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Abstract. Let G be a C°°-mapping from a connected Riemann surface M into the complex quadric Q,,_1 in
the n-dimensional complex projective space. We give a condition for the existence of a surface in the n-dimensional
Euclidean unit sphere $” such that the Gauss map is G. Under this condition, if M isatorus, there exists asurfacein
S" such that the Gauss map is G. We aso show that for a connected Riemann surface M there exists an immersion
X : M — R P" such that aneighborhood of each point of X (M) is covered by asurfacein S with prescribed Gauss
map G where R P" isthe n-dimensional real projective space.

1. Introduction

In this paper by a surface S in an n-dimensional (n > 3) Riemannian manifold M we
mean a triple (M, M, X) consisting of a connected Riemann surface M, the ambient space
M and a C*°-conformal immersion X : M — M. Let S = (M, ", X) be asurfacein the
n-dimensional Euclidean unit sphere S". Weregard it as a surfacein the (n + 1)-dimensional
Euclidean space R"*1 and consider the (generalized) Gaussmap G : M — Q,_1 Where
Q,—1 is the complex quadric in the n-dimensional complex projective space ([1]). Itisim-
portant to study the property of the Gauss map of surfaces. For a simply-connected Riemann
surface M and a C*°-mapping G : M — Q,_1 with certain conditions, Hoffman and Osser-
man showed that there exists asurface S = (M, R"*1, X) such that the Gauss map is G and
X can be expressed by an integration of C*°-mappings induced from G ([2]). In this paper
we consider the existence of surfacesin S" with prescribed Gauss map. Since, in case of ",
the existence of such a surface cannot be showed directly by using the resultsin [2], we need
other method. By using this method, alocal existence theorem will be given in Theorem 3.2
of this paper.

Let M be a connected Riemann surfaceand G : M — Q,_1 a C>*-mapping. We
assume that G satisfies the conditions (1) and (2) in Theorem 3.2 at each point of M. We
show in Theorem 5.2 that if M isatorus T2, there exist acovering space (72, T2, #) over T2
and asurface S = (72, §", X) such that the Gauss map is G o . We aso show in Section 6
that there existsasurface S = (M, RP", X) in the n-dimensional real projective space R P"
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with the property that a neighborhood of each point of X (M) is covered by a surfacein S”
such that the Gauss map is G.

2. TheGauss map of surfacesin $"

We assume in this paper that manifolds and apparatus on them are of class C*° and that
manifolds satisfy the second countability axiom, unless otherwise stated.

Let M be aconnected Riemann surface and (U, z = u1 + +/—1u) acomplex coordinate
system of M. For aC>-mapping A : M — R¥, we put

dA  1/03A dA dA  1/03A dA
A, =—=(—-V-1— A:= — =2 —+vV-1—).
©T 9z 2<8u1 auz)’ ©T9z 2(8u1 + 8u2)

Let M be aconnected Riemann surfaceand S = (M, ", X) asurfacein $"(n > 3). We
define the Gauss map of surfacesin R"*+1 following Hoffman and Osserman ([1]). We regard
S asasurfacein R"*1. X : M — S" is said to be conformal if for any complex coordinate
system (U, z = ug + ~/—1u) of M it satisfies

0X
ouq

X

X 090X
— —.— =0
duo

8u1. dus

’

where |A| denotes the length of avector A in R"*1 and A - B denotes the Euclidean inner
product of vectors A and B in R"*1. The conformality condition of X is equivalent to

X 90X
(8-
dz 0z
where ( , ) denotes the canonical Hermitian product on C"*1,
Let 0,1 bethe complex quadric in the n-dimensional projective space CP" defined as
Qn-1 = {[w] € CP"|w1® + -+ + wy1° = 0}.
0,1 isdiffeomorphic to the oriented Grassmaniann manifold
G(Z, n+1)=S0n+1/SO0(2)xSO0n-1).

For each u € U weidentify the tangent vectors
9 9
() ()
ouq " duo "

3X() 8X()
dup v duo "

with
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by parallel trandationsin R+ respectively. Then each tangent plane of X (M) corresponds
to aunique element of Q,,—1. Thusthe generaized Gauss map of S can be defined as

0X
G:M— Q,-1 <u = [—_(u)]>
0z

(see [1]). For simplicity, the generalized Gauss map will be caled the Gauss map in this

paper.
Let .#(s,t) betheset of al s x ¢ real matrices. For K € .# (s, t), let 'K stand for the

transposed matrix of K. For each u € M we denote by G(u) the element of G(2,n + 1)
corresponding to G (u). For u € M, we express R"+1 asthe direct sum

R =Gw) & Gu)
where G+ (u) denotes the orthogonal complement to G («) in R"+1. We set

