TOKYO J. MATH.
VoL. 29, No. 1, 2006

The Dirac Operator on Ultrahyperbolic Manifolds

David EELBODE and Frank SOMMEN

Ghent University
(Communicated by K. Shinoda)

Abstract. In this paper we consider a projective model for the time- and spacelike ultrahyperbolic unit balls
in the orthogonal space R™-"". By means of an associated principal fibre bundle, a Dirac operator on these mani-
folds is defined and its fundamental solution is constructed (in case m € 2N + 1) with the aid of generalized Riesz
distributions. Using the method of descent, we then construct fundamental solutions for the Dirac operator on time-
or spacelike ultrahyperbolic unit balls in spaces of signature (m, ¢) and (p, m) respectively (with p, g < m).

1. Introduction

In this paper Clifford analysis techniques are used to construct a fundamental solution
for the Dirac operator on specific SO(p, ¢g)-invariant ultrahyperbolic manifoldsin R4,

Clifford analysis offers a nice and elegant generalization to higher dimension of the
theory of holomorphic functions in the complex plane, the Dirac operator being the higher
dimensional analogue of the Cauchy-Riemann operator. It is centred around the notion of
monogenic functions, i.e. nullsolutions for the Dirac operator. Standard reference books are
[1], [7] and [14] and a nice overview of the most basic results can be found in [6].

Whereas these references are mostly concerned with the Dirac operator on flat Euclidean
space, a natural generalization consists in studying the Dirac operator on general manifolds.
We refer e.g. to [14] and the work of Calderbank and Cnops, see[2], [4] and [5]. These latter
references study the Dirac operator within the framework of Clifford analysis by embedding
the manifolds under consideration into an orthogonal space and by using properties of the
Dirac operator on thisembedding space. Thisas opposed to the classical spinor Dirac operator
on manifolds, whichisstudied intrinsically within the framework of differential geometry (see
e.g. [17]).

For the more specific choice of a positively curved Riemannian manifold we refer to the
work of Sommen and Van Lancker [22] and [23], whereas for the case of a negatively curved
Riemannian manifold werefer to thework of Leutwiler and his school [16] and [20] and some
of our recent papers[9] and [11]. It should be stressed that the Dirac operator in our approach
differs fundamentally from the one considered by Leutwiler: whereas his operator acts on
Spin(1)-fields, our operator acts on Spin(%)—fields, as was already pointed out in [3]. The
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hyperbolic Dirac operator studied in our papers is invariant under the automorphism group
SO(1, m) of the hyperbolic unit ball, which is a subgroup of the conformal group SO(2, m).
Therefore, the conformal case isincluded in the present approach as a special case.

In this paper we consider a projective model for the SO(m, m)-invariant ultrahyperbolic
unit ballsin R™™  defined in section 2. Anintroduction to the Clifford setting will be givenin
section 3, and this enables usto define the Dirac operator on the ultrahyperbolic manifoldsin
section 4. In section 5 we reduce the hyperbolic Dirac equation to ascalar equation, which will
be solved by means of an explicitely constructed fundamental solution for the ultrahyperbolic
wave-operator. In section 6 this solution is then used to construct the fundamental solution
for the Dirac operator on ultrahyperbolic unit ballsin R”:4, with p # gq.

2. Theprojective model

Consider the orthogond space R”-4 with orthonormal basis (1, - - -, €p, €1, - - -, e4), €N-
dowed with the quadratic form

