39) and Lemma 12 that

|V u(xo)|

1 ) 1/2
< c(—/ |v1u(x)|2dx)
|BR/2J' (x0)| B i (x0)

1 ‘ 1/2
+CR(—/ |v1+1u(x)|2dx>
|Bg2i (x0)| By ) (x0)

) 1/2
+CR2( |v-'+2u(x)|2dx>

|
|Bgy2i (x0)| JB, ,; (x0)

ik . p 1/p
+CR4{ (ZZ|vlvoc>||vk—’V(x>||Vf"‘u(x)l> dx}

o )
|BR/2j(x0)| Bpni(xo) \ ;21727

CCjiafl+ Rm(xo, V)}<ir2
R

j
sup [u(y)|+ CR*Y {1+ Rm(xo, V))*#Hhko
YEBR(x0) k=1

) 1/p
.m(xo, V)4+k< |V/_ku(x)|pdx>

ol
|BR/2J' (x0)| B i (x0)

C{1+ Rm(xo, V)}Civ2 /

Rt Fmbo VIV sup Ju)] + € (0 + Rm(xo, V)04
RJ ,

YEBR(x0) k=1
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1 Cji{l+ Rm(xo, V)it
RF Ri=K

R (xo, V)HE sup  |u(y)l

YEBR(x0)

_ Cili+ Rm(xo, V)

= sup Ju(y)|,

YEBR(x0)

where we have used (12) and Lemma 13 in the second inequality and the assumption of
induction in the third. a

7. Appendix

In this section we show thé” boundedness of the operaté? H, *, k e N. Let
f € C§(R™ and assume that € (RH), /2 and there exists a constafitsuch thatV (x) <

Cm(x, V)2. Then for any integek > 2, we definet, * as follows.

Hy £ = [ Fiatro ) Hy 2 £y,

THEOREM 7. SupposeV € (RH), 2 and there exists a constant C such that V (x) <
Cm(x, V)2. Then there exists a constant C’ such that

IVEHS* flle®ny < C'lIf Loy s (40)
wherel < p <ocoandk € N.

Theorem 7 is easily proved by the following pointwise estimate.

LEMMA 15. Let k be a positeve integer. The opeator M* stands for the k times com-
position of the Hardy-Littlewood maximal operator M. Suppose V € (RH),/2. Then there
exists a constant C such that

Im(x, VY*H,* fo] < cM*(fx) for  f e CERM. (41)

PROOF OFLEMMA 15. Letf e C3°(R"). We prove Estimate (41) by induction én
Fork > 2, we assume it is true far— 1 and show the cage It follows from Theorem 2 and
(13) that

Im(x, VY®HS f(x)]

=<

Cmte, V)* [ Figtr yime, V4D 174 3y

_ _ —(k—1
{14 m(x, V)|x — y[y3k=Dko/Got Dy (y ) 4k=D gD £y p
RN {14+ mx, V)|x — y}N|x — y|"—4

<CCym(x,V)*
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Therefore we obtain the desired estimate in the same way as the ea%e m]
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