PM.G) =] Gw).
ueM
We denote by V the smallest linear subspace in R"+1 containing P(M, G). Let V- be the
orthogonal complement of V in R"*. In the following we put k = dim V. Then we have
2<k<n+1
Let St(n + 1, m) denote the Stiefel manifold of m-dimensional framesin R"t1. Let
E=(ET, EN):U — SO(n + 1) bea C*-mapping such that

ET =(E1,E2):U - St(n+1,2), EN =(E3, -+, Epny1) : U = St(n+1,n—1)

are C*°-mappings and such that E7 (1) = (E1(u), E2(u)) is an orthonormal framein G)
and gives the orientation of G (u). We also regard E7 and EV as C*°-mappings E7 : U —
Mn+1,2and EYN : U — #(n+ 1, n — 1) respectively. Since X is conformal, we can
put

X _

92 _gTy (2.1)
0z
where
WU — CP\{0) (u>"(Yw), —/—1yw)).
We haveon U
<%,x> _o.
0z
Then on U we can put
n+1
X=> ajEj=E"A (2.2)

j=3
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where
AU — RIN(0) (s "(as@), -+, ans1())) .

By using (2.1) and (2.2) we have
aX  JEN dA
el EN"Z —ETy . 2.3
0z 9z + 0z (23)
Since’ ENET =0and’ENEN = I,_1, by using (2.3), we get
94 _ _,ENaEN

a_z 9z

Here I,,_1 isthe unit matrix of degree (n — 1).
By the Frobenius theorem ([3]), we have the following.

A. (2.4)

LEMMA 2.1. Under the notations stated above, a necessary and sufficient condition
for the existence of non-zero solutions of the partial differential equation (2.4) can be ex-
pressed as

(2.5)

A'EN 9EN dEN 3'EN
Im{ —— — +'gN_— "~ ENl _0.
0z 0z dz 07

3. Existencetheorem

Let M be aconnected Riemann surfaceand G : M — Q,-1 (n > 3) a C*°-mapping.
For esch u € M, let G(u) be asin Section 2. We take apoint mp € M and a complex

coordinate system (U, z = u1 + ~/—1u2) about mg where U is connected. If we take U
sufficiently small, there exist C*°-mappings

Ei:U— R\ {0} (=12

suchthat foreachu € U ET (u) := (E1(u), E2(u)) isan orthonorma framein G («) and gives
the orientation of G(u). We denote by EN(u) = (E3(u),---, Eny1(u)) the orthonormal
complement of ET (1) in R™*1. Inthefollowing let I denote the unit matrix of degree (n + 1)
and put

d'EN 9EN
B := (I — ENENy—/—. (3.1)
0z 0z

For such EV we consider the following four conditions:

()

J'EN 9EN AEN 3'EN
Im{ +'EN EN} =0, (3.2)

0z 0z dz 0z
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Nipny OEY ;
n (I -E"E )8—750 (=12, (3.3)
uj

(1) thereexists& € R"~1\ {0} such that

'£€B(mo)§ =0, (3.4)
d'EN 9EN 9B

(V) ENB+BEN—/— — — =0. (3.5)
0z 0z 0z

We note that (3.2) is equivalent to
I'ENQEN  9'EN QEN tEN(aEN d'EN 9EN afEN>EN _o

(3.6)

duz Jduq ouy dup ouy dup duz duq

We note that the condition (1) is a necessary and sufficient condition for the existence of a
solution of the partial differential equation (2.4). The condition (I1) demands that a mapping
X : M — S" defining asurface S = (M, §", X) isanimmersion. Moreover the conditions
(1) and (1V) ensure that X is conformal. These conditions (1)—1V) are independent of the
choice of complex coordinate systems of M. Moreover we have the following.

LEmmA 3.1. Under the notations above, the conditions (1)—1V) are independent of
the choice of orthonormal framesin R”*1.

PROOF. Let SO (m) denote the set of all special orthogonal m x m-matrices. Let E =
(ETENY : U - SOm+1 and F = (FT,FN) : U — SO(n + 1) be different C*°-
mappings such that for each u € U ET (u) and FT (u) are orthonormal frames of G (x) and
give the same orientation of G («). Then there exists a C*°-mapping

2:U—->SOoOn+121
such that

211 0
F=EQ=E
<0 92)

where 21(u) € SO(2) and 22(u) € SO(n — 1) (u € U). Hence we have
EN = FNiQ,. (3.7

We assumethat EV satisfies the conditions (1)<(1V). From (3.7), we have

AEN  9FV, 32, AEN 92, atFN
— = —12,+ FN , = 'FN + @2 3.8
0z 0z 2 0z 0z 9z 2 0z (38)
By using (3.2), (3.7) and (3.8), we get
alFN gFN aFN o' FN a8 aFN
Im{$2; O g, 2 FNE FNig, 4+ 2220 pN 27 iy,