14 q
Qpg(L.X)=) T?=> X7=|T"—|X°.
i=1 j=1

The nullcone NC, , isdefined asthe set {(T, X) € R : Q, ,(T, X) = 0} and separates
thetimelikeregion TLR, , from the spacelikeregion SLR,, ,, given by
TLRy,={T,X) € RP4 O0pqT,X) > 0}
SLRy,={T,X) € RP Opq(T,X) <0}
Both the TLR, , and the SLR, , contain a canonica SO(p, g)-invariant subset, with
SO(p, ¢g) the orthogonal group containing the linear transformations of unit determinant on
R?-4 |leaving the quadratic form Q, , (T, X) invariant, given by
Mr(p,q) ={(T,X) e R"": Q) (T, X) =+1}
Ms(p,q) ={(T,X) e R?": Qp (T, X) =-1}.
Due to the obvious equivalence between My (p, ¢) and Ms(g, p), we can transpose results
for the timelike ultrahyperbolic unit ball in R”-4 to the spacelike ultrahyperbolic unit ball in
R%:-7 by asimple substitution 7 < X.
A projective model for these manifolds M7 (p, q) and Ms(p, ¢), originated by Gelfand,
isthen given by the manifolds of halfrays
Ray(TLRpq) = {{M(T,X): » €Rg}: (T, X) € TLRy4)
Ray(SLRp,y) ={{A(T,X): 1 €Rg}: (T, X) € SLR) 4} .

Denoting the multiplicative group RY by G, these manifolds can be defined in a rigorous
geometrical way as principal G-bundles. For that purpose it suffices to consider the action
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of GonTLR, , (resp. SLR, ) givenby A(T, X) = (AT, 2X). Thisisafree action and
its orbit space is precisely the manifold Ray(T LR, ;) (resp. Ray(SLR,, 4)), such that in the
language of bundles we get

Ray(TLR,4)=(TLRy 4,7, TLR, 4/G)
Ray(SLR,.4) = (SLRp 4,7, SLR), 4/G),

with 7 the projection on arepresentant of the fibre, being the orbit under the G-action. These
representants can for example be chosen as the intersection of the halfrays with M7 (p, q)

(resp. Ms(p, q)).
The ultrahyperbolic wave-operator on R?-9 is defined as the differential operator

p q
2 2 T X
Opg = 07— 0%, =40 — A,
i=1 j=1

where AE,T) (resp. A,(JX)) stands for the Laplace operator on R” (resp. R?) in coordinates 7
(resp. X). In section 4 we will explicitely construct a fundamental solution for the operator
Om.m, in case of an odd dimension m, inspired by the construction of the Riesz potential Z»

as afundamental solution for the wave-operator [y, on R (see[19]).

3. Ultrahyperbolic clifford analysis

In this section we define the Dirac operator on R”-4, a first-order differential operator
which factorizes,, , and which isinvariant under the group Spin(p, ¢), the double covering
group for SO(p, q) (cfr. infra).

For that purpose we define the Clifford algebraR , , as the associative a gebra generated
by the orthonorma basis for R”:¢ and the multiplication rules ¢,&5 + e56, = 25,5 for al
1<rs<peej+eje,=-25forall<i j<gandee +ee =0forall<r<p
and 1 < i < ¢g. Elements of this algebra are so-called Clifford numbers and have the form
a=7y scyaneaWithay e R withA ={iy,---,it} C M ={1,---,p+q},withey =1
and ey = 8,'1'0'8,-J.e,'].+1~'ekf0r1§ ii<---<ij<padp+1<ijig1<---<iy=<
p+q.

Those Clifford numbersfor which |A| = k are called k-vectors, and denoting the projec-
tionof a € R, 4 onitsk-vector part as[a], wethushavea = ), [alx, with [alx € an’f)q. The

even subalgebraisthen defined asR'f) = Y, oy R', and yields asubalgebraof the algebra
Ry

The orthogonal space R”¢ can be embedded canonicelly into the Clifford algebraR , 4
by sending an element (7', X) onto its corresponding 1-vector:

(T.X) eRM — T+ X R,
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Consider then (T, X) and (S, Y) € RP4. The Clifford product is defined by
CXHSYH=CX SH+TXOANEY
where the inner and outer product are respectively given by
2.X)- S DH=T XS+ S DT X)
2L, O0NED=T 0S8N -ENT.X).

