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Abstract. For an operatof’ with some trace class condition, lggn andg{f,, be the principal functions related
to the Cartesian decompositidif = X,, + iY,, and the polar decompositidft’ = U,|T"| for a positive integen,
respectively. In this paper, we study propertiegpi and gfn and invariant subspaces Df .

1. Introduction

An operator below means a bounded linear operator on a separable infinite dimensional
Hilbert spaceH. The commutator of two operators B is denoted by A, B] = AB — BA.
Let C1 be the set of trace-class operatorsbgf{). Let T be an operator such thgft*, T']
C1. Pincus introduced the principal functigg related to the Cartesian decompositibn=
X + iY. Properties of the principal functiogr have been studied ([3], [6], [7], [9], [10]).
Especially, C.A. Berger gave the principal functigns of powersT” of T in terms ofgr and
proved that for a sufficiently high, 7" has a non-trivial invariant subspace for a hyponormal
operatorT ([1]). On the other hand, we have another principal funcpiﬁrrelated to the polar
decompositiorf’ = U|T| such thaf|T|, U] € C1 ([3], [4], [10]).

In this paper, we study properties gf» andgﬁ,, and invariant subspaces Bf.

2. Theorem

¢ (r, z) is calledLaurent polynomial if there exist a non-negative integ&rand polyno-
mials pi (r) such thaip (r, z) = Z,iV:_N pr(r)zF. For differentiable function®, Q of two

variables(x, y), let J(P, Q)(x,y) = Px(x,y) - Qy(x,y) — Py(x,y) - Ox(x, ).
For an operatol = X +iY = U|T|, we consider the following trace formulae:
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) TH(P(X, V), O(X, V)]) = — / / J(P. Q)(x. V) gr (x. y)dxdy.
for polynomialsP and Q.

1 .
@ TATL U VAT U = 5 / / T, 0)(r. €9 gF (&, r)drdf

for Laurent polynomialg and.

If formula (1) holds, the functioryr is calledthe principal function related to the Carte-
sian decomposition 7 = X + Y. If formula (2) holds, the functiorg{f is calledthe principal
function related to the polar decomposition T = U|T|. For invertible operatof” such that

[T*, T1 € Ca, there exist bottyr andg? ([3], [5]).
First we start with the following

THEOREM 1. Let7T = X +iY = U|T| be an operator satisfying the following trace
formula:

1 .
THIS(T1 V), (T D)) = 5 / / T, ) @) F (&, r)drdd

for any Laurent polynomials ¢ and vr. Then the principal function gr(x, y) related to the
Cartesian decomposition 7 = X + iY of T exists and it is given by gr (x, y) = g (¢!, r),
where x + iy = re'?.

PROOF. Let P andQ be polynomials of two variable&, y). First note that

T+T1T* T-T* T+7T* T-T*
Tr([P(X,Y),Q(X,Y)])=Tr<[P( T )Q( R )})

Put

~ i tr/z rz—r/z ~ _ zr+r/z rz—r/z
P(r,z)-P( > T o ) and Q(r,z)-Q( R )

Then bothP and Q are Laurent polynomials and also the following equations hold:

Pr(r,z) = Pe(r, z)Z + 1/Z + Py(r, Z)Z ;3/Z,
I5Z(r,z) P(r Z)(l—i>+ - Py(r, Z)<1+ 1)
0rr2) = 04 0 V2 oo 9i Yz

~ r 1 r 1
0:(r,z) = EQX(",Z)<1_ Z_Z) + ZQy(r, Z)(1+ Z—2> .
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Hence we obtain
J(P.0)r.2) = I(P. Q)(x.y) -
Therefore, it holds
(3) JP. Q). ") = I(P. Q). y) =5

SinceP(X,Y) = P(|T|,U) andQ(X, Y) = Q(|T|, U), it holds
(4) Tr((P(X.Y), Q(X, V)]) = Tr((P(T|, U), Q(IT], U)]).
By (3) and (4), we have

Tr((P(X, Y), Q(X, V)]) = Tr((P(IT|, U), Q(T], U)])

= i // J(I5, Q)(r, eie)eiegi (eie, r)Ydrd6
2

1 )
=5 [ 1P O af @ raras.
2mi
Putgr(x,y) = gf(eie, r) for x + iy = re'?
y = rsinf, we have

. Using the transformation = r cosf and

1 . 1
o [[ 1P O gl praras = 5 [[ 1. 01w ygr e, ary
- 2mi

=Tr(P(X,Y), Q(X. V)] .

SinceP andQ are arbitrary, by (1) it completes the proof. O

If an operatorT = U|T| is invertible, thenU is unitary and[|T|, U] € C; implies
[T*, T] € C1, becaus¢T*, T] = |T|[|T|, UIU* + [|T|, U]|T|U*. And equation (2) holds
by [5, Theorem 4]. So we have the following

COROLLARY 2. Ifaninvertibleoperator T = X +iY = U|T| satisfies[|T|, U] € (1,

then gr (x, y) = gF (¢'%, r), wherex + iy = re'?.

For a relation betweeg” andg?,, we need the following Berger’s result:

THEOREM 3 (Berger, Th.4[1]). For an operator T, if [T*, T] € C1, then for a posi-
tive integer n,

g, y)= Y gr(,v).