9z 0z 2 9z 0z 3z 9z
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982 aFN 982 982 982 982
_ZTFN__I_QZ — _2t_Qz 21.(22 — 2192 _2t92
0z 0z 0z 0z 0z 0z
aFN . a2 AFN a2
+ 2 PN i, 210, 4 0y PN 10,0210, = 0
0z 0z 0z 0z
where we used
9102 _ _,[228.(22,92
0z 0z '
Hence we have

atFN oFN AFN gt FN
Im{2)( ——+"FN———FV )2, = 0.
0z 0z dz 09z

Since £2; isreal, this showsthat FV satisfies the condition (1).
By using (3.8), we have
32>

JEN aFN
ou j ou j ou j

aFN
= - FV'FN)—'2,,
8uj
whereweused ' FN FN = I, _1. Hence the assumption of EV implies
aFN
(I—-FN'FNy_— +£0
ouj

showing that FV satisfies the condition (1).
From (3.8), we compute that

982 a'FN aFN 382
B = <—2’FN+92 o >(I—FN’FN)<—’.QZ+FN8—Z2>

0z 0z
002 aFN 9 382
_ ZIFN(I FNUEN) 9, + _ZIFN(I _ FNtFN)FN_Z
dz dz 0 Z
t N t N t
0 082
+ 2 (I - FNENYT g, 4 0, (I — FNtENypN 222
0z 0z
a'FN aFN
=2 (I — FN'FN) 2,
9z
= .Qzét.Qz,
hence we have

B = £2:B'$2;. (3.9)
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It follows from (3.4) that
'£ B(mo)E = "E2,B(mo)'$26 = 0.

Since’s2,¢ € R"~1\ {0}, FN satisfies the condition (I11).
From (3.8) and (3.9) we have

A'EN . NOEN 3B dtFN
ENB+ B'EY — =2

- - oFN
- = FNB+B'FN—— — —— )2,
0z 0z 0z * ) 2

0z 0z 0z
Thisshowsthat FV satisfies the condition (1V). We complete the proof.

We note that the Gauss map of the Clifford torusin $2 and the one of a sphere embedded
totally umbilically in $2 satisfy the conditions (1)<(IV). The other example will be given in
Section 6.

For a C*°-mapping G : M — Q,_1 satisfying the conditions (1)—(1V), we will show
the existence of asurfacein $" whose Gauss map is G. Hoffman and Osserman showed that,
under certain conditions (Theorem 2.3in [2]), there exists asurfacein R" such that the Gauss
map is G. However our result does not follow directly from their results.

THEOREM 3.2. Let M bea connected Riemann surfaceandG : M — Q,,_1 (n > 3)
a C*-mapping. Let (U, z = u1 + +/—1u) be a complex coordinate system about mg € M.
Assume that there exists a C*°-mapping
E=(ETEY):U—- SOn+1),
where
ET = (E1,E2): U — St(n+1,2), EN =(E3,- -, Epy): U - St(n+1,n—1),

with the following properties:

(1) ET(u) isan orthonormal framein G(u) and gives the orientation of Gu) for any
ueU,;

(2) EN satisfiesthe conditions (1)—<(IV).
Then there exists a surface S = (Up, $", X) such that the Gauss map of S is G|y, where Ug
isa simply connected open neighborhood of mg.

PrROOF. Let Up be asimply connected open neighborhood of mq such that Up C U.
By (3.4), wetake & € R*~1\ {0} such that
'£B(mo)§ = 0.
From Lemma 2.1 and (3.2), by taking Ug sufficiently small, the partial differential equation
0A _ 1N dEN

- A 3.10
9z 0z ( )

has a unique C*° solution

A:Up— R"™IN\{0} (z+ "(a3(2), -, an41(2)))



98 AYAKO TANAKA

with theinitial value A(mo) = &. We now definea C*®-mapping Y : U — R"*1as

n+1
Y= ajE;=ENA. (3.12)
j=3
It follows from (3.3), (3.10) and (3.11) that
Y EVN A AEN
a—za—A—i—ENa—:(I—ENtEN)—A;éO. (3.12)
0z 0z 0z 0z

We have

Y dY d'EN AEN
— —)='A (I —ENENY——A="ABA. (3.13)
0z 0Z 0z 0z
Then (3.5) and theinitial condition of (3.10) imply ABA = 0. Hence (3.13) showsthat Y is
conformal. From (3.12), we have
IENg — (Z‘EN _ IENENZ‘EN)aENA — O

az 0z

which shows that G|y, is the Gauss map of the surface Sy = (Uo, R™1y). It follows from

(3.11) and (3.12) that

Y dEN d'EN
Y, —)=(ENA, 1 - ENEN)—/A) = (I —ENEVMYENA =0.
0z 0z 0z
Hencethe length of Y is constant on U since Uy is connected. We now define a C°°- confor-
mal immersion X : Ug — S" as
1

X=—Y
1Yl

Since Sy and S = (Uo, S", X) have the same Gauss map, G|y, isthe Gauss map of S. This
completes the proof.

