Rational period functions for $\Gamma_0^+(2)$ with poles only in $\mathrm{Q} \cup \{\infty\}$

By Dong Yeol OH

Department of Mathematics Education, Chosun University, Gwangju 61452, Republic of Korea

(Communicated by Kenji Fukaya, M.J.A., Dec. 12, 2022)

Abstract: We extend results of Knopp in [9] to the higher level case. In precise, we characterize a rational period function q(z) for $\Gamma_0^+(2)$ of which poles lie only in $\mathbf{Q} \cup \{\infty\}$. We prove that the Mellin transform $\Phi_F(s)$ of an entire modular integral F of weight 2k for such a rational period function q(z) has an analytic continuation to the entire s-plane, except for possible simple poles at some rational integers, satisfies the functional equation $\Phi_F(2k-s) = (-1)^k 2^{s-k} \Phi_F(s)$, and is bounded on each "truncated strip" of the from $\sigma_1 \leq \text{Re}(s) \leq \sigma_2$ and $|\text{Im}(s)| \geq t_0 > 0$. We also show that the converse is true. The case for $\Gamma_0^+(3)$ is addressed similarly.

Key words: Period functions; modular integrals; Mellin transforms.

1. Introduction and statement of results. For $p \in \{1,2,3\}$, let $\Gamma_0^+(p)$ be the group generated by the congruence group $\Gamma_0(p)$ and the Fricke involution $W_p := \begin{pmatrix} 0 & -1/\sqrt{p} \\ \sqrt{p} & 0 \end{pmatrix}$. Knopp [8,9] introduced the idea of a rational period function of an automorphic integral of weight $2k \in 2\mathbb{Z}$ on any Fuchsian group and studied the rational period functions of a modular integral of weight 2k for the modular group $\Gamma_0^+(1) = SL_2(\mathbb{Z})$. Since then, explicit charaterizations of the rational period functions for $SL_2(\mathbb{Z})$ have been given in [4,5]. Recently, Choi and Kim [2,3] generalized some results given by Knopp to the rational period functions for $\Gamma_0^+(p)$ when $p \in \{2,3\}$. These rational functions q(z) for $\Gamma_0^+(p)$ when $p \in \{1,2,3\}$ occur in functional equations of the form

(1)
$$F(z+1) = F(z), \text{ and}$$
$$(\sqrt{p}z)^{-2k}F\left(-\frac{1}{pz}\right) = F(z) + q(z),$$

where $k \in \mathbf{Z}$ and F is a meromorphic function in the upper half plane \mathbf{H} and has a Fourier expansion of the form

(2)
$$F(z) = \sum_{n=n_0}^{\infty} a_n e^{2\pi i n z}, \quad y = \text{Im } z > y_0 \ge 0$$

with some $n_0 \in \mathbf{Z}$. If (1) and (2) hold, then we call F a modular integral of weight 2k for q(z). In fact, F can be taken to be holomorphic in \mathbf{H} . Furthermore, if k > 0, then we can choose a modular integral F

of weight 2k satisfying the following: a modular integral F of weight 2k has a Fourier expansion of the form

$$F(z) = \sum_{n=0}^{\infty} a_n e^{2\pi i n z}, \quad y = \text{Im } z > 0$$

and

(3)
$$|F(z)| \le K(|z|^{\alpha} + y^{-\beta}), \quad z \in \mathbf{H}$$

for some positive real numbers K, α , β ([7, pp. 622–623]). Using the integral presentation of a_n and (3), we can get

(4)
$$a_n = O(n^{\nu}), \quad n \to \infty$$

for some $\nu > 0$. A modular integral F of weight 2k which is holomorphic in \mathbf{H} and has the Fourier expansion

$$F(z) = \sum_{n=0}^{\infty} a_n e^{2\pi i n z}, \quad y = \text{Im } z > 0$$

is called an entire modular integral if F satisfies (4) or equivalently (3).

