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Abstract:

We extend results of Knopp in [9] to the higher level case. In precise, we

characterize a rational period function ¢(z) for I'j(2) of which poles lie only in QU {co}. We
prove that the Mellin transform ®p(s) of an entire modular integral F' of weight 2k for such a
rational period function ¢(z) has an analytic continuation to the entire s-plane, except for
possible simple poles at some rational integers, satisfies the functional equation ®5(2k — s) =
(=1)"25"%®p(s), and is bounded on each “truncated strip” of the from oy < Re(s) < oy and
IIm(s)| >ty > 0. We also show that the converse is true. The case for I'j (3) is addressed similarly.

Key words:

1. Introduction and statement of re-
sults. For pe {1,2,3}, let I'j(p) be the group
generated by the congruence group T'o(p) and the

\% _lé\/ﬁ). Knopp [8,9]

introduced the idea of a rational period function of

Fricke involution W, :=

an automorphic integral of weight 2k € 2Z on any
Fuchsian group and studied the rational period
functions of a modular integral of weight 2k for the
modular group I'j (1) = SLy(Z). Since then, explicit
charaterizations of the rational period functions for
SLy(Z) have been given in [4,5]. Recently, Choi
and Kim [2,3] generalized some results given by
Knopp to the rational period functions for I'{(p)
when p € {2,3}. These rational functions ¢(z) for
I (p) when p € {1,2,3} occur in functional equa-
tions of the form

(1) F(z+1)=F(2), and
—9k Ly
(VF?) F(— p—) — F(2) + q(2),

where k € Z and F is a meromorphic function in the
upper half plane H and has a Fourier expansion of
the form

(2) F(z) = Z a, ™ y=Tmz>yy >0

n=nq
with some ny € Z. If (1) and (2) hold, then we call F
a modular integral of weight 2k for ¢(z). In fact, F'
can be taken to be holomorphic in H. Furthermore,
if k> 0, then we can choose a modular integral F
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of weight 2k satisfying the following: a modular
integral F' of weight 2k has a Fourier expansion of
the form

o0

F(z) = Z €™ y=Tmz >0
n=0
and
(3) [F(2)] < K(]2" +y™"), 2€H
for some positive real numbers K, «,

([7, pp. 622-623]). Using the integral presentation
of a, and (3), we can get

(4) ay = O(n"),

n — oo

for some v > 0. A modular integral F' of weight 2k
which is holomorphic in H and has the Fourier
expansion

o0
F(z) = Z ane®™ y=Tmz>0
n=0

is called an entire modular integral if F' satisfies (4)
or equivalently (3).

In [9, Theorems 1 and 2], Knopp showed that
the finite poles of any rational period function ¢(z)
for SLy(Z) must lie in Q(y/n), n € Z*, and deter-
mined the explicit form of a rational period function
q(2) for SLy(Z) with the only possible finite poles in
Q. Choi and Kim [3, Theorems 1.2] showed that the
finite poles of any rational period function ¢(z) for
L' (p) must lie in Q(v/n),n € Z*.

For an entire modular integral F' of weight 2k
for SLy(Z) with its associated rational period
function ¢(z), Knopp [9, Theorem 3] showed that if
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the poles of ¢(z) lies in QU {oco}, then the Mellin
transform ®p(s) of F' has an analytic continuation
to the entire s-plane, except for possible simple
poles at some rational integers, satisfies the func-
tional equation ®p(2k — s) = (—1)*®x(s), and is
bounded on each “truncated strip” of the from o1 <
Re(s) < o9 and |Im(s)| > ¢p > 0. Knopp [9, Theorem
4] also showed that the converse is true.