4. Surfacesin $" with the same Gauss map

Hoffman and Osserman showed in [2] the following:
Let S1 = (M, R"*1, X) and S, = (M, R"*1, Y) be distinct surfacesin R"*1 with the same
Gauss map G. If their mean curvature vectors are different from zero at some point, then
Y = ¢X + Xo where ¢ is anon-zero constant and X is a constant vector (Theorem 2.5 in
[2D).

By using thisresult, we investigate rel ations between surfacesin $" with the same Gauss
map.

Forry > 0and Xo € R"1\ {0}, let S”~1(Xo) denote the (n — 1)-dimensional Euclidean
sphere with radius 1 and center X such that it istheintersection of S and the hyperplanein
R"*1 which is orthogonal to X and passes through it.
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Under the notations stated above, we shall show the following.

THEOREM 4.1. Let M be a connected Riemann surfaceand G : M — Q,_1 a C*-
mapping. Suppose that S1 = (M, S, X) and S2 = (M, §",Y) are distinct surfacesin S”
with the same Gauss map G. Then we have the following:

() X-XoandY - Xgareconstant in M where Xg is a constant vector such that

Y=cX+ Xp.

Here ¢ is a non-zero constant such that

c=—X -Xo+&/(X -X0)2+1—|Xo2, &==1.

(2) IfXo=0,theny = —X.
(3) If Xo # 0, then

a B
X(M)c S —Xxo), Y(M) st =X
M) < 5y (|X0|2 °> M <5\ xor ™
and
lclry =12
where
X-Xo, B=Y-X 1(“)2 1<’3>2
o = . 0, = . 0, ryg = - v 1 ’ r2 = - T~ | .
| Xol | Xol
sn Y(M)

X (M)

PrROOF. If weregard S = (M, S, X) and S» = (M, ", Y) assurfacesin R"+1, their
mean curvature vector fields in R**1 nowhere vanish. Then, by a theorem due to Hoffman
and Osserman (Theorem 2.5in [2]), X and Y satisfy ¥ = ¢X + Xo where ¢ is a constant
(c # 0) and Xg is a constant vector in R"*1. In the case where Xg = 0, (1) is evident. To
show (1) we may assume X # 0. We have

Y[ = |cX + Xo|? = ¢+ 2¢X - Xo + | Xo[?
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whereweused | X| = 1. Since |Y| = 1, we have

+2cX - Xo+|Xo2—1=0. (4.1)
Sincec isreald we have
D:=(X -X0)?—|Xo?+1>0 (4.2)
and get
c=-X Xo+evD (4.3)

wheree = 1. If | Xo| = 1, we have

onM.
From now on we assume that | Xg| # 1. If the equality holds in (4.2), then we have
X - Xg = —c. Wenow set
Mo={meM|X(m)-Xo# —c}, Mi={meM|X(m) - Xo=—c}.

We shall show that either M = Mg or M = M; holds. Assume My # @. Then My is
openin M. Let mg € Mp. Let (U, z) be a complex coordinate system about mg such that
U is connected and U C Mp. Because of D > 0in Mo, by taking U sufficiently small if
necessary, we may assume that

VD + (X - Xo) #0
holdsin U. By differentiating the both sides of the equation (4.3), we get

1-|Xof? }

VDD +eX-Xon |

Since | Xo| # 1, we have X, - Xo = 0. Hence X - X is constant in U. Thus the function
f =X Xpon M islocaly constant in Mg. Takemy € Mg and let f(m1) = o. We set

0= _(Xz : XO){

Mz ={m € Mo| f(m) = a}.

Since f is locally constant in Mg, we can show that M> is closed and open in M. By the
connectedness of M it must be M = M», whichimpliesM = Mp. Thenwehave X - Xp = «
on M where « is constant. Next, we suppose M1 # ¥. Since f is constant in My, we can
show that M1 is closed and open in M. By the connectedness of M, it must be M = M.
Hence we have X - Xo = —c on M. Then both cases imply that X - X is constant on M.
Similarly, Y - X isconstant on M. This proves (1).

If Xo=0,wehaveY = ¢X, whichprovesY = —X, by X # Y, showing (2).