In [9, Theorems 1 and 2], Knopp showed that the finite poles of any rational period function q(z) for $SL_2(\mathbf{Z})$ must lie in $\mathbf{Q}(\sqrt{n})$, $n \in \mathbf{Z}^+$, and determined the explicit form of a rational period function q(z) for $SL_2(\mathbf{Z})$ with the only possible finite poles in \mathbf{Q} . Choi and Kim [3, Theorems 1.2] showed that the finite poles of any rational period function q(z) for $\Gamma_0^+(p)$ must lie in $\mathbf{Q}(\sqrt{n})$, $n \in \mathbf{Z}^+$.

For an entire modular integral F of weight 2k for $SL_2(\mathbf{Z})$ with its associated rational period function q(z), Knopp [9, Theorem 3] showed that if

²⁰²⁰ Mathematics Subject Classification. Primary 11F11, 11F67; Secondary 11F37.

the poles of q(z) lies in $\mathbf{Q} \cup \{\infty\}$, then the Mellin transform $\Phi_F(s)$ of F has an analytic continuation to the entire s-plane, except for possible simple poles at some rational integers, satisfies the functional equation $\Phi_F(2k-s) = (-1)^k \Phi_F(s)$, and is bounded on each "truncated strip" of the from $\sigma_1 \leq \operatorname{Re}(s) \leq \sigma_2$ and $|\operatorname{Im}(s)| \geq t_0 > 0$. Knopp [9, Theorem 4] also showed that the converse is true.

In this paper, we investigate rational period functions q(z) for $\Gamma_0^+(2)$ with the finite poles only in Q to extend results of Knopp [9] on rational period functions for $\Gamma_0^+(1) = SL_2(\mathbf{Z})$ to the higher level case. More precisely, we determine the explicit formula of a rational period function q(z) for $\Gamma_0^+(2)$ of which poles lie only in $\mathbf{Q} \cup \{\infty\}$ (Theorem 1.2). We also show that if the poles of q(z) lies in $\mathbf{Q} \cup \{\infty\}$, then the Mellin transform $\Phi_F(s)$ of an entire modular integral F(z) of weight 2k for such a rational period function q(z) has an analytic continuation to the entire s-plane, except for possible simple poles at some rational integers, satisfies the functional equation $\Phi_F(2k-s) = (-1)^k 2^{s-k} \Phi_F(s)$, and is bounded on each "truncated strip" of the from $\sigma_1 \leq \text{Re}(s) \leq \sigma_2$ and $|\text{Im}(s)| \geq t_0 > 0$ (Theorem 1.4) and the converse is true (Theorem 1.5).

Since $\Gamma_0^+(2)$ is generated by $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and W_2 , we have the following

Proposition 1.1. Suppose that q(z) is a rational function for $\Gamma_0^+(2)$ as in (1) for some modular integral F. Let $U := TW_2 = \begin{pmatrix} \sqrt{2} & -1/\sqrt{2} \\ \sqrt{2} & 0 \end{pmatrix}$. Then

$$(5) q|_{2k}W_2 + q = 0$$

and

(6)
$$q|_{2k}U^3 + q|_{2k}U^2 + q|_{2k}U + q = 0,$$

where $|_{2k}$ is the usual slash operator.

It follows from [3, Theorem 1.3] that if a rational function q(z) satisfies (5) and (6), then there exists a modular integral F, which is holomorphic on \mathbf{H} , of weight 2k for q(z). In particular, when k > 0, we can construct F that is an entire modular integral of weight 2k for q(z). We now present the explicit form of q(z) for $\Gamma_0^+(2)$ with poles only in $\mathbf{Q} \cup \{\infty\}$.

Theorem 1.2. Let q(z) be any rational period function of weight 2k for $\Gamma_0^+(2)$. If the ploes of q(z) lie in $\mathbf{Q} \cup \{\infty\}$, then

$$(7) \ q(z) = \begin{cases} b_0(1 - (\sqrt{2}z)^{-2k}), & \text{if } k > 1, \\ b_0(1 - (\sqrt{2}z)^{-2}) + b_1z^{-1}, & \text{if } k = 1, \\ b_0(2^{k-1}z^{-1} + z^{-2k+1}) + p_k(z), & \text{if } k \le 0, \end{cases}$$

where b_0, b_1 are complex numbers and p_k is a polynomial in z of degree at most -2k.