(u+iv)"=x+iy
THEOREM 4. For anoperator 7 with [T*, T € Cy, if [ g7 (x, y)dxdy # O, then

lim esssup|grn| = 0.
n—o0
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PROOF. We choose a positive humbersuch that|aT| < 1. It holdsg,r(x,y) =
gr(x/a, y/a) (cf. [9, p. 242,1)]). Hence we have

€SS supgar (x, y)| = €SS sufgr (x, y)|.

Therefore, we may assume thef|| < 1. Putg(x +iy) = gr(x,y) andg,(x + iy) =
g (x,y). Letmy be the planar Lebesgue measure. Sing€0}) = 0, we consider in the set

C —{0}. PutS(n,k) = {z € C— {0} : ZED < argz < Zk} (k = 1,..-,n). Then by
Theorem 3 we have

n

gn(rnel'e) — Z g(rei(9+2ﬂ(k—l))/n) .
k=1

Hence it holds

n
f/ gn (r"e'® rdfdr = Z/:/ g(re! O+2TE=/ny, 40 4y
k=1
n . .
= Zn//g( Y g(re’e)rdedr =n f/ g(re’e)rdedr
k=1 i

=n ff gr(x, y)dxdy # 0

for everyn. By [2, Theorem 3.3], for an operatérwith [S*, S] € C1, the support ofys is
contained if—|[|S|1], |I1SII1x [—|IS]], ]|SI|]. Let A,, denote the support @f». Since||T|| < 1,
it holds lim m2(A,) = 0. Hence

n— 00

lim esssupgr:| = lim ess supg,| = oo. a
n—o00 n—o0

We remark that a hyponormal operat@r with 0 # [T* T] € (p satisfies
[ gr(x, y)dxdy # 0.

Applying Corollary 2 and Theorem 4 6", we have the following.

COROLLARY 5. For anoperator T = U|T|, let T" = U,|T"| be the polar decom-
position of 7" (n = 1,2,---). If [|T"|, U,] € C1 for every non-negative integer n and
I gf (€', ryrdédr + 0, then

lim ess supgr.| = cc.
n—0o0

LetT = U|T|andT" = U, |T"| be the polar decompositions Bfand7T”, respectively.
Then it holds that ifi 7*, T] € Cy, then[T*", T"] € C;1 for any positive integen. On the
other hand, in the polar decomposition case, it is not clear whetherU] € C; impilies
[IT"|, U,] € C1evenifn = 2. If T is invertible and|T|, U] € C1, then, for every, it holds
[IT"|, U,] € C1 by [5, Theorem 3].
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Next we consider operators with cyclic vectors. First we need the following result. We
remark that the proof of [9, Theorem X.4.3] works still for a pair of operators with trace class
self-commutator.

THEOREM 6 (Martin and Putinar, Th.X.4.3 [9]). Let g7 and gy bethe principal func-
tions of operators T and V such that [T*, T, [V*, V] € C1, respectively. If there exists an
operator A € C1 suchthat AV = T A and ker(A) = ker(A*) = {0}, then gr < gy.

Proof of the following lemma is based on it of [9, Corollary X.4.4].

LEMMA 7. LetT beanoperator suchthat [T*, T] € C1 and o (T) isaninfinite set. If
T hasa cyclic vector, then gr < 1.

PROOF. We may assume thdtl'| < 1. Leté& be a cyclic vector forf. Define an
operatorA : ¢2(N) — H by

Aey =TFe, k>0,

where{e;} denotes the standard basistdf Let V be the unilateral shift od2(N). Then it
holdsAV = T A. Itis easy to see that ket*) = {0}. Also we show kefA) = {0}. Assume
that ke(A) # {0}. Since ke¢A) # {0} if and only if there exists a hon-zero analytic function
finthe unitdisk such thaf (T) = 0, we have{0} = o (f(T)) = f(o(T)). Sinceo (T) has a
limit point in the unit disk, we havg = 0. It's a contradiction. Hence, we have k&) = {0}.

By the similar way to Corollary X.4.4 of [9], it follows that is a trace class operator.
Sincegy < 1, by Theorem 6, we have

gr < gv < 1. O

Let S be an operator having the principal functignrelated to the Cartesian decompo-
sition S = X +iY. Thengs+(x,y) = —gs(x, —y). Hence, as a corollary of Lemma 7, we
have the following.

LEMMA 8. LetT beanoperator suchthat [T*, T] € C1 and o (T) isaninfinite set. If
T* hasa cyclic vector, then —1 < gr.

Finally, we give an invariant subspace result. Using a property-of Berger showed
that(T — al)" has a non-trivial invariant subspace for any numbeatisfyinggr (a) # 0
and a sufficiently hight (see also [8]).

We remark that if is a non-trivial invariant subspace f6¥, then K is an invariant
subspace fos.

THEOREM 9. Let T be an operator such that [T*, T] € C1 and o (T) is an infinite
set. Moreover, if [ gr(x, y)dxdy # 0, then, for a sufficiently high n, 7" has a non-trivial
invariant subspace.

PROOF. For a positive integen, it holds that[7"*, T"] € C1, o(T") is an infinite
set andgr # 0. If both 7" and T*" have cyclic vectors, then, from Lemmas 7 and 8,
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lgr»| < 1. Hence from Theorem 4, for a sufficiently high 7" or T*" has a non-trivial in-
variant subspace. If*" has a non-trivial invariant subspace, so dd&sThis completes the
proof. |
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