To show (3), we set

rn=+v1—c001, ro=+1—cos6,, (4.9
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where6; isthe angleformed by X and X and 6, isthe oneformed by Y and X respectively.
It followsfrom (1) that X (M) and Y (M) are contained in certain (n — 1)-dimensional spheres
in S" respectively. We get

Y - Xo = (cX + Xo) - Xo=cX - Xo+ | Xo|?.
Thisisequivdent to
|¥ || Xol €062 = c|X|| Xo| cOS61 + | Xol? (4.5)
which yields
C0Sf2 = ¢ cosh1 + | Xol . (4.6)
From (4.4) and (4.6), we get
1—r2? = 3(1 — r11?) + 2¢|Xo| cosby + | Xol%.
By (4.1), we obtain c?r12 = r52. It follows from (1) that

Cosfp = —
| Xol

where = X - Xp is constant. Hence the center of the (n — 1)-dimensional sphere in S”
containing X (M) is given by

Xo o

cosfp— = —X
|Xol  |Xol?
Similarly the center of the (n — 1)-dimensional spherein S containing Y (M) is given by

X
cosf—2 — p —— Xo
[Xol [ Xol

where 8 = Y - Xg isconstant. Then we see that

n—1 n—1 13
X(M) C S (—|X |2X0> Y(M) C S <—|X IZX )

This completes the proof.

where

Let M be a connected Riemann surfaceand G : M — Q,_1 (n > 3) a C*°- mapping.
For G,let G, P(M, G),V, V! and k beas defined in Section 2. For p € V- \ {0}, let V7 be

the hyperplane containing the origin in R”** which is orthogonal to p.
Under the notations stated above, we shall show the following.
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LEMMA 4.2. Letp e §". Assumethat’E” p = 0on M. Thenwehave p € V- N S™.

PROOF. Weset p = p1 + p2 Where p; € V and p, € V1. Suppose p1 # O for
contradiction. Since’E” p, = 0, wehave’ET p1 = 0. If we express V asthe direct sum

V=Vi@{api| a € R},

then we have P(M, G) C V1. Thiscontradicts the definition of V. Henceit must be p1 = 0,
whichimplies p € V- N ™.

From now on, let (M, S", X) beasurfacein " with the Gaussmap G. For ¢, t € R and
p € 8", we define a C*-conforma immersion Y; : M — R"*1 py

Y[ =cX —+ tp
Under this notation, we shall show the following lemmas.

LEMMA 4.3. Let3 <k <n.Foranyp e V+nS" thefollowing holds:
D X-p=«

where « is constant.
(2) For a constant ¢ such that

c=—at+e/(@)24+1—12, |t| <1, e==1,

we have Y, (M) C S".
(8) For aconstant c = —2at (Jt| = 1) we haveY, (M) C S".

PROOF. Let U beacomplex coordinate neighborhood with a coordinate function z =
u1 + +/—luz. We have, by (2.3),

0X
— =ETy

0z
where

WU = C2\ {0} (ur>"(Wu), —v/—1y(u))).

Since p € V1 N §", we get

0 0X
—X-p)=——-p="E'p=0
az 0z

which impliesthat X - p isconstant on U. By the connectedness of M, (1) holds.

Let

c=—at+e ()2 +1—12

wherea = X - p and |¢t| < 1. Thenwe have Y; (M) C S", showing (2).
When |1| = 1and ¢ = —2at, we get |Y;|2 = 1, which shows (3). We complete the
proof.
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REMARK. We note that the converses of (2), (3) in Lemma4.3 aso hold.

Let p € VNS™. Wewill denoteby 57~ thegreat spherein §” whichistheintersection
of $"and V. A C*°-conformal immersion ¥; : M — S" in (2) of Lemma4.3 givesasurface
Sy = (M, 8", Yy) whose Gauss map coincides with the one of S = (M, S", X). We can
choose g (|to] < 1) such that Sy, is contained in S;’,—l. In the following we denote by X
instead of Yy,.

LEMMA 4.4. 1f3 <k <n,wehave
X(M) C ( N Vj)mS”.
gevinsn
PROOF. Letg € V1N S". Weput
?f = C)% +tq

where

lt] < 1, c:—t(f(-q)+8\/t2(f(-q)2+1—t2, e ==1.

By Theorem 4.1 and Lemma 4.3 each surface S, = (M, ", ¥;) (t # 0) is contained in some
hyperplane in R"+1 which is orthogona to ¢. Therefore, we have Yo(M) C v, N S", hence
X(M) c v, NS". Sinceq isan arbitrary pointin v+ N s", wecomplete the proof.

LEMMA 4.5. If3 <k < n, then thefollowing holds:

1) V= ﬂ v
gevinsn
2 X(M)ycvns".

PROOF. LetveVandg e ViNS" Sincev-g =0, wehavev e Vv, . Thisimplies

ve () v

gevinsn

The other hand let v € ﬂ Vv, . Foreachq € VLns", wehavev g =0, whichimplies
gevinsn

v € V. Thisshows (1). (2) follows from Lemma 4.4 and the above. This completes the

proof.

