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Abstract. In this paper we present a set Tf of rational numbers s € Q such that the minimal splitting fields
Lgof X3 —3sX2 - (3s+3)X — lare cyclic cubic fields with a given conductor f. The set T;F has exactly one

s for each field L of conductor f. The Weil’s height of every number s € Tf+ is minimal among &l of the rational
numberss € Q suchthat Ly = L. If acyclic cubic field L of conductor f is given, then we can choose the number
seT, ;r corresponding to L by sequencing the explicit Artin symbols.

0. Introduction

Recently many mathematicians construct generic polynomials and expect to apply the
polynomials to the case of algebraic number fields. In this paper we make use of a generic
cyclic cubic polynomial F(r, X) = X3 — 3rX? — (3t + 3)X — 1, which iswell-known as the
simplest cubic polynomial of Shanks type (cf. Shanks[14], Serre [13]). Hashimoto-Miyake
[4] and Rikuna [12] have generalized the polynomial F (¢, X) to the cases of general degree,
and the author [6] studied the arithmetic properties of the general degree cases. For arational
number s € Q let L bethe minimal splitting field of F (s, X) over Q. We give a method for
making a rational number s € Q such that L, is equal to a given cyclic cubic field L. Let
f = fi bethe conductor of L and P, the set of prime divisors of f. For a prime number
p with p = 1 (mod 3) we denote arational number a, /b, € Q by ¢, where (a,, b)) isa
unique pair inthe set {(a, b) € Z x Z|a® +ab+b%>=p, b=0 (mod 3), b > Oanda/b >
—1/2}. Put ¢c3 = 0. In aprevious paper [6] we defined an algebraic torus 7(Q) = Q U {oc}
of dimension 1 with composition +7 such that s1+7s2 = (s152 — 1)/(s1 + s2 + 1). Note that
theidentity O7 on T is oo, and theinverse —rs of s isequal to —s — 1. Let 7 be the subset
of T(Q) consisting of elements of the form X'7[m ,]c, where p runsthrough all of the prime
divisorsof f andm, € {1} (see[6] or § 1 for the definition of [£1]). Now define a subset
T,:F of 7¢ such that T;r = {s € Ty|ls = —1/2}. Let L bethe family of cyclic cubic fields
with conductor f.
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THEOREM 0.1 (Proposition2.3in82). There exists a one-to-one correspondence
Rro: T)j_ — Ly, s Ly.

Let ¢;, denote the rational number s € Tf+ suchthat Rp q(s) = L.

PropPosITION 0.2 (Corollary 2.8in82). The Weil's height of the numbey, is mini-
mal among all of the rational numbesse Q satisfyingL; = L.

REMARK 0.3. The composition +7 is essentialy given by Morton [9] and Chapman
[1] for the cubic case. The author [6] extends the composition for the cases of general degree
by using the Rikuna's cyclic polynomial.

Theorem 0.1 implies that there exists exactly ones € Q in T;r for the given cyclic

cubic field L. To determine the number s in 7 f+ corresponding to L we calculate the Artin
symbols. Now assume that L /Q is cubic for arational number s € Q. Let o be a generator
of Gal(Ly/Q) suchthat o(x) = (—x — 1)/x forx € Ly with F(s,x) = 0. Let (L;/p) bethe
Artin symbol of a prime number p in L;/Q. We define ., (s) = vp(s2 + s+ 1) wherev, is
the normalized p-adic additive valuation. One can define an algebraic torus T (k) for afield k
with positive characteristic p # 3 in the same way as the case of Q (cf. 83 or [6]).

THEOREM 0.4 (Proposition3.1in§3). Assume thap # 3. If u,(s) < O, then
(Ls/p) = id, that is p splits completely inL;/Q. For the caseu,(s) = 0, we have
(Ls/p) = ol wherei € Z is an integer such thafi](—-1) = [(£p — 1)/3]s in T(Fp)
providedp = £1 (mod 3), respectivelyWhenu ,(s) > 0 andu,(s) # 0 (mod 3), L,/Q
is totally ramified atp.

REMARK 0.5. TheArtin symbol of p = 3isalso calculated (see Proposition 3.3). By
using Theorem 0.4 we can calculate (L, /p) for s € 7¢ and p # 3. One can show Theorem
0.4 for the generd degree cases in the same way as the proof of Proposition 3.1.