In this paper, we investigate rational period
functions ¢(z) for I'j (2) with the finite poles only in
Q to extend results of Knopp [9] on rational period
functions for T'j (1) = SLy(Z) to the higher level
case. More precisely, we determine the explicit
formula of a rational period function ¢(z) for I'{(2)
of which poles lie only in QU {co} (Theorem 1.2).
We also show that if the poles of ¢(z) lies in
QU {oo}, then the Mellin transform ®p(s) of an
entire modular integral F(z) of weight 2k for such a
rational period function ¢(z) has an analytic con-
tinuation to the entire s-plane, except for possible
simple poles at some rational integers, satisfies the
functional equation ®p(2k — s) = (—1)F 25 *dp(s),
and is bounded on each “truncated strip” of the
from o7 < Re(s) < o2 and |Im(s)| > ¢ > 0 (Theo-
rem 1.4) and the converse is true (Theorem 1.5).

Since I'j (2) is generated by T = ((1) i) and W,
we have the following

Proposition 1.1. Suppose that q(z)
rational function for T'j(2) as in (1) for some

5 a

modular integral F. Let U :=TW, = g _léﬂ .
Then

(5) qlosWo +q=0

and

(6) Q‘gkU3 + ‘I|2kU2 + gl U +¢=0,

where |y, s the usual slash operator.

Proof. See [3, Theorem 1.3]. O

It follows from [3,Theorem 1.3] that if a
rational function ¢(z) satisfies (5) and (6), then
there exists a modular integral F, which is holo-
morphic on H, of weight 2k for ¢(z). In particular,
when k > 0, we can construct F' that is an entire
modular integral of weight 2k for ¢(z). We now
present the explicit form of ¢(z) for I'j (2) with poles
only in QU {o0}.

Theorem 1.2. Let ¢(z) be any rational peri-
od function of weight 2k for T'j (2). If the ploes of q(z)
lie in QU {oo}, then

[Vol. 99(A),
bo(1 — (vV/22)72), if k> 1,
(7) a(2) = { bo(1 — (V22) %) + b2 !, if k=1,

bo(2F 127 4 27 Lpi(2), if k<0,
where by,b; are compler mumbers and pp is a
polynomial in z of degree at most —2k.

We now consider the Mellin transforms of
entire modular integrals. Suppose that F is an
entire modular integral of weight 2k associated to
some rational period function for I'j (2) and it has a
Fourier expansion of the form

(8) F(z) = Z ane®™, y=Tmz> 0.
n=0
We then consider the Mellin transform:

9 Bp(s) = / " (Fliy) — o)y dy.

Proposition 1.3. With the assumptions and
notations as above, we have the following.

For sufficiently large o = Re(s), the Dirichlet
series

oo
(10) O(s) = (2m) °T(s) > ann "
n=1
is related to the Mellin transform ®p as ®p = P,
where I'(s) is the gamma-function.

We now present the results on the Mellin
transform of the corresponding entire modular
integral for a rational period function ¢(z) for I'j (2).

Theorem 1.4. Let F be an entire modular
integral of weight 2k such that its associated rational
period function for T'§ (2) has poles only in Q U {co}.
Then
(1) ®p(s) has an analytic continuation to the

entire s-plane, except for possible simple poles

at
s=0 and s=2k, whenk>1;
s=0,1 and 2, whenk=1;
s=2k—1,2k,...,0,1, when k<0,

(2) for every case,
Bp(2k —s) = (—1)"25 D p(s)

and ®r(s) is bounded in each “truncated strip”
of the form o < Re(s) <oy and |Im(s)| >

to > 0.
A converse of Theorem 1.4 is
Theorem 1.5. Let {a,} be a sequence of

complex numbers satisfying
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a, = 0(n

Y, n— oo

for some v >0. Suppose also that P(s)=
(2m)°T'(s) >_02 ann™® can be extended to a function
meromorphic in the entire s-plane, holomorphic
except possibly for simple poles at the rational
integers and bounded in every truncated strip of
the form o1 < Re(s) < oq, |Im(s)| >ty > 0. If ®(s)
satisfies the functional equation ®(2k—s) =
(1) 25k®(s) for some k, then

00
=ay+ E an62mnz
n=1

is an entire modular integral of weight 2k, with
rational period function for T'§(2) with poles only in
QU {oo}. Here ag is an arbitrary complex number.