Let (M, S", X) beasurface whose Gaussmap is G. The position of surfaces (M, S", Y)
with the same Gauss map G dependson k, because X (M), Y (M) C S". By using thelemmas
showed above, incaseof 3 < k < n, wewill show that there exist many surfacesin " with the
same Gauss map. Such surfaces are contained in the intersection of " and a k-dimensional
planein R"*1 which is orthogonal to a vector.
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THEOREM 4.6. Let M be a connected Riemann surfaceand G : M — Q,,_1 a C*°-
mapping. Let V and V- be as defined above. Let S = (M, ", X) be a surfacein §" such
that the Gaussmap is G. If 3 < k < n, then the following holds:

(1) There exists a surface § = (M, §”, X) in $" such that the Gauss map coincides
with G and

X(M)ycvns".

(2) Ifthe Gaussmap of asurface Sy = (M, S",Y) in S" isG, then Y can be expressed
as

Y =cX + tq
where ¢ and ¢ are constants such that
c=ev1—12, e=+1, || <1,
andg € VN s,
ProoOF. (1) follows from Lemmas 4.3 and 4.4. By (1) and the result of Hoffman and

Osserman (Theorem 2.5in [2]), Y can be expressed as ¥ = c¢X + Xo (¢ # 0) where Xg €
R"*1 and ¢ is a constant such that

c=—-a+e/al+1—|Xo2, a=X Xog, e==1. (4.7)

Here we note that « is aconstant by (1) of Theorem 4.1. If Xo = 0, then Y = ¢X. Inthe case
where Xo # 0, we set

Xo=tq, qeS8", teR\{0}.

Since X is conformal, we have

X .

— —ETy

0z
where

P iU = C2\(0) (ur> (), —/—T1gw))).
We get
X . .
0= - Xo= "WETXg=1t'"W'ETq,
Z

because X - Xo is constant. This implies that ‘E7g = 0. From Lemma 4.2 we have g €
vLtNn st Sincea = 0andc # 0in (4.7), we have c = e+/1 — 12, |t| < 1. This completes
the proof.

Incaseof k = n + 1, we shall show in the following that there exist at most two surfaces
in S" with the same Gauss map.
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THEOREM 4.7. Let M,G and S = (M, S", X) be as in Theorem 4.6. Let Sy =
(M, S",Y) beasurfacein S” such that the GaussmapisG. Ifk =n + 1, then Y = +X.
PrROOF. By Theorem 2.5in[2], Y isexpressed asY = ¢X + X where ¢ is a constant

and Xo is aconstant vector in R"+1. If Xo # 0, then (3) of Theorem 4.1 holds. This shows
k < n, which contradicts the assumptionthat k = n 4+ 1. Thenweget Y = £+X.

5. Global existence theorem

The purpose of this section is to show the existence of a surface with prescribed Gauss
map. Let M be a connected Riemann surfaceand G : M — Q,,_1 (n > 3) a C*°-mapping.

For G, let G, P(M, G),V, VL and k be as defined in Section 2. If M isthe Gaussian plane C
or the Riemann sphere S2, by using the monodromy theorem, we can show the following.

PROPOSITION 5.1. Let M be the Gaussian plane C or the Riemann sphere 2. Let
G: M — Q,-1m > 3) bea C*-mapping such that £k > 3. Under the notations stated
above, assume that for each zg € M there exist a connected open neighborhood U of zg and

a C*°-mapping
E=(ET ENY:U—> SOn+1),
where
ET =(E1,E2): U — St(n+1,2), EN = (E3,---,Epy1) : U = St(n+1,n—1),

with the following properties:

(1) ET(u) isan orthonormal framein G(u) and gives the orientation of Gu) for any
uelU;

(2) EN satisfiesthe conditions (1)—(IV).

Then there existsa surface S = (M, S", X) such that the Gauss map is G.

We consider the case where M isatorus 7'2. From now on we denoteby N and Z the set
of al natural numbers and integers respectively. Let ag, ax > 0. Let I be the transformation
group on C generated by trandlations

01(zx) =ur+ar+v—luz, 2(2) =ur+~-1uz+ax) 2 =ur+~v-lup e C).

In the following we consider the torus T2 = C/I". For k1, ka € N, let I (kya1, koaz) denote
the subgroup of I generating by ¢1%1 and ¢*2 where

01" () = w1 + kaar + vV=1uz, 92" (2) = ur + vV =L(uz + kzaz) .

Here I' = I'(a1,a2). We denote by T2(k1ax, koao) the torus C/ I (k1a1, koaz). For each
z € C, thereexist I1, I> € Z such that

7 = (11 + l)kiar + vV =1(t2 + Ip)koaz
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where 0 < 11, £ < 1. We note that 72 = T?(az, az). Then we have the projection myx, :
C — Tz(klal, koa2) such that

Tkiky (2) = Thakp ((t1 + [1)k1a1 + v = 1(t2 + [2)koaz) = mik, (trkrar + v —1t2koa?) .
Put [z] = 7k, (2) (z € O).