In 81 we recall the descent Kummer theory described in [6]. In 82 we construct a set
of rational numbers which correspond to cyclic cubic fields with a given conductor. In §3
we present a method for calculating the explicit Artin symbols. In 84 we give a remark on
generators for the ring of integers of the cyclic cubic field Ly as Z-module. In 85 we exhibit
some numerical examples.
AcknowledgemenT he author expresses histhanks to the editor Professor Kaori Otafor many
valuable advice on the manuscript. He is grateful to the referee for many helpful comments
and careful reading of the manuscript. He is supported by the 21st Century COE Program
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1. Preparation

We recall some resultsin the paper [6]. Let 7(Q) = Q U {oo} be an algebraic torus of
dimension 1 with composition +7 such that s1+7s2 = (s152 — 1)/(s1+ s2 + 1). Infact, there
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exists agroup isomorphismg : T — G, t — (t —¢)/(t — ¢~ 1) over Q(¢) where ¢ isa
primitive 3rd root of unity. The composition +7 is defined as s1+7s2 = ¢~ L(@(s1)@(s52)).
The identity O7 on T is equal to oo = ¢~(1). For apositiveinteger m € Z let [m] be the
multiplication map by m with respect to 47, that is, [m]t = t+7 - - - +7¢ with m terms. We
denote [m]7(Q) = {[mls|s € T(Q)} and T'[m] = T(Q)[m] = {x € T(Q)|[m]x = oo}. Note
that 7[3] = (—1)7 = {oo, —1,0} C T(Q). Let I'n be the absolute Galois group Gal(Q/Q)
of Q. Then we have a descent Kummer theory (see [6] and [11] for general cases).

PropPosITION 1.1 (Morton [9], Chapman [1], Ogawa[11], Komatsu [6]). There ex-
ists a group isomorphism
§: T(Q)/I3IT(Q) — Homeont (1, Z/32) .

In particular, for s € Q the fieldL; is equal toQKef(S(s)_

CoROLLARY 1.2. For rational numbersy ands; € Q, Ly, = Ly, holds if and only if
(s1)7 = (s2)7 In T(Q)/I3IT(Q).

CoroLLARY 1.3. Assume thaL;, andLy, are distinct cyclic cubic fields for rational
numberss; ands, € Q. Then two fielddy, 1,5, and Ly, s, are all of the cyclic cubic fields
contained in the composite field, L,, other thanL,, andLy,.

By using aresult in [6] one can calculate the ramificationsin L /Q. For aprime number
p # 3, wedefine U, by

Up=1{s € Quys>+s5s+1) <00rv,(s>+s+1) =0 (mod3)}.
The set Us is defined to be
Uz ={s € Qluz(s +1/2) < —lorvz(s +1/2) > 2}.

LEMMA 1.4 (Komatsu [6]). For s € Q the conductorf;, of the extensior,/Q is
equal to[ ], p*» where

1 ifp#3ands €U,,
Ap =12 if p=3ands ¢ Us,
0 otherwise

2. Minimal element realizing a cyclic cubic field

Let us note that the ring of integers Oq;) = Z[¢] is a principal ideal domain and
(—¢)g,, =~ Z/6Z. Thenitiseasy to see

X

QW) —
LEMMA 2.1. For a prime numbemp with p = 1 (mod 3) there exists a unique pair
(a, b) of rational integersz, b € Z such thaiu? + ab + b%> = p, b =0 (mod 3), b > 0 and
a/b > —1/2.
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For aprime number p = 1 (mod 3) let a, and b, be the integers a and b satisfying all
of the conditionsin Lemma 2.1, respectively. For p = 3 we defineaz = 0 and b3 = 1. Now
putc, =a,/b, € Q.

LEMMA 2.2. The cyclic cubic field of prime conductgr = 1 (mod 3) is equal to
L.,. The cyclic cubic field of conduct@ris equal toL,.