Remark 1.6. By the same arguments in
Sections 2 and 3, we can obtain similar results for
entire modular integral for I'j (3). By replacing ¢(=)
and ®p(2k — s) = (—1)"25F®p(s) by

(11) F(2) = Fa(2)

bo(1 — (V/32)~° ) if k>1,
q(2) = § bo(1 = (V32) ) + bz, if k=1,
bo(3" 'z 1+z2’““)+pk(> if k<0,

and ®p(2k — s) = (—1)"3*®p(s), corresponding
statements can be obtained.

This paper is organized as follows: In Section 2,
we prove Theorem 1.2. Section 3 is devoted to
proofs of Proposition 1.3, Theorems 1.4 and 1.5.
Our proof of theorems is build on the main ideas of
Knopp in [9].

2. Proof of Theorem 1.2. (I). The case
k> 0. It follows from [3, Theorem 1.2(d)] that if z,
is a finite rational pole of ¢(z), then zy = 0. Thus we
may write

(12)  q(z)=az'+ - +az ' +by+ bz
+ o+ by 2™ (ap #£0,b, #0),
with [ > 1,m > 0. Applying (5) to ¢(z), we have

() = Niz)-”’q(;—j).

Comparing the lowest term in (13), we have | =
m + 2k. From (5) and (6), we have

(14) g(2) = (22 + 1)2’%1(2; 1)

V2z+ L
—2k \/5
+ (V22 +V2) q<m>+q(z+ 1).

(13)

Rational period functions for I'f(2) with poles only in Q U {oo} 9

Comparing the principal part at oo in (12) and (14),
we get
bo+b1z+ -+ byp2"

=by+bi(z+1)+ - +bp(z+1)",

which gives m = 0, hence

(15)  1=2kand g(z) = az"'+-- + a1z +by.

By applying (5) to (15) and comparing the coef-

ficients, we have
1 o l-2j
(16) bo = —\/5 a, al_]‘(—l)l—J\/é 2 = —
for1<j<l—-1=2k-1.

In particular, a; = (—l)kﬂak, so ap = 0 if k is even.
Applying (6) to (15) leads to

(17) a%(_\/g)% tota (—V2) (V22— \/5)172/6
+ b()(\/§2 — \/§)ka + ag(z — 1)72’“ 4.
Far(z— 1) 2e— ) py(2e - 1)

+ agy, (\@z - %) 7%—&- e

1\~ 1-2k ~2k
+a (\/iz - E) (V22)' 7% 4 by(V22)

+agz 4

If k=1, then q(2) = asz 2 + arz~ ! + by. It fol-
lows from (16) that by = f as. Hence

q(z) = by(1 — (V22) ) + a2 .

Suppose that k > 2. Note that from the partial
fraction expansion, we have

+ CL1271 + by = 0.

1 B A Ay
ZN(Z—%)]W z N
B, By
+ _1+" e
2 (2_5)

where Ay_; = 2MH(— )M (M) (0<j< N 1)
and By—j = 2N+j(—1) (NJ] 1) (0 <j< M- 1) By
applying the partial fraction expansion to aQ(f z—
) (V22" and ay(V2z — 7—) '(V22)""%*, and
the term ag;_22 22 on the left hand side of (17),
the coefficient of z=%+2 is 27F+2qy — 227%qy + agj_o,
which becomes 0. So by (16), we have a; = 0.
If k=2, then ay =0,a3 =0 and by = \/QCM
by (16). Therefore

q(2) = bo(1 = (V22) 7).