THEOREM 5.2. LetG : 72— Q,_1 be a C*°-mapping such that k > 3. Assume that
for each zo € T2 there exist a complex coordinate system (U, z) about zg and a C*°-mapping

E=ET ENY:U > SOmn+1),
where
E" =(E1,E2): U — St(n+1,2), EN =(E3,-++, Ep11) : U — St(n +Ln—1),

with the following properties:

(1) ET(u) isanorthonormal framein G (1) and gives the orientation of G («) for any
ueU,;

(2) EN satisfiesthe conditions (1)<(1V).

Then there exist a covering space (72, T2, #) over T2 and a surface S = (72, §", X)
such that the Gaussmap of S iSG o 7.

To prove Theorem 5.2, we shall show some lemmas.

LetG: T2 — Q0,1 be a C*°-mapping. For k1, k2 € N, we define C*°-mappings

Tkikp T?(k1a1, kaaz) — T2, Grak, - T?(k1a1, koaz) = Qn-1

Tk (D) = m11(2) (2 €C), Gk, = G 0 Wiy

respectively. Let G:C — Q,_1bethe C°°-mapping defined by G o w11. Thismapping is
T-invariant. G satisfies the conditions in Proposition 5.1, since 7y, «, is holomorphic. Then
there exists a surface S; = (C, $", X1) such that the Gauss map is G. We define conformal
immersionsf(.,- :C = §"(j =2,3) hy }?2 = 5(1 o ¢1 and }?3 = }?1 o @2 and let S'j =
(C, S", X ;) be surfaces such that the Gauss mapis G.

We first consider the case where k = n + 1. Since S1, S, and S3 have the same Gauss
map G, by Theorem 4.6 we have

)~(1=:|:)~(10g01=:|:)~(10(p2.

Then the following four cases are possible:

(1) f(lzf(]_o(pl:f(lo(pz, (2) )N(]_:—)N(]_o@]_:f(lo(pz, (3) )N(]_Zf(lo(pl:
—X10¢2, (4 X1=—-X10¢1=—X1002.

For each case we show that Theorem 5.2 holds.
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LEMMA 5.3. If k& = n + 1 and the case (1) holds, then there exists a surface S =
(T?, 8", X) such that the Gaussmap is G.

PROOF. Forany ¢ € I', we have X1 = X1 o ¢, S0 define a C*°-conformal immersion
X:T? > §" as

X([z]) = X1(z) (z€C).

Then we obtain asurface S = (72, ", X) such that the Gauss map is G. We complete the
proof.

LEMMA 5.4. If k = n + 1 and the case (2) holds, then there exist a covering space
(T2,T2, #) over T2 and a surface S = (72, $", X) with the Gauss map G o 7= where 72 is
T2(2a1, ay).

PROOF. We definea C*-conformal immersion X4 : C — S" by X4 = X10¢12. Since
surfaces §1 and S = (C, S", X4) have the same Gauss map G, by Theorem 4.6 we have
X1 = +£X1 0 ¢12. Thenwe havethetwo cases: (i) X1 = X1 0912, (ii) X1 = —X1 0 @12

Case (i). WehaveaC®-conformal immersion X1 : T2(2a1, ap) — S" such that

Xa(z]) = X1(z) (z€0).

Then there exists asurface So1 = (T2(2a1, az), S", X21) with the Gauss map G 1.
Case (ii). Since —X1o0¢12 = —X10¢1, wehave X1 = X1 o ¢1. This contradicts the
assumption. Then Case (ii) does not occur. We complete the proof.

By using the same argument as in the proof of Lemma 5.4, we have the following lem-
mas.

LEMMA 5.5, If k = n + 1 and the case (3) holds, then there exist a covering space
(T2, T2, #) over T2 and a surface S = (72, §", X) with the Gauss map G o 7= where 72 is
T%(a1, 2ay).

LEMMA 5.6. If k = n + 1 and the case (4) holds, then there exist a covering space
(T2, T2, #) over T2 and a surface S = (72, $", X) with the Gauss map G o 7 where 72 is
T2(2a1, 2ay).

LEMMA 5.7. Under the assumption of Theorem 5.2, if 3 < k < n, then there exist a
covering space (72, T2, #) over T2 and a surface S = (72, V N §", X) such that the Gauss
mapisG o 7.

PROOF. For each zg € T2 it follows from Theorem 3.2 that there exists a surface So =
(Uo, 8", ¥o) with the Gauss map G|y, where Up is a smply connected open neighborhood
of zo.

Letzo € T? and let S; = (Uz, $", ¥1) be a surface as stated above. By the assumption
that 3 < k < n and by (1) of Theorem 4.6, there exists a surface S1 = (U1, S”, ¥1) with the
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Gauss map G|y, and

Jy(Uy) c VNS,

Since dim V = k, we can apply Lemmas 5.3,5.4,5.5 and 5.6 to the (k — 1)-dimensional
unit sphere V N S”. Hence there exist a covering space (72, T2, #) over T2 and a surface
S = (T2, v nS§", X) such that the Gauss map is G o 7. We complete the proof.