On R, , we then define three important involutory (anti)automorphisms: foral a,b € R, 4
we have
e themaininvolution a — @ withs; = —¢;,¢; = —e; and (Zfl?) =ab

e thereversiona — a* with e = ¢;, e;’f =ej and (ab)* = b*a*

e theconjugationa — @ withs; = —¢;, ¢; = —e; and (ab) = ba .
The Clifford group I'(p, ¢) is then defined as the set of al invertible elements g € R, 4

such that for al (T, X) € RP? we have ¢(T, X)7~1 € RP-4, the group Pin(p, ¢) is the

quotient group I'(p, g)/R* and the group Spin(p, q) is defined as Pin(p, g) N R;T;. For

each s € Pin(p, q) the mapping x (s) : R?Y — R4 sending (7, X) — s(T, X)s induces
an orthogonal transformation. In this way Pin(p, ¢) defines a double covering of O(p, q)
whereas Spin(p, ¢) defines a double covering of SO(p, ¢). More information on this can be
foundin e.g. [18].

The Dirac operator on the orthogonal space R”-? isthen defined as the vector derivative
9,4 Qiven by

14 q
ap)q = Zb‘iaTi — Zejaxl. .
i=1 j=1

Let 2 c R”9 beopenandlet f € C1(2) beanR,, ,-valued function. If f satisfiesd, , f =
0in 2, f iscaled monogenic with respect to the Dirac operator on R7+4. Asthe operator 9, 4
factorizes the ultrahyperbolic wave-operator on R?:9, monogenic functions are nullsolutions
ford, 4 but not vice-versa

Arbitrary vectors belongingto T LR, , can be decomposed as follows:

1 I X 1
Qp,q(17 X)Z 17 1 = Qp,q(Zv X)2(£7 g)T )
0pq(T,X)2 Qpq(T,X)2

where (z, §)7 belongs to Mr(p, q), and henceis called a timelike unit vector. If (T, X) €
SLR, , we canreplace Q, ,(T, X) by Q. (X, T). The corresponding vector (z, §)s then
belongsto Mt (p, q) andis called a spacelike unit vector.

Inwhat followsit will be necessary to |et the Dirac operator 9,, , act on functions defined
onTLR, , (resp. SLR, ;). We therefore mention the following decompositionsfor 9, 4

(T, &)r (T, 8)s

pg=———"—1Epgt ) =——7Epq+1pq), @
0pq(T, X)2 Qq.p(X,T)2
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where E,, , denotes the Euler operator measuring the degree of homogeneity with respect to
the coordinates (7, X) € R4 and with I, , the ultrahyperbolic angular operator on R”-4

(when acting on functions depending on Q, , (T, g)% or Q4. (X, D% only, this operator
vanishesidentically). In explicit coordinates these operators are given by

p q
S YIRS S
i=1 j=1

and

Ipg= Zgigj(TiaT_/ = T;9r) — Zeiej(xiax./ — Xjox;) = Zeiej(Tiax-/ +X;07) -

i<j i<j i,j

This can easily be verified by calculating the Clifford product (T + X)d, , and by collect-
ing the scalar terms (giving E,, ;) and the bivector-terms (giving I',, ;). Using these explicit
expressions, one can also verify that

Fp,q[(l: X) : (gs E)] = (Zv X) AN (£5 E) 5

arelation that will be crucial in what follows.

4. Clifford analysison spin(p, ¢)-invariant manifolds

Due to the projective nature of our modelsfor My (p, ¢) and Ms(p, q), the Dirac opera-
tor on these manifolds must be defined on Ray(T LR, ;) and Ray(SLR,, ;). For that purpose
we define an associated principal G-bundle, for which we refer e.g. to reference [15]. The
basic ideais that given a particular principal bundle with structure group G, in our case this
is precisely the manifold of rays (where G = Rg), one can form afibre bundle with fibre F
for each space F on which G acts as a group of transformations. The main motivation then
liesin the fact that sections of this associated bundle will be equivalent to F-valued functions
satisfying a certain constraint (cfr. infra). Since monogenic functions are defined as Clifford
algebra-valued nullsolutions for the Dirac operator, it is thus very natural to construct the
principal fibre bundle with fibre F = R, , associated to the manifolds of rays.