PROOF. For a prime number p = 1 (mod 3) we have c,% +cp+1= p/bf,. Then
vp(c? + ¢, +1) = Land vi(c2 + ¢, + 1) < Ofor aprime number / with 7 5 p. It follows
fromuz(b)) > 1that va(cp +1/2) = —v3(bp) < —1. ThusLemmal.4impliesthat L., isa
cyclic cubic field of conductor p. By class field theory there exists only one cyclic cubic field
of conductor p. Thusthe cyclic cubic field of conductor p isequal to L.,. In the same way
we see that there exists only one cyclic cubic field of conductor 9, whichisequal to L.,. O

Let N3 bethe set of all conductors of cyclic cubic fields. Then N3 isequal to the set of
positiveintegers f € Z, f > 1 suchthat

Oor2 ifp=3,
vp(f)=4300rl ifp=1 (mod3),
0 otherwise,

for every prime number p. Now fix an integer f € N3. Let 7; be the subset of 7(Q)
consisting of elements of the form X7 [m ,]c, where p runsthrough all of the prime divisors
of fandm, e {£1}. Let L bethe family of cyclic cubic fields with conductor f.

PROPOSITION 2.3. There exists a surjective maRr.q : 7y — Ly, s + L.
Moreover Ly, = Ly, for s1, s2 € Ty if and only ifsy = s2 or s1 = —752.

By using Corollary 1.3 we see

LEMMA 2.4. Letsy, s2 € Q with si+752 # 0o. Assume thalL, /Q is unramified at a
prime numbep. Thenp ramifies inL, ,5,/Q if and only if so does iy, /Q.

PROOF OF PROPOSITION 2.3. LemmaZ2.4impliesthat for every s € 7y thefield Ly is
cyclic cubic of conductor f. Thusthe map Rr g is well-defined. Corollary 1.2 and Lemma
2.2 show that ¢, arelinearly independent in 7' (Q) /[3]17(Q). Thusi7y = 2" where S denotes
the number of elementsin aset S and r isthe number of prime divisorsof f. From Corollary
1.2 and the linear independence of c,, it followsthat Ly, = Ly, for s, s2 € 7y if and only if

51 = s2 Or s1 = —rs2. By classfield theory we have 4Ly = 2'~1, Hencethe map Rr q is
surjective. ]
Let us define two subsets 7" and 7 of 7y suchthat 7,7 = (s € Tyls = —1/2}
and Tf* = {s € Tr|ls < —=1/2}. Thens € Tfi holds if and only if so does —7s € T;F,
respectively. Indeed, s + (—rs) = —1. Thus Proposition 2.3 verifies Theorem 0.1.
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Let L be acyclic cubic field of conductor f = f; and ¢, be a unique rational number
s € T;r such that Rr.q(s) = L. Leta; and by, be rational integers such that a; /b, = ¢,
ged(ar, br) = land by, > 1. Notethat a; = ap, by = by, andcp = ¢, if f isequal toa
prime number p. We define g = f1./9if 3| f1, and g = f1 otherwise. Onecalsg = g1
the tame conductor of L.

LEMMA 2.5. We havey, = a? +apby + b2.
By the direct calculation one sees the following equation.

LEMMA 2.6. Fors; = a1/B1 andsy = az/B2 we have

(oz% + a1f1 + ,312) (a% + a2B2 + ,322)
(@12 + a2B1 + B1B2)?

(s14752)% + (s1+752) + 1=

PROOF OF LEMMA 2.5. It followsfrom the definition that ¢2 + ¢, +1 = (a2 +arbr, +
b2)/b2. Notethat gcd(a? +ap by +b?,by) = 1. Lemma2.6 impliesthat (a2 +apby, +b?) |
gr. Indeed, g1 =[], ,(@% + a,b, + b2). Let p beaprimedivisor of g.. Then p # 3and
L/Qisramifiedat p. Lemmal.4meansthat v, (a? +ap by +b?) > 1. Since g issquare-free,
one has vp(ai +arbr + b%) =v,(gr) = 1. Thuswe haveaf +arbr + b% =gL. O

Let H(s) bethe Weil height of arational number s € Q, that is, H(s) = max{|«|, ||}
wheres = /B and o, B € Z with ged(a, B) = 1. We note that 3H (s)2/4 < a? +af + B2 <
3H(s)?. Let usdefine H, = min{H(s)|s € T(Q), Ly = L}. The genericity of F(s, X)
guarantees that {s € T(Q)|Ly = L} # @, and thus H;, € Z, H > 1. Let us denote
{s € T(Q)ILs =L,H(s)=Hr} by SL.

PropPosITION 2.7. If ¢z > O, thenSy = {c.}. If ¢ < O, thenS;, = {cL, —7cL}.
Whenc, =0, we havel = L., andS, = {0, 1, —1}.

COROLLARY 2.8. We haveH; = H(cyr), that is ¢, has the minimal Weil height
among rational numbers € Q such thatL; = L.