By asimilar way asin the proof of Theorem 5.2, we have the following.

THEOREM 5.8. Let M beacylinder St x Rand G : M — Q,_1 a C*-mapping
such that £ > 3. Assumethat for each zo € M there exist a complex coordinate system (U, z)
about zo and a C*°-mapping

E=ET ENY:U > SOn+1),
where
ET =(E1,E2):U — Stn+1,2), EN = (E3,-++,Eyqy1) : U — St(n+1,n—1),

with the following properties

(1) ET(u) isanorthonormal framein G (1) and gives the orientation of G («) for any
u e U,;

(2) EN satisfiesthe conditions (1)—<IV).

Then there exist a covering space (M, M, #) over M and a surface S = (M, S", X)
such that the Gaussmap isG o 7.

6. Surfacesin thereal projective space

In the following, let V and k be asin Section 5. We denote by = the natural projection
from S" to the n-dimensional real projective space R P".

THEOREM 6.1. Let M be a connected Riemann surfaceand G : M — Q,_1 a C*®-
mapping such that £ > 3. Assume that for each mo € M there exist a complex coordinate
system (U, z) about mg and a C*°-mapping

E=ET ENY:U > SOn+1),
where
ET =(E1,E2):U — Stn+1,2), EN = (E3,-++,Eyy1) : U —» St(n+1,n—1),

with the following properties:

(1) ET(u) isan orthonormal framein G (1) and gives the orientation of G (u) for any
ue U,

(2) EN satisfiesthe conditions (1)<(1V).

Then there exists a surface S = (M, RP", X) with the property that a neighborhood of
each point of X (M) is covered by a surfacein " with the Gaussmap G.
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This theorem follows from the lemmas bel ow.

LEMMA 6.2. Under the assumption of Theorem 6.1, if k = n + 1, then there exists a
surface S = (M, RP", X) with the property that a neighborhood of each point of X (M) is
covered by a surfacein $" with the Gaussmap G.

ProoOF. By Theorem 3.2, for each mg € M there exists a surface So = (Uo, S, ¥p)
with the Gauss map G|y, where Ug is asimply connected open neighborhood of mq. We put
So = (Ug, RP", ¥p) where¥y = 7 o J. Then Sp has the property as stated in the lemma.
Let $1 = (U, S*, ¥1) and S» = (Us, ", W) be such surfaces. Then we have surfaces 1 =
(Ur, RP", W) and So = (Ua, RP", W) suchthat W1 = 7 o ¥4 and ¥ = 7 o ¥,. We shall
show that if W = U1 N Uz # @, there exists asurface S3 = (Us, RP", ¥3), U3 = Uy U Uy,
with the property as stated in the lemma and

luy, =¥ (j=12).

LetUz3 = U UUzand W = Uy N U2 # ¥. From Theorem 4.7, on each connected component
Wo of W, we have
‘IA/l|W0 = :l:lj/2|Wo~
Then we can definea C*°-conformal immersion ¥3 : U3 — RP" as
luy, =¥ (j=12).

Then S3 = (Us, RP", ¥3) isadesired surface.

We now suppose that M is compact. Let {U,},c4 be an open covering of M such that
for each A € A U, is simply connected and there exists a surface (U, RP", ¥,) with the
property stated above. Since M is compact, we can choose a finitely many of open sets from
{U},.en SO that it is covered by these open sets. By using the argument showed above, we
can get asurface S = (M, RP", X) with the property stated in the lemma.

In the case where M is non-compact, we choose a sequence {K;} of connected open

subsets of M suchthat K ; is compact and

o0
M=|JK;. KjCKj.
j=1

From what we have shown above, for each j thereexistsasurface S; = (K, RP", ¥;) with
the property stated above and

Vialg, =¥ (G=12--).
Hence we have adesired surface S = (M, RP", X) where

We complete the proof.
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By using the same argument as in the proof of Lemma 5.5, Lemma 6.2 implies the
following.

LEMMA 6.3. Under the assumption of Theorem 6.1, if 3 < k < n, then there exists a
surface S = (M, RP", X) with the property that a neighborhood of each point of X (M) is
covered by a surfacein V N S" with the Gaussmap G.

ExAMPLE 6.4. We will show an example of a surface such that its Gauss map satis-
fies the conditions in Theorem 6.1. Let I be the transformation group on C generated by
tranglations

01(2) =u1+2n +v=lup, @2(z2) =ur+~—Luz+ 2m)

wherez = u1 + ~/—1uy € C. Wedefineatorus 72 as C/I" and a C*°-conformal immersion
X:T?2> S"as

1 . . . .
X(z) = Et(cosm, Sinuy, COSup, SiNup, COSu1, SiNuy, COSuz, SiNuy) .

The Gauss map of the surface S = (T2, §7, X) satisfies the conditions in Theorem 6.1.
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