Consider therefore the following representation A of G = Rar on the Clifford algebra
Rp.q:

A:G— EndRp4):A—217%, aeC,

where 1~ acts by multiplication. Since we now have a principal G-bundle and the Clifford
agebraR, , playing therole of a G-space, we may consider the G-product TLR, ; xG R 4
of orbits under the (abelian) action of G on the Carthesian product TLR, ; x R, 4 given by

(T, X),a) = (MT, X), 07 a) = WT, X), \%a).
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By definition, the associated bundle is then given by the bundle
(TLR, 4 xGRpg, 76, TLR, 4/G)
with fiboreR, ,, where the projection 7 is defined as
76 :TLRp 4 XxgRp g+ TLRy ;/G: [(T,X),a]l— n(T,X),

7 being the projection associated to the principal bundle Ray(T LR, ).
Since the sections of thisassociated principal fibre bundle arein bijective correspondance
with functions¢ : TLR, 4, — R, 4 satisfying

PO, X)) = W) (T X) = 1*¢(L. X)

we conclude that sections of the associated fibre bundle are homogeneous functions on the
timelike (resp. spacelike) region in R”:4.
CoNCLUSION. The Dirac operator on the ultrahyperbolic manifolds M7 (p, ¢g) and

Ms(p, q) can be defined as the Dirac operator 9, , acting on homogeneous functions
F(T, X) on either the timelike or spacelike region.

As the operator 9, , is homogeneous of degree (—1) it turns «-homogeneous sections
into (¢ — 1)-homogeneous sections, whence this operator is well-defined.

In order to construct the fundamental solution E\*(T, X) (resp. E\(T, X)) for the
Dirac operator on M7 (p, q) (resp. Ms(p, q)) wefirst need to derive the corresponding ultra-
hyperbolic Dirac equation. By definition, thisis an equation of the following type:

0p g EN(T, X) = Dr (resp. 3,4 ES (T, X) = Dy),

where Dr (resp. Ds) stands for a delta distribution on Ray(T LR, ;) (resp. Ray(SLR, 4)).
Thismeansthat Dr (resp. Ds) is ahomogeneous distribution acting on timelike (resp. space-
like) test functions ¢ (7', X) by integration over TLR, , (resp. SLR), ;) and that after mult-
plication with the distribution § (|72 — | X |2+ 1), hencerestricting theintegration to M7 (p, q)
(resp. M7 (p, q)) we are left with the point evaluation in a point of this manifold.

Let us for amoment focus on the timelike region. In order to find the explicit form for
the distribution D7 we choose atimelike unit vector 7 € S7~1 and we put

Dr = (T, D)4PH725(T A D8(X)

where (-, -) denotes the Euclidean inner product. The distribution D7 then clearly represents
adeltadistribution on the halfray through z € $7~1, with

(8(IT1? — 1X|? = VDr, (T, X)) = ¢(z, 0),

and hasthe desired degree of homogeneity (o« — 1). Without loosing generality we may choose
7 = g1 such that the timelike ultrahyperbolic Dirac equation on My (p, ¢) with singularity at
&1 reduces to:

-2
0pg BT, X) = (T)LPHI725(T8(X)
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where T'; standsfor the vector Zf’zz &;T; € RP~1. Notethat the right-hand side does not exist

fora € 1—p—qg—N: thesevaluescorrespond to the polesof thedistribution (71)% " +472 (gpe

reference [13]). In acompletely similar way, the spacelike ultrahyperbolic Dirac equation on
Ms(p, q) with singularity at & € 7~ isgiven by

0y ES) (T, X) = (X, )T 728(X A 6.

5. Thedirac equation on R™™

In this section we will solve the ultrahyperbolic Dirac equation on My (m, m) for E®

T
(T, X), wherem isan odd integer. As 8,3,,,,, = O,,.m it sufficesto solve the scalar problem
D ® (T, X) = (T2 28(T)8(X), (2

and to put E(T“)(Z , X) = 0u.m® (T, X). For that purpose wewill first construct afundamental
solution F,,, . (T, X) for O, » and then convolute it with the distribution at the right-hand
side. In view of the fact that this latter distribution does not exist for« € 1 — 2m — N, we
expect @ (T, X) to have poles at the very same values for a.