We now consider the Mellin transforms of entire modular integrals. Suppose that F is an entire modular integral of weight 2k associated to some rational period function for $\Gamma_0^+(2)$ and it has a Fourier expansion of the form

(8)
$$F(z) = \sum_{n=0}^{\infty} a_n e^{2\pi i n z}, \quad y = \text{Im } z > 0.$$

We then consider the Mellin transform:

(9)
$$\Phi_F(s) = \int_0^\infty (F(iy) - a_0) y^{s-1} dy.$$

Proposition 1.3. With the assumptions and notations as above, we have the following.

For sufficiently large $\sigma = \text{Re}(s)$, the Dirichlet series

(10)
$$\Phi(s) = (2\pi)^{-s} \Gamma(s) \sum_{n=1}^{\infty} a_n n^{-s}$$

is related to the Mellin transform Φ_F as $\Phi_F = \Phi$, where $\Gamma(s)$ is the gamma-function.

We now present the results on the Mellin transform of the corresponding entire modular integral for a rational period function q(z) for $\Gamma_0^+(2)$.

Theorem 1.4. Let F be an entire modular integral of weight 2k such that its associated rational period function for $\Gamma_0^+(2)$ has poles only in $\mathbf{Q} \cup \{\infty\}$.

(1) $\Phi_F(s)$ has an analytic continuation to the entire s-plane, except for possible simple poles

$$s = 0$$
 and $s = 2k$, when $k > 1$;
 $s = 0, 1$ and 2, when $k = 1$;
 $s = 2k - 1, 2k, \dots, 0, 1$, when $k \le 0$,

(2) for every case,

$$\Phi_F(2k - s) = (-1)^k 2^{s-k} \Phi_F(s)$$

and $\Phi_F(s)$ is bounded in each "truncated strip" of the form $\sigma_1 \leq Re(s) \leq \sigma_2$ and $|Im(s)| \geq t_0 > 0$.

A converse of Theorem 1.4 is

Theorem 1.5. Let $\{a_n\}$ be a sequence of complex numbers satisfying

$$a_n = O(n^{\nu}), \quad n \to \infty$$

for some $\nu > 0$. Suppose also that $\Phi(s) = (2\pi)^{-s}\Gamma(s)\sum_{n=1}^{\infty}a_nn^{-s}$ can be extended to a function meromorphic in the entire s-plane, holomorphic except possibly for simple poles at the rational integers and bounded in every truncated strip of the form $\sigma_1 \leq Re(s) \leq \sigma_2$, $|Im(s)| \geq t_0 > 0$. If $\Phi(s)$ satisfies the functional equation $\Phi(2k-s) = (-1)^k 2^{s-k} \Phi(s)$ for some k, then

(11)
$$F(z) = F_{\Phi}(z) = a_0 + \sum_{n=1}^{\infty} a_n e^{2\pi i n z}$$

is an entire modular integral of weight 2k, with rational period function for $\Gamma_0^+(2)$ with poles only in $\mathbf{Q} \cup \{\infty\}$. Here a_0 is an arbitrary complex number.

Remark 1.6. By the same arguments in Sections 2 and 3, we can obtain similar results for entire modular integral for $\Gamma_0^+(3)$. By replacing q(z) and $\Phi_F(2k-s) = (-1)^k 2^{s-k} \Phi_F(s)$ by

$$q(z) = \begin{cases} b_0 (1 - (\sqrt{3}z)^{-2k}), & \text{if } k > 1, \\ b_0 (1 - (\sqrt{3}z)^{-2}) + b_1 z^{-1}, & \text{if } k = 1, \\ b_0 (3^{k-1}z^{-1} + z^{-2k+1}) + p_k(z), & \text{if } k \le 0, \end{cases}$$

and $\Phi_F(2k-s) = (-1)^k 3^{s-k} \Phi_F(s)$, corresponding statements can be obtained.

This paper is organized as follows: In Section 2, we prove Theorem 1.2. Section 3 is devoted to proofs of Proposition 1.3, Theorems 1.4 and 1.5. Our proof of theorems is build on the main ideas of Knopp in [9].