PROOF OF PROPOSITION 2.7. Lets = a/B € Q bean elementin S, wherew and g8
arerational integers with gcd(er, 8) = 1. Lemma 1.4 meansthat g, | (@ + o + B2). Let us
denote by 1 theratio (a2 +aB + 2)/gr. € Z. Itfollowsfrom the assumption H (s) < H(cr)
that n1gr < 3H (s)2 < 4(3H (c1)?/4) < 4g;. Thuswe have 1 < 4. Since ged(a, ) = 1, it
holds that v2(n1) = 0. Infact, 2 remains primein Q(¢)/Q. Thusny = 1 or 3. Corollary 1.2
showsthat ¢, +7s € [3]T(Q) or c;.—7s € [3]T(Q). Wefirst assumet = ¢ +7s € [3]T(Q)
with # # co. Then Lemma 2.6 meansthat 12 4+ 1+ 1 = nlgz/(aL,B + bra + by B)2. Since
t € [3]T(Q), we have L, = Q, that is, L, is unramified at all primes. Thus one sees that
g1 | (aLB+bra+br ). Nowputns = (apf+bra+bif)/gr € Z. Thent?+1+1 = n1/n3.
It follows from ¢ € Q that (¢ + 1/2)2 = n1/n5 — 3/4 > 0. Sinceny € {1, 3} and 2 € Z,
we have 771/?7% = 1,3 o0r 3/4. Thenone seesthat t € Tiors(Q) = (—2)7 ~ Z/6Z. Here,
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Tiors(Q) N [3IT(Q) = {—1/2, co}. Thuswe haver = —1/2 and n1/n3 = 3/4. Thisimplies
that s = (_1/2)_TCL = (—ap + bL)/(ZaL + b1). Then one sees that H(s) = —ap + by, if
—-1/2<¢p <0, and 2a; + by if c; > 0. Infact, ng(—aL +by,2a; +by) = 1foray, #£ by,
(mod 3). Then H(s) < H(cy) holdsif and only if a; = 0. Whena; = 0, wehavecy =0
ands = 1. Forthecaser = cp+7s = oo, oneseesthat H(s) < H(cy) impliescy < 0.
Conversdly, if ¢, < 0,then H(—7cr) = H(cr). Inthe same way as above we can show the
assertion for thecase ¢;, —7s € [31T(Q). O

LEMMA 2.9. We havel < Hy/+/g1./3 < 2. The lower(resp the uppey bounds are
the best possiblehat is for arbitrary positive real number € R, ¢ > 0, there exist infinitely
many cyclic cubic fields such thatH; /+/g./3 < 1+ ¢ (resp Hr /~/gL/3 > 2 — ¢€).

PROOF. It follows from Lemma 2.5 and Corollary 2.7 that 3H?2/4 < g, < 3HZ, which
showstheinequalitiesin thefirst assertion. Let usconsider acyclic cubicfield L = L, where
s1 = (m + 1)/m for apositiveinteger m € Z, m > 1. Thens? + s1 + 1 = y(m)/m? where
y(Y) = 3Y243Y+1 € Z[Y]. Now assumethat y (m) issquare-free. Then Lemmal1.4implies
that g, = y(m). Since3HZ > g = y(m), wehave H, > m. Thus H, = H(e/B) =m + 1
andc, = (m+1)/m € T;r where f = y(m) if 3| m and f = 9y (m) otherwise. Then we
have3HL2/gL = 3(m + 1)2/y (m), which convergesto 1 if m goesto +oc. It followsfrom a
result [10] of Nagell (cf. [3]) that there exist infinitely many positiveintegersm € Z such that
y (m) are square-free. Thusthe lower bound isthe best possible. Let us next consider acyclic
cubicfield L’ = Ly, wheres; = —m/(2m + 1) = s1+70 and y (m) is square-free. Then one
can seethat s, € T;r where f' = y(m)ifm = 1 (mod 3) and ' = 9y (m) otherwise. Infact,
c3=0¢€ T[3]. Thuswe have H;, = H(s?2) = 2m + 1 and 3HL2//9L’ = 32m + 1)%/y (m),
which convergesto 4 if m goesto +oo. Hence the upper bound is also the best possible. O