5.1. Thefundamental solution 7, ,, (T, X). To construct the fundamental solution
for the operator 0J,, ,, we use a method leading to the ultrahyperbolic analogues of Riesz’
distributions. Let us therefore define the function P_(T, X) by

(X2 |T1®2 if |T|<|X]

P_(T,X)= .
&5 { 0 it 7] > |X]

For Re(L) > —2 thefunction P* belongsto Lll“(Rm’m) and hence defines aregular distribu-
tion. Using the fact that O, ,, P* = —A(L+2m —2) P2 for Re(A) > —2, the distribution
P* can then for other values of A be defined by analytic continuation, where the derivatives
have to be understood in distributional sense;

(‘:lk P)\.+2k , (p>

m,m* —

A+2)---A+200A+2m)-- - A +2m+2k—-2)

(P*,0) = (=Dt

From this expression it is clear that P* haspolesat » € —2Ng and at A € —2m — 2N. Inthe
following Lemmatit is proved how the pole at (2 — 2m) can easily be removed by division by
an appropriate Gammafunction, and how thisleadsto afundamental solution for the operator
Om.m in case of an odd dimension m.

LEMMA 1. Incasem € 2N + 1, we have:

O O pr S(I)8(X
i\ G T Ta =y ) =30
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PrROOF. First of al note that the expression above must be understood in the sense

m+1

(=D P*
lim —) -
r—2—2m 4 I'l+ i)

Since Oy P* = —A(x + 2m — 2) P>~ 2 it sufficesto prove that

m41
_(=D)"F =2+ 2m)(P", )
lim =¢(0,0).
Ll e ra+5%) vQ.9

By definition we have

(P", ) = / / N m(mz —|T1A 2T, X)dTdX

o0
= / X[ (1X), wyd) X,
0

where we have put

1
D(X|, 1) = / YA — A5yl X], X))t
0
with
(T, X)) = /S B f  PULle. |X|e)dede.

Recalling the fact that Res{x}r, A = —1} = §(x) the Lemma easily follows by elementary
calculations, hereby invoking the relation I' (z) I' (1 — z) = =~ . Note that the result only

sin(rz) "
holdsincasem € 2N + 1. O

5.2. Calculation of @ (T, X). Oncethisfundamental solution for the ultrahyperbolic
wave-operator is found, the solution for equation (2) in case of odd m immediately follows:

O(T, X) = Fum(L, X) % (T2 2" 25(T DS (X) .

Recalling the explicit expression for the definition of the fundamental solution, the convolu-

tion reduces to
m+1

-7 H(X — Y| —|T — S|)(S1)%T"28(S1)8(Y)
R N S RO

m+1

(=D
T 4gm1l 0 om

dsdy

ds:.

© H(X-Y|—|T—S)sgten—2
A 2_ |7 _ 2n—5%
0 I'(1+5)(X12—|T — S161/>) 2

%, where we have put

The factor in the denominator is given by e~ Z [(S;. — S1)(S1 — S_)]

1
S =116 £+ (IT1%6% — |T)* + 1X|%)2,
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with 0 = (e, 1) the classical Euclidean inner product. Due to the Heaviside distribution, it is
immediately clear that supp(® (7. X)) = {(I, X) € TLRym : |X|?> > (1 — (e, e1)?)|T|?},
whichisalso equal to (SLRy—1,m X Re1) NT LR, . Thislatter expression hasavery smple
geometrical interpretation, as it is the region in T LR,, ,, obtained by letting the support of
Fm.m (T, X) moveaong the half ray containing the singularities. We thus get that

m+1

-z

Sy ol (1=m)m gar+2m—2
—— lim f L -
At aozmzn s DL+ HISs — SD(SL - 5-)172

(L, X)=

dsSi.

