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Abstract. For an operatorT with some trace class condition, letgT n andgP
T n

be the principal functions related

to the Cartesian decompositionT n = Xn + iYn and the polar decompositionT n = Un|T n| for a positive integern,

respectively. In this paper, we study properties ofgT n andgP
T n

and invariant subspaces ofT n.

1. Introduction

An operator below means a bounded linear operator on a separable infinite dimensional
Hilbert spaceH. The commutator of two operatorsA,B is denoted by[A,B] = AB − BA.

Let C1 be the set of trace-class operators ofB(H). Let T be an operator such that[T ∗, T ] ∈
C1. Pincus introduced the principal functiongT related to the Cartesian decompositionT =
X + iY. Properties of the principal functiongT have been studied ([3], [6], [7], [9], [10]).
Especially, C.A. Berger gave the principal functionsgT n of powersT n of T in terms ofgT and
proved that for a sufficiently highn, T n has a non-trivial invariant subspace for a hyponormal

operatorT ([1]). On the other hand, we have another principal functiongPT related to the polar
decompositionT = U |T | such that[|T |, U ] ∈ C1 ([3], [4], [10]).

In this paper, we study properties ofgT n andgPT n and invariant subspaces ofT n.

2. Theorem

φ(r, z) is calledLaurent polynomial if there exist a non-negative integerN and polyno-

mialspk(r) such thatφ(r, z) = ∑N
k=−N pk(r)zk. For differentiable functionsP,Q of two

variables(x, y), let J (P,Q)(x, y) = Px(x, y) ·Qy(x, y)− Py(x, y) ·Qx(x, y).
For an operatorT = X + iY = U |T |, we consider the following trace formulae:
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Tr([P(X, Y ),Q(X, Y )]) = 1

2πi

∫∫
J (P,Q)(x, y)gT (x, y)dxdy ,(1)

for polynomialsP andQ.

Tr([φ(|T |, U),ψ(|T |, U)]) = 1

2π

∫∫
J (φ,ψ)(r, eiθ )eiθgPT (e

iθ , r)drdθ(2)

for Laurent polynomialsφ andψ.
If formula (1) holds, the functiongT is calledthe principal function related to the Carte-

sian decomposition T = X + iY. If formula (2) holds, the functiongPT is calledthe principal
function related to the polar decomposition T = U |T |. For invertible operatorT such that

[T ∗, T ] ∈ C1, there exist bothgT andgPT ([3], [5]).
First we start with the following

THEOREM 1. Let T = X + iY = U |T | be an operator satisfying the following trace
formula:

Tr([φ(|T |, U),ψ(|T |, U)]) = 1

2π

∫∫
J (φ,ψ)(r, eiθ )eiθgPT (e

iθ , r)drdθ

for any Laurent polynomials φ and ψ. Then the principal function gT (x, y) related to the

Cartesian decomposition T = X + iY of T exists and it is given by gT (x, y) = gPT (e
iθ , r),

where x + iy = reiθ .

PROOF. LetP andQ be polynomials of two variables(x, y). First note that

Tr([P(X, Y ),Q(X, Y )]) = Tr

([
P

(
T + T ∗

2
,
T − T ∗

2i

)
,Q

(
T + T ∗

2
,
T − T ∗

2i

)])
.

Put

P̃ (r, z) = P

(
zr + r/z

2
,
rz − r/z

2i

)
and Q̃(r, z) = Q

(
zr + r/z

2
,
rz− r/z

2i

)
.

Then bothP̃ andQ̃ are Laurent polynomials and also the following equations hold:

P̃r (r, z) = Px(r, z)
z+ 1/z

2
+ Py(r, z)

z− 1/z

2i
,

P̃z(r, z) = r

2
Px(r, z)

(
1 − 1

z2

)
+ r

2i
Py(r, z)

(
1 + 1

z2

)
,

Q̃r (r, z) = Qx(r, z)
z+ 1/z

2
+Qy(r, z)

z− 1/z

2i
,

Q̃z(r, z) = r

2
Qx(r, z)

(
1 − 1

z2

)
+ r

2i
Qy(r, z)

(
1 + 1

z2

)
.
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Hence we obtain

J (P̃ , Q̃)(r, z) = J (P,Q)(x, y)
r

zi
.