3. Artin symbolsof primeidealsfor a cyclic polynomial

Let us assume that L; is a cyclic cubic field for arational number s € Q. Let x bea
solutionof F (s, X) =0. ThenL; = Q(x) and Gal(L;/Q) = (o) whereo (x) = x+7(—1) =
(—x — 1)/x. Let p be aprime number with p # 3 and v,(s?> + s + 1) < 0. Lemma 1.4
implies that p is unramified in L;/Q. Let p be a prime ideal of L, above p. The Artin
symbol (Ly/p) is defined to be an element ¢ € Gal(L,/Q) such that vp(a” — 7(@)) > 1
forevery o € Op,. Since L,/Q is abelian, (Ls/p) depends not on the choice of the prime
ideal p but only on the prime number p. We can define an algebraic torus 7 (k) for afield
k with positive characteristic p # 3 in the same way as the case of Q (cf. [6]). Note that
T (k) =k U {oo} — {¢, ¢ 1} where ¢ isaprimitive 3rd root of unity in k.

PrROPOSITION 3.1. If p =1 (mod 3), then(L,/p) = o' wherei € Z is an integer
satisfying[i](—1) = [(p — 1)/3]s in T(F,). Whenp = 2 (mod 3), we have(L,/p) = o'
for anintegeri € Z such thafi](=1) = [(—p — 1)/3ls in T (F,).
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LEMMA 3.2. If p =41 (mod 3), then[p]x = £7x” in T (Fy), respectively
ProOF. It follows from the definition that
R Y i S S

(x =P —(x—¢7Hr

If vp(x) < O, then vy ([plx) < vp(x) < 0. Thus[plx = £7x? = oo in T (Fy). Now assume
vp(x) > 0. Thenwe have [plx = B,(x) (mod p) where

[plx =

€L —OXP 4 (¢t -
By(X) = T € Q[X].

Itiseasy toseethat B,(X) = £7X? for p = £1 (mod 3), respectively. O

PROOF OF PROPOSITION 3.1. Leti € Z beaninteger suchthat (Ly/p) = o'. Thenwe
havex? = o' (x) in T (Fp) since vy (x” — o' (x)) > 1. Lemma3.2 meansthat o' (x) = [£p]x
in T (Fp) for p = £1 (mod 3), respectively. Note that o/ (x) = x+7[i](—1) and [3]x = s.
Thus we have [i](=1) = [£plx—7x = [£p — lx = [(£p — 1)/3]s in T(Fp). Here
i,(£p—1)/3eZand—-1,s € T(F,). Thuswe have an equation [i](—1) = [(£p — 1)/3]s
in T (Fp), which uniquely determineso’ in Gal(L,;/Q). Infact, the order of —1in T(Fp,) and
that of o in Gal(L/Q) are both equal to 3. |

ProPOSITION 3.3. Foranys € Q the decomposition & in the extensiord.; /Q is as
follows
(i) 3ramifiesinL,/Q if and only if0 < v3(s + 1/2) < 1.
(it) 3 splits completely il /Q if and only ifvz(s) < —20or v3(s + 1/2) > 3.
(iif) 3 remains prime inL;/Q if and only ifvs(s) = —1 or v3(s + 1/2) = 2. When
v3(s) = —1and3s = F1 (mod 3), we have(L,/3) = o*1, respectively For the case
v3(s +1/2) = 2and(s + 1/2)/9 = +1 (mod 3), it satisfies(L,/3) = o *1, respectively