Suppose that k> 3. We now assume a; =
ay =---=aj—1 =0 for 2<j5<k—1. By applying,
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again, the partial fraction expansion on the left
harlc%ki‘,%c_lf2 of (17), the coefficient of z 2/*! jg
\/5 J (_1)J+1a]_+1 +j27k+j+1(_1)Jaj + A2k—j1,
which becomes 0. So by (16), a1+
aj+1(—1)9+1\/§72k+2('1+1) =0, which gives a; =0.
Consequently, we have a1 = ay=---=a;_1 =0.
Note that a; = 0 if k is even.
Therefore, for k > 3, ¢(z) has the form

) bo(1 = (V22) ™),
zZ) =

bo(1 — (vV22) ") + arz ™", if k is odd.
Since by(1 — (v/22) ") satisfies (5) and (6), ¢(z) =
bo(1 — (v22) %) + apz* satisfies (5) and (6) if and
only if apz* satisfies (5) and (6). Note that z*
satisfies (5) only when k is odd. We show that for
odd k, 2% satisfies (5) and (6) if and only if k = 1.
For ¢(z) = 2%, the functional equation (6) says

-+ E-1)"
+2F2z—1)F 2R =0

if k is even,

and this is 0 only when k= 1.
(IT). The case k < 0. By applying Bol’s iden-
tity [1] to (5) and (6), we have

0= (Dg)|y_o,Wa(2) + D #*g(2),
0= (D_%H(I)bﬁkUg(Z) + (D_2k+IQ)|272kU2(Z)
+ (D7), o U(2) + D™ g(2),

which imply that ¢(-%**1)(2) is a rational period

. . _ af
function of weight 2 — 2k > 0. Here, Df(z) = 5= 5.
By part (I) of the proof, ¢+ (z) =by(1—
(v22)*"7%), since the term byz~! does not occur as
the derivative of a rational function. Integrating

—2k 4 1 times, we get
q(z) _ b6(2k71271 + Zf2k+1) +pk(2),

where b is a complex number and pi(z) is a
polynomial of degree < —2k.

3. Proofs of Proposition 1.3, Theorem 1.4
and Theorem 1.5.

Proof of Proposition 1.3. Suppose that F is
an entire modular integral of weight 2k having the
Fourier expansion

o0
F(z) = Z a,€®™* y=TImz > 0.
n=0

Since a, = O(n”), for sufficiently large o=
Re(s), oo, a,e ™¥y*~! converges uniformly on
y>0 and > 7, fé’ a,e” 7™y~ dy converges uni-
formly on b > 0. Hence, we can integrate term by

[Vol. 99(A),

term to have

(I)F(S) _ / Z an6727myysfldy
0

n=1

0
a, / e—27m,yys—1dy
0

0
=1

n;

= (27) () Z apn” = B(s).

O
Proof of Theorem 1.4. For large o = Re(s),
we may then write

o) [ " (P(yi) - ao)ydy
2

+ /OTE(F(iy) — ag)y*'dy.

Since (v22) *F(— L) = F(2) + q(z), we observe
that

Si-

/0 (F(yi) — ao)y’dy

Y e 1 o1
:2“’/ Fl—— | —ay|a’ da
1 200

V2
=27 [ (V3™ () + o)) ~ an)y 1y
i
= (02 [P - an)y™
V2
(-1)f2 2, 2724,
s — 2k s
+( 1)"2"’5/1 q(yi)y™* ' dy
V2

where
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Since F(z) — ap vanishes exponentially as z — i00,
D (s) and Ds(s) are entire functions of s. We note
that D;(2k — s) = Dy(s) and Ds(2k — s) = Dy (s).
We now investigate the function E(s). Note that
q(z) has the form ¢(z) = Zf};fL a, 2", and it follows
that

o N
B = [ 3 anlin)y?
V2

B n=—L

E a,i"

= s—2k—n
so long as Re(s) > 2k+ N.

sll.n

We now consider E(s) for the three cases k> 1,

k=1, and k <0.

(I) Let k> 1. Then q(z) = bo(1 — (v22)™%), and

hence
Bls) = by2t14 (_L% . <81>'“>.
Thus,
®(s) = Dy(s) + (—1)"257* Dy(s)
+273(ag + by) (i__g; - %)

and ®(s) has been extended analytically to the
entire s-plane, with possible simple poles at s =
0,2k. Moreover, ®(2k — s) = (—1)"257kd(s).