Therefore, it holds

J (P̃ , Q̃)(r, eiθ ) = J (P,Q)(x, y)
r

ieiθ
.(3)

SinceP(X, Y ) = P̃ (|T |, U) andQ(X, Y ) = Q̃(|T |, U), it holds

Tr([P(X, Y ),Q(X, Y )]) = Tr([P̃ (|T |, U), Q̃(|T |, U)]) .(4)

By (3) and (4), we have

Tr([P(X, Y ),Q(X, Y )]) = Tr([P̃ (|T |, U), Q̃(|T |, U)])

= 1

2π

∫∫
J (P̃ , Q̃)(r, eiθ )eiθgPT (e

iθ , r)drdθ

= 1

2πi

∫∫
J (P,Q)(x, y)gPT (e

iθ , r)rdrdθ .

Put gT (x, y) = gPT (e
iθ , r) for x + iy = reiθ . Using the transformationx = r cosθ and

y = r sinθ , we have

1

2πi

∫∫
J (P,Q)(x, y)gPT (e

iθ , r)rdrdθ = 1

2πi

∫∫
J (P,Q)(x, y)gT (x, y)dxdy

= Tr([P(X, Y ),Q(X, Y )]) .
SinceP andQ are arbitrary, by (1) it completes the proof. �

If an operatorT = U |T | is invertible, thenU is unitary and[|T |, U ] ∈ C1 implies
[T ∗, T ] ∈ C1, because[T ∗, T ] = |T |[|T |, U ]U∗ + [|T |, U ]|T |U∗. And equation (2) holds
by [5, Theorem 4]. So we have the following

COROLLARY 2. If an invertible operator T = X+ iY = U |T | satisfies [|T |, U ] ∈ C1,
then gT (x, y) = gPT (e

iθ , r), where x + iy = reiθ .

For a relation betweengPT andgPT n , we need the following Berger’s result:

THEOREM 3 (Berger, Th.4 [1]). For an operator T , if [T ∗, T ] ∈ C1, then for a posi-
tive integer n,

gT n(x, y) =
∑

(u+iv)n=x+iy
gT (u, v) .

THEOREM 4. For an operator T with [T ∗, T ] ∈ C1, if
∫∫

gT (x, y)dxdy �= 0, then

lim
n→∞ ess sup |gT n | = ∞ .
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PROOF. We choose a positive numbera such that‖aT ‖ < 1. It holdsgaT (x, y) =
gT (x/a, y/a) (cf. [9, p. 242,1)]). Hence we have

ess sup|gaT (x, y)| = ess sup|gT (x, y)| .
Therefore, we may assume that‖T ‖ < 1. Putg(x + iy) = gT (x, y) andgn(x + iy) =
gT n(x, y). Letm2 be the planar Lebesgue measure. Sincem2({0}) = 0, we consider in the set

C − {0}. PutS(n, k) = {z ∈ C − {0} : 2π(k−1)
n

≤ argz < 2πk
n

} (k = 1, · · · , n). Then by
Theorem 3 we have

gn(rneiθ ) =
n∑
k=1

g(rei(θ+2π(k−1))/n) .

Hence it holds

∫∫
gn(rneiθ )rdθdr =

n∑
k=1

∫∫
g(rei(θ+2π(k−1))/n)rdθdr

=
n∑
k=1

n

∫∫
S(n,k)

g(reiθ )rdθdr = n

∫∫
g(reiθ )rdθdr

= n

∫∫
gT (x, y)dxdy �= 0

for everyn. By [2, Theorem 3.3], for an operatorS with [S∗, S] ∈ C1, the support ofgS is
contained in[−||S||, ||S||]×[−||S||, ||S||]. LetAn denote the support ofgT n. Since‖T ‖ < 1,
it holds lim

n→∞m2(An) = 0. Hence

lim
n→∞ ess sup|gT n | = lim

n→∞ ess sup|gn| = ∞ . �

We remark that a hyponormal operatorT with 0 �= [T ∗, T ] ∈ C1 satisfies∫∫
gT (x, y)dxdy �= 0.
Applying Corollary 2 and Theorem 4 toT n, we have the following.