ProOF. Lemmal.4impliesthe assertion (i). If v3(s) = —(v + 1) < —2for apositive
integer v € Z withv > 1, then F, (u, Y) = F(u/3"t1, ¥/3")3% = y3— ;Y2 (mod 3) where
u = 3Ty € Qand v3(u) = 0. Notethat F, (u, u) = 0 (mod 3) and dF, (u, Y) /Y |y—y =
u? # 0 (mod 3). Hensel’s lemma implies that there exists a solution ¥ = i € Z, of
Fy(u,Y)=0.Thenx; = 3"i € Q,, isasolutionof F(s, X) = 0. Letusput x2 = x1+7(—1)
and x3 = x1+70. Then x2, x3 € Q, are solutions of F (s, X) = 0 such that v3(x2) = —v
and v3(x3z) = 0. Thismeansthat F(s, X) = (X — x1)(X — x2)(X — x3) in Qp, that is,
p splits completely in L;/Q. Now assume v3(s) = —1. Then F(s, X) is defined over Z3,
and F(s,X) = X3F (X2 + X) — 1 (mod 3) if 3s = +1 (mod 3), respectively. Here
X% F (X2 + X) — 1 areirreducible over F3. Thus 3 remains primein L,/Q. By the direct
calculation oneseesthat X3 — (—X —1)/X = (X — 1)(X3+ X2+ X —1)/X (mod 3). Fora
solutionx € Q,, of F(s, X) = Owith 3s = —1 (mod 3), we have vy (x® — o (x)) > 1 where
p = (3) isthe primeideal of L, above 3. Indeed, v,(x) = 0. In the same way as above, one
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has (Ly/3) = 02 when3s = 1 (mod 3). Now put s1 = s+7(—1/2) = (—s — 2)/(2s + 1).
It follows from Proposition 1.1 that Ly = L,, since —1/2 is a 2-torsion element in 7 (Q).
If v3(s + 1/2) > 3, then va(s1) < —2. Thus 3 splits completely in Ly = L;,. When
v3(s +1/2) = 2, wehave vz(s1) = —1. Nowsete = (s + 1/2)/9 € Z5. Then3s1 + ¢ =
(4¢® — 6 — 1)/(4¢) = 0 (mod 3). By using the assertion of the case v3(s) = —1 one can
havethat e = +£1 (mod 3) implies (Ly/3) = o+, respectively. O

4. Ring of integersof a cyclic cubic field

Let L beacyclic cubicfield of conductor f1., and Oy, thering of integersof L. Let x be
asolution of F(c, X) = 0.

LEMMA 4.1. If 3¢ f1, thenOy is generated by, b, x/3andb o (x)/3asZ-module
When3 | fp, we haveD;, = Z + Zbyx + Zbpo (x).

PROOF. Letusassume 3¢ f1. We first show that b, x/3 and bro (x)/3 are algebraic
integers in L. The minimal polynomial of y = byx/3 over Q isequal to Y3 — a; Y2 —
(ar + br)(br/3)Y — (b1 /3)3. It follows from the construction of Ty that v3(by) > 1and
bp/3 € Z. Thusy € Oy holdsand so doeso (y) = bro(x)/3 € Or. Let R be asubmodule
of O generated by {1, b, x/3, b o (x)/3} as Z-module. Since by o (x)/3 = —brx?/3 +
arx + ay + 2b; /3, the module R is generated by {1, by x/3, by x2/3 — ay x} as Z-module.
Here the discriminant of the element x is equal to 3*(c? + ¢, + 1)? = ¢?(b1/3)~*. Thus
the discriminant of R is equal to g,%. It follows from 3 1 fi that the discriminant of Oy, is
equal to gf. This showsthat R = Or. Inthe same way as above one can see that O; =
Z +Zbrx + Z(bpx% —3ayx) forthecase 3| f1. ]

COROLLARY 4.2. If 34 fr andb; = 3, thenOp = Z[x], thatis O, has a power
basis When3 | f; andb; = 1, we haveD; = Z[x].

By the direct calculation we have
F(er, (X +ap)/b)b} = X® =39, X — (2ar +br)gr ,

which isthe same polynomial described in[2]. In 86.4.2 of [2] one can see the same statement
asthat of Lemma4.1.

5. Numerical examplesfor cyclic cubic fields

For prime numbers p = 3and p = 1 (mod 3) with p < 1000 we cal culate the numbers
cp = a,/b, wherea, and b, satisfy al of the conditionsin Lemma2.1. The datais contained
in Table 5.1 below. For aninteger f = 482391 = 3? x 7 x 13 x 19 x 31 we compute the set
Ty. Thereexist 2°~1 = 16 cyclic cubic fields of conductor f. For all such fields L we denote
the numbers ¢, in the ¢ -column of Table 5.2. At the coordinates (¢, p) of the left part in
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Table 5.2 we denote the signs =+ of the numbersm, € {+1} suchthat cL =} 7, ;[mplcp,

respectively. The numbersO, 1, 2, 3 at (¢, p) of theright part in Table 5.2 represent

0

if p splitscompletely in L/Q,
land2 if p remainsprimein L/Q with (L,/p) = o and o2, respectively,