The evaluation of thisintegral isthe subject of the following Lemma:
LEMMA 2. Fora,binRt andy in C with Re(y) < 1, onehas

b P ab - y)2 . a—b
/a [t —a)(b— D] d[_(b—a)nylr(z_zy) F(—ﬂ’l—%Z—Zy, - )

PrROOF. Thesubstitution (b — a)u = r — a leadsto

b B 11— a=b,\B
/ L dt=aP (b — a)l—ZV / (]'—du) du
a [@—a)b—D)] o u(l—uy

Using Euler’sintegral representation formula for the hypergeometric function, we get for all
y suchthat Re(y) < 1:

la- “a;bu)ﬁ ra—y)? _—
/(; u¥ (1 —u) du:p(z_zy) F(_,B71—)/,2—2)/, p )

This proves the Lemma. O

REMARK. For our purposes, the condition on y may beignored. Thiscan easily be seen
asfollows: in the expression for @ (T, X) that needs to be determined, there is an additional

factor I" (1 + %) = I'(1 — y) in the denominator, such that the last formula of the Lemma

reduces to
ra- —b
MF(—ﬂ,l—y;Z—zy;“ )
a

r@2-2y)

Thisexpression is defined for al y € C, whence the expression

1 b P
/ dt
rai-y)J, [t -—ay®-nlr

is defined for al odd dimensions m by analytic continuation.
We therefore find the following expression for @ (7', X):

(—1)'"7_3 (S_yetzm=2  F(2—2m—a,2—m;4—2m; S__,S+)

S
2572141”"1*% (St — S_)Zm—S F(g —m)
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By analogy with the hyperbolic case, see e.g. [11], we would like to write the expression for
@ (T, X) in terms of Gegenbauer functions of the second kind. Thisis also motivated by the
fact that Gegenbauer functions are fundamentally related to the orthogonal group. So, in what
follows we will use some basic results from the theory on special functions (in particular on
the hypergeometric function and the Gegenbauer function of the second kind, for which we
resp. refer to [12] and [8]) to put @ (T, X) into another form.

Recalling one of Kummer’s relations,

F(a,c—b;1+a—b;1—z):z_“F(a,1+a—c;1+a—b;1—z_1),

and one of Goursat’s quadratic transformations,

1 .2 ~2 1 2z
F Ze?)=a F2a,c— Z:2¢— 1;
<a,a+2,c,z) 1+2) (a,c 50 4¢ ,1+Z),

elementary calculations yield:

m—3 3
1)z T2 —|X[2\27 "™
orx) = — P Ta+1(1_7'—' X )
47tm’21"(g—m) Ty
<2—2m—oz 3—2m—a 5
F D2

;1
2 ’ 2 12 m;

T2 — |1|2)
T g2 )
Tl

Because the singular behaviour of @ (T, X) does not change when a nullsolution for [J,,, ,,, iS
added, we will add the particular solution constructed in the following Lemma:

LemmAa 3. Forall (T, X) € TLR,, ,» wehave

1 1 T2 —|X|?
a+1 .l_l_l |X] >}:0.

o
DW[,W[{Tf+lF< - Ev - 2 ,m 21 T2
1

PROOF. Putting O, = a%l + Ope1m and p? = |X|2 — (IT|2 — T?), it suffices to
prove that

2m —1 o a+1l 1 p?
2 2 T 1 . .
<8T1_ap_ o 8p> l(H F<_§’_T’m_§’_12 =0
1

becausefor functions on R”-”~1 depending on p only we havethat [, 1, = (8§+%ap).

Putting 7h = A and g—i = u, the differential operator between brackets acting on Tf‘+l f(u)
1

d? 1 1 d al@+1)
(va-wgz+[(n=3)+ (o= 3] - =77 -

The Lemmathen follows trivially. ]

reduces to
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Adding this regular solution, multiplied by

m

™ TG —mI@+m-1)
- 22m—1nm—% I'(a+2)

)

to the expression for @ (7', X) that was found earlier, using the definition of the Gegenbauer
function of the second kind in terms of the Legendre function of the second kind

¢T@=0) (4 2v)
n32v=3 T 1+ p)

DY) = 2 -i507" ()
H M+v—%

and the following expansion for the Legendre function of the second kind,

r inmw v+p 1—vp— 1
Qlig)= LU 7 F<—V+M 0 M;l—u;l——z)

2171 (2 _ 1% 2 72

T(—)C A+ pn+v) errzv—n u—v l+pu—v 1
w 3 71+ l’L; 1_ N K
20114y — ) (2—-1)72 2 2 72

we eventually get the following solution for equation (2):

’ eian_l m—1 Ty
(T, X) = Wr(’" - (T~ |X] 2)% Da+1 (m) .