(I1) Suppose k= 1. Then q(z) = by(1 — (v/22) %) +

b1z~ !, and hence

s—1
s 1 1 b1i22
E(s) =bp2 5[ —— y =) -2
s—2 s s—1
Thus,
®(s) = Dy(s) — 2175D2(s)

1 1\ i27b
727§(a0+b0) —+ -] + !
s—2 s s—1

and ®(s) has been extended analytically to the
entire s-plane, with possible simple poles at s =0, 1
and 2. Furthermore, ®(2 — s) = —2571®(s).

(ITT) Let k< 0. Then q(2) = by(2¥ 1271 + 2721 4
anf) ¢, 2" with ¢, € C. Thus,

27 ) —DkTy,
Bls) = — 270 i 7 b
s—2k+1 s—1
ok ”25 n— chn

fes—2k—n
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Hence we have

D(s) = Dy(s) + (—1)"2F7* Dy (s)

+273 (V"1
an | —2 _ =
\s—2 s

4o )™ bt
1
0 s—2k+1 s-—1

-2k n —Sn
1277 ¢,

+(71)kzs—2k—n

n=0

and ®p(s) has an analytic continuation to the entire
s-plane, except for possible simple poles at s =
2k —1,2k,...,0,1. Note that the functional equa-
tion (5) implies that

(18) ey =(—1)""'27F e,

Furthermore, it follows from (18) that ®(2k — s) =
(—1)F 25k (s).

Since F(2) =00y, (y=TImz>0)
with a, = O(n"), the functions D;(s) and Ds(s)
are bounded in every truncated strip of the form
o1 < Re(s) < o9, |Im(s)| >ty >0. Also, we note
that rational functions 1/s, 1/(s — 2k), and E(s)
are also bounded in the truncated strip. Thus, ®(s)
is bounded in every truncated strip of the form
above. O

Proof of Theorem 1.5. Note that it follows
from a, = O(n”) that the function

)
Z) =ay+ E ane?mnz
n=1

is holomorphic in H. Since a, = O(n"), > 7, a,n~*
converges in some right half-plane. It follows from
the convergence of Y o a,n™* and P2k —s) =
(—=1)"257*®(s) that ®(s) has at most finitely many
simple poles at rational integer points. From the
integral formula

(0 <n < —2k).

1 d+ioco
e V=

— TI'(s)y *ds

270 Jg-ico

for any y, d > 0 and absolute convergence of the
Dirichlet series >, a,n * for o = Re(s) sufficient-
ly large, we see that F(iy) — ag is the inverse Mellin
transform of <I>(s). Indeed,

d-Hoo
2m /d

(19) F(iy) —ap = s)(2mny) *ds



12 D.Y. On [Vol. 99(A),
L o r @) S % s (21) F(2) —a = (VE2) 2~
=— s — s — -
27 o L2 o=V 2
1 d+ioco ‘
=5 o O(s)y *ds — ag( fz k4 Z iz

for any large positive d. We can choose d > 2|k|
sufficiently large so that all of the poles of ®(s) lie
between —d and d. Then the integrals

—d+iT d—iT
/ ®(s)y ’ds and / D(s)y *ds
d+iT —d—iT

have limit 0 as T — oo (see [6,p. 1868]). We now
integrate around a rectangle with vertices +d + T
By applying the residue theorem, we obtain

(20)  F(iy) —ao
1 —d+ioco [d]
= D(s)y *ds + Z oy "

2mi —d—ioco

where «,, is the residue of ®(s) at s = n. Applying
the functional equation ®(2k — s) = (—1)"25*®(s),

we get
1 —d+ioo
— D(s)y *ds
270 J —g-ico
-1 k2k —d+ioo
= L/ O (2k — 5)(2y) “ds
2mi —d—ioo

or 1 2k+d+ioco 1\ U
= (ivV2y)~ 5 / D (u) <) du
T okt d—ico 2y

- (o(5) )

From (20) we have

holds for z=1iy,y > 0. By the identity theorem,
(21) holds for all z € H. Therefore, F(z) is an entire
modular integral of weight 2k with rational period
function for I'j (2) with poles only at 0 and co. O
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