3 if p ramifiesin L/Q.
TABLES.1 (cp for p < 1000)
p cp p cp p Cp P Cp
3 0 199 —-2/15 439 5/18 727 13/18
7 | -1/3 211 | -1/15 457 | —7/24 733 | 19/12
13| 1/3 223 | 11/6 463 1/21 739 | —7/30
19 2/3 229 5/12 487 2/21 751 10/21
31 | -1/6 241 1/15 499 7/18 757 1727
37 4/3 271 10/9 523 17/9 769 17 /15
43| 1/6 277 7/12 541 4,21 787 2/27
61 | —4/9 283 | 13/6 547 | —13/27 811 | 25/6
67 | —2/9 307 | -1/18 571 5/21 823 | —14/33
73 | -1/9 313 | 16/3 577 | —8/27 829 | —13/33
79 7/3 331 | —10/21 601 1/24 853 4,27
97 | 8/3 337 | -8/21 607 | 23/3 859 | —10/33
103 2/9 349 17/3 613 19/9 877 28/3
109 | —-5/12 367 13/9 619 —-5/27 883 13/21
127 7/6 373 —-4/21 631 14 /15 907 —7/33
139 | 10/3 379 7/15 643 11/18 919 17 /18
151 5/9 397 11 /12 661 20/9 937 29/3
157 1/12 409 8/15 673 8/21 967 7/27
163 | 11/3 421 -1/21 691 | —11/30 991 26/9
181 | —4/15 433 | —11/24 709 25/3 997 | —13/36
193 | 7/9
TABLES.2 (16 cyclic cubic fields of conductor 482391)
3 7 13 19 3 cr 2 3 5 7 11 13 17 19 23 29
+ - + - + 3/30{ 0 3 0 3 0 3 1 3 0 1
- - — — —| -43/2%0(0 3 0 3 1 3 1 3 1 1
- + + + 197 /58 o 3 1 3 1 3 0 3 0 O
- - - - + 145,122 0 3 2 3 0 3 2 3 1 1
-+ - + + -85/262 | 0 3 2 3 2 3 0 3 0 2
- - + + - 25/218( 0 3 2 3 2 3 2 3 0 O
+ - - 4+ —|-102/265{1 3 0 3 0 3 0 3 0 1
-+ + + - 122/145|11 3 0 3 1 3 1 3 1 0
-+ - - + 218 /25 1 3 0 3 2 3 1 3 2 1
-+ - - - 58/197(1 3 1 3 0 3 0 3 2 1
+ + + - + 102/163|1 1 3 1 3 2 3 0 3 1 1
+ + + - - -90/263|1 1 3 2 3 0 3 2 3 1 1
+ - - + + %0/173(1 3 2 3 2 3 1 3 0 1
+ + - 4+ + 177 /85 2 3 0 3 1 3 0 3 1 1
+ - - - - 207/43 |2 3 1 3 0 3 1 3 2 O
+ + - 4+ - -3/233|12 3 1 3 2 3 2 3 1 1
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For example, there exists a number 1 at (cz, p) = (3/230, 17). This means that 17 re-
mains primein L = L3230 and (L/17) = o whereo(x) = (—x — 1)/x for x € L with
F(3/230, x) = 0. From the data of the numbers m, we have already known that al of the
16 fields in Table 5.2 are distinct from each other. The data of the Artin symbols is use-
ful to find s € Q corresponding to a field L whose definition polynomial is not of the type
F(t, X). The data at the right part of Table 5.2 itself enables us to distinguish the 16 fields
completely. Let M be theminimal splitting field of A(Z) = Z3 — 1607977 — 24709139 over
Q. Since the discriminant of the polynomial A(Z) isequal to a square 145438173050625 =
3%5472132192312, the field M is cyclic cubic over Q or is equa to Q. It follows from
some method (cf. [8]) that the set of prime numbers ramifyingin M/Q are {3, 7, 13, 19, 31}.
Thus M is a cyclic cubic field of conductor f = 482391. One can calculate a generator
7 € Ga(M/Q) such that t(z) = (—218z — 53599)/(z + 243) for z € M with A(z) = O.
One can check that (M/2) = 2, (M/5) = id, (M/11) = 1, (M/17) = 2, (M/23) =
7, (M/29) = 72.

By comparing the data in Table 5.2 and above at the primes p = 2,5, 11 and 17, we have
M = L1g/25. Note that the Artin symbols are determined uniquely up to the choice of the

generator of Gal(M/Q). Infact, A(Z) isequal to F(cr, (Z +ap)/br)b3 for ¢, = 218/25.
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