REMARK. Asthefunction D! (z) haspolesat v 4+ 2u € —N, thisfundamental solution
@ (T, X)' hasindeed polesat the valuesfor which the deltadistribution D7 on Ray(T L Ry, )
does not exist.

A last simplification makes use of the fact that the argument of the Gegenbauer function
canalso bewrittenas (z, §)r - e1, where (z, §)r denotesthe timelike unit vector in M7 (p, q)
associated to (T', X) € TLR,,,». Recalling the decomposition (1) of the operator 9, , we
thus conclude:

ECT, X) = 0,9, X)

m—=1
elT[

Zﬂm 5-m—1
(Tpg + (0 +D)DIH(T. )7 - €1)

rm—D(LP - X2 &)r

which by means of the fact that %~ -D (2) = ZMD“ 1 L7) reducesto

iﬂm_l

Ef) (T, X) =——T'(m— (TP - [XP)2(z. &)1

((2m 2)(z. &)1 AeaDy (. &)1 - £1) + (@ + DD ((x. €)1 - £1)) .
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Using the fact that (z, §)7[(z. §)r A e1] = &1 — (2, §)r[(z, &)1 - £1] and an elementary
recurrence relation for the Gegenbauer functions, we eventually find that

. _m+1

EQ(T, X)= rmy(T)?-X1%?

gm—1
(@, &)rDy 1((z,6)r -e1) — 1Dy (T, E)1 - 1)) -

For the spacelike eguation, it sufficesto switch T <> X and to note that the argument of the
Gegenbauer function can be written as —(z, §)s - e1. A similar calculation then yields:

s m+1l
LT 2

EQT. X) = Trm(X2 - |T?*%

nmfl
(T, 8)sDy_1(—(z,8)s - e1) + eaDy (—(z,£)s - e1)) .

Note that these solutions have indeed the same structure as the fundamental solution for the
hyperbolic Dirac operator as obtained in e.g. [11].

6. TheDirac Equation on R?-4

In this section we will use the fundamental solution for the Dirac equation on M7 (m, m)
(resp. Ms(m, m)) to construct the fundamental solution for the Dirac equation on My (m, q)
(resp. Ms(m, q)). We hereby use the method of descent, based on the following argument:

O ® (T, X) = (T)%2"728(T1)8(X)
y
Pm
/ O @ (T, X)d Xy = (T) 27 25(T )3 (X,,)
—Pm
where we have put X, = 27;11 Xjejand p, = (IT|? - |§m|2)%. Note that for (7, X) in

the spacelike region, the factor p,, remainspositiveif X,,, € [—pom, om]. Theintegral sign can
be switched with the operator [J,,, ,,—1 and for the remaining term we have:

10)?1
/ 0% &L, X)dXm = dx, oL, X)| 70
—Pm

Using the following expansion for the Legendre function of the second kind,

I+ v+ 1) (22— 1)3r </L+v+1 L4 3'1>
2 9

—ipuT _ .
¢ Qy (@)= 2”+1F(U + :_5) Zhtv+1 +Lv+

2 2 2 72

for which werefer to e.g. [12], it is easily verified that

21—01—2mp(a +2m —1) (|£|2 - |X|2)a+m
Fm=Dl@+m+1) it

(I, X) =
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a—1 o T - |X)?

Flm+——m+ia+m+1L ——5=). 3

<m 5 m 5 m le (©))

such that dx,, @ (T, X)|f£: vanishesfor Re(a) > 1 — m. The fundamental solution obtained
by means of the method of descent will however be defined for all « € C such that o ¢

1—2m — N, these latter val ues being the ones for which the distribution (77)%2"~2 does not
exist, by means of analytic continuation.