COROLLARY 5. For an operator T = U |T |, let T n = Un|T n| be the polar decom-
position of T n (n = 1,2, · · · ). If [|T n|, Un] ∈ C1 for every non-negative integer n and∫∫

gPT (e
iθ , r)rdθdr �= 0, then

lim
n→∞ ess sup|gPT n | = ∞ .

Let T = U |T | andT n = Un|T n| be the polar decompositions ofT andT n, respectively.
Then it holds that if[T ∗, T ] ∈ C1, then[T ∗n, T n] ∈ C1 for any positive integern. On the
other hand, in the polar decomposition case, it is not clear whether[|T |, U ] ∈ C1 impilies
[|T n|, Un] ∈ C1 even ifn = 2. If T is invertible and[|T |, U ] ∈ C1, then, for everyn, it holds
[|T n|, Un] ∈ C1 by [5, Theorem 3].
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Next we consider operators with cyclic vectors. First we need the following result. We
remark that the proof of [9, Theorem X.4.3] works still for a pair of operators with trace class
self-commutator.

THEOREM 6 (Martin and Putinar, Th.X.4.3 [9]). Let gT and gV be the principal func-
tions of operators T and V such that [T ∗, T ], [V ∗, V ] ∈ C1, respectively. If there exists an
operator A ∈ C1 such that AV = TA and ker(A) = ker(A∗) = {0}, then gT ≤ gV .

Proof of the following lemma is based on it of [9, Corollary X.4.4].

LEMMA 7. Let T be an operator such that [T ∗, T ] ∈ C1 and σ(T ) is an infinite set. If
T has a cyclic vector, then gT ≤ 1.

PROOF. We may assume that‖T ‖ < 1. Let ξ be a cyclic vector forT . Define an

operatorA : �2(N) → H by

Aek = T kξ , k ≥ 0 ,

where{ek} denotes the standard basis of�2. Let V be the unilateral shift on�2(N). Then it
holdsAV = TA. It is easy to see that ker(A∗) = {0}. Also we show ker(A) = {0}. Assume
that ker(A) �= {0}. Since ker(A) �= {0} if and only if there exists a non-zero analytic function
f in the unit disk such thatf (T ) = 0,we have{0} = σ(f (T )) = f (σ(T )). Sinceσ(T ) has a
limit point in the unit disk, we havef = 0. It’s a contradiction. Hence, we have ker(A) = {0}.

By the similar way to Corollary X.4.4 of [9], it follows thatA is a trace class operator.
SincegV ≤ 1, by Theorem 6, we have

gT ≤ gV ≤ 1 . �

Let S be an operator having the principal functiongS related to the Cartesian decompo-
sition S = X + iY. ThengS∗(x, y) = −gS(x,−y). Hence, as a corollary of Lemma 7, we
have the following.

LEMMA 8. Let T be an operator such that [T ∗, T ] ∈ C1 and σ(T ) is an infinite set. If
T ∗ has a cyclic vector, then −1 ≤ gT .

Finally, we give an invariant subspace result. Using a property ofgT n , Berger showed
that (T − aI)n has a non-trivial invariant subspace for any numbera satisfyinggT (a) �= 0
and a sufficiently highn (see also [8]).

We remark that ifK is a non-trivial invariant subspace forS∗, thenK⊥ is an invariant
subspace forS.

THEOREM 9. Let T be an operator such that [T ∗, T ] ∈ C1 and σ(T ) is an infinite
set. Moreover, if

∫∫
gT (x, y)dxdy �= 0, then, for a sufficiently high n, T n has a non-trivial

invariant subspace.

PROOF. For a positive integern, it holds that[T n∗, T n] ∈ C1, σ (T
n) is an infinite

set andgT �= 0. If both T n and T ∗n have cyclic vectors, then, from Lemmas 7 and 8,



116 MUNEO CHŌ, TADASI HURUYA, AN HYUN KIM AND CHUNJI LI

|gT n | ≤ 1. Hence from Theorem 4, for a sufficiently highn, T n or T ∗n has a non-trivial in-
variant subspace. IfT ∗n has a non-trivial invariant subspace, so doesT n. This completes the
proof. �
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