The (¢ 4+ 2)-homogeneous solution for the equation

Onm-1®(T, X,,) = (TDTH?"28(TD8(X,,)
isthus given by
Pm
(T, X,) = / (T, X)dXn
—Pm
In order to perform this integration, we recall expression (3). Writing the hypergeometric
function as a series

i (m + 251 em + %) (|1|2 |X|2)k i (IT)% — 1 X»)F

= Ka+m+ Dy T ’

the integral reduces, up to a constant, to:

> Pm

DL X))~ Y /_ (712 — X1+ HdX,,

k=011 Pm

Since
2 Xz
IT1? = X? = (T - |X, )<1— m)

we get the following expression for ¢ (T, X,,):

k
zzck(mz X, [Pyt X T
Toz+2m+2k 1 0 |Z|2_|Xm|2 m:

Under the conditions on « stated above, the integral can for al k € N be reduced to a Beta
integral so that we find:

1
— X |2)a+m+k+§

ek (|72 — |

— —=m

(T, X,) ~ ) R TR T B(E,a+m+k+1>.
k=0 1

Since
1 C(a4m+1) (m+ 25 em + $i
F(a+m+§) k!(a+m+§)k

1
B(E a+m+k+l>0k—ﬂ
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we thus get:

1 242 4 2m — 1) (T2 — |X,, |22
¢(Zs Xm)zﬂz 3 ot+2m—l
'm—L0I(a+m+35) Ty

a—1 o 3 IT1° — 1X,,I?
F<m+T’m+§’°‘+m+§’T .

From this, it immediately follows that the (« + 1)-homogeneous solution for the ultrahyper-
bolic Dirac equation

Omm1 ES(T, X,) = (T)*+2"25(T1)8(X,,)

with support in (SLR;,—1.m—1 X Re1) N TLRy, ,—1 iSgiven by

in%

(@+D)
E; UL X,) =

1 atl
r (m —~ 5) (T2 - 1X,,15 2

3
a2

m—3 m—3
(T, )rDa *((z, & )1 -e1) — 1Dy (T, § 7 -21).

The very same argument can then be repeated, and in this way an expression is obtained
for the fundamental solution of the ultrahyperbolic Dirac equation on the timelike manifold
My (m, q) for ¢ < m or, by substituting T < X, on the spacelike manifold M7 (p, m) for
p < m. It should however be noted that the method of descent only allows us to lower the
amount of spatial (resp. tempora) dimensions in the timelike (resp. spacelike) region. This
leadsto the following:

e Consider the ultrahyperbolic Dirac equation on My (m, g) € R™4 with singularitieson

theray through o € §™1:

omg B (T, X) = (T, o))" 725(T A 0)8(X) .
The fundamental solution E(TO‘) (T, X), whose support is given by

SUPP(EN (T, X)) = (SLRy-14 X RO)NT LRy 4,

is defined as

im 452

e’ 2 m+q a
EST, X) =~ 1F( 5 )(mz—@mﬁ)f
T2

m+q m+q

(T, ETD,21 (1, &)1 -0) —aDy” ((T,E)r7-9)),

where (z, §)7 denotes the vector (7] — 1X12)~3(T, X) with (T, X) an element of
TLRy. .
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e Consider the ultrahyperbolic Dirac equation on Ms(p, m) C RP™ with singularitieson
theray through n € s~

0y ESO (T, X) = (X, g% P 28(X AmS(T).
The fundamental solution Ega)(z , X), whose support is given by

SUpP(ES” (T, X)) = (TLRpm—1 X Rn) N SLRy i ,

is defined as
(@) s m+p 2 2.2
EMNT.X)=—r 1F< 5 )(m — 15?2
T2
m+p m+p

(. )sD, 2 (z,8)s -m) —nDa? ((T,E)s- M),

where (z, )5 denotes the vector (1X|? — IT[2)~2(T, X) with (T, X) an element of
SLRpm.

We conclude this section by noting that the fundamental solution for the conformal Dirac
operator on the timelike (resp. spacelike) ultrahyperbolic manifold can easily be found by
putting o = —"5< (resp. o = —25™). Thisfollows from the fact that the Dirac operator on
the nullcone in R?:4, which is only defined for these respective values for «, givesrise to the
conformally invariant Dirac operator on R?~14~1 aswas explained in [21].
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