2. Proof of Theorem 1.2. (I). The case k > 0. It follows from [3, Theorem 1.2(b)] that if z_0 is a finite rational pole of q(z), then $z_0 = 0$. Thus we may write

(12)
$$q(z) = a_l z^{-l} + \dots + a_1 z^{-1} + b_0 + b_1 z + \dots + b_m z^m \ (a_l \neq 0, b_m \neq 0),$$

with $l \ge 1, m \ge 0$. Applying (5) to q(z), we have

(13)
$$-q(z) = (\sqrt{2}z)^{-2k}q\left(\frac{-1}{2z}\right).$$

Comparing the lowest term in (13), we have l = m + 2k. From (5) and (6), we have

$$(14) \ q(z) = (2z+1)^{-2k} q\left(\frac{z}{2z+1}\right) + (\sqrt{2}z + \sqrt{2})^{-2k} q\left(\frac{\sqrt{2}z + \frac{1}{\sqrt{2}}}{\sqrt{2}z + \sqrt{2}}\right) + q(z+1).$$

Comparing the principal part at ∞ in (12) and (14), we get

$$b_0 + b_1 z + \dots + b_m z^m$$

= $b_0 + b_1 (z+1) + \dots + b_m (z+1)^m$,

which gives m = 0, hence

(15)
$$l = 2k$$
 and $q(z) = a_l z^{-l} + \dots + a_1 z^{-1} + b_0$.

By applying (5) to (15) and comparing the coefficients, we have

(16)
$$b_0 = -\sqrt{2}^l a_l$$
, $a_{l-j}(-1)^{l-j}\sqrt{2}^{l-2j} = -a_j$
for $1 \le j \le l-1 = 2k-1$.

In particular, $a_k = (-1)^{k+1} a_k$, so $a_k = 0$ if k is even. Applying (6) to (15) leads to

$$(17) \quad a_{2k}(-\sqrt{2})^{2k} + \dots + a_1(-\sqrt{2})(\sqrt{2}z - \sqrt{2})^{1-2k}$$

$$+ b_0(\sqrt{2}z - \sqrt{2})^{-2k} + a_{2k}(z - 1)^{-2k} + \dots$$

$$+ a_1(z - 1)^{-1}(2z - 1)^{1-2k} + b_0(2z - 1)^{-2k}$$

$$+ a_{2k}\left(\sqrt{2}z - \frac{1}{\sqrt{2}}\right)^{-2k} + \dots$$

$$+ a_1\left(\sqrt{2}z - \frac{1}{\sqrt{2}}\right)^{-1}(\sqrt{2}z)^{1-2k} + b_0(\sqrt{2}z)^{-2k}$$

$$+ a_{2k}z^{-2k} + \dots + a_1z^{-1} + b_0 = 0.$$

If k = 1, then $q(z) = a_2 z^{-2} + a_1 z^{-1} + b_0$. It follows from (16) that $b_0 = -\sqrt{2}^2 a_2$. Hence

$$q(z) = b_0(1 - (\sqrt{2}z)^{-2}) + a_1 z^{-1}.$$

Suppose that $k \geq 2$. Note that from the partial fraction expansion, we have

$$\frac{1}{z^{N}(z-\frac{1}{2})^{M}} = \frac{A_{1}}{z} + \dots + \frac{A_{N}}{z^{N}} + \frac{B_{1}}{z-\frac{1}{2}} + \dots + \frac{B_{M}}{(z-\frac{1}{2})^{M}},$$

where $A_{N-j} = 2^{M+j} (-1)^M {M+j-1 \choose M-1}$ $(0 \le j \le N-1)$ and $B_{M-j} = 2^{N+j} (-1)^j {N+j-1 \choose N-1}$ $(0 \le j \le M-1)$. By applying the partial fraction expansion to $a_2(\sqrt{2}z - \frac{1}{\sqrt{2}})^{-2} (\sqrt{2}z)^{2-2k}$ and $a_1(\sqrt{2}z - \frac{1}{\sqrt{2}})^{-1} (\sqrt{2}z)^{1-2k}$, and the term $a_{2k-2}z^{-2k+2}$ on the left hand side of (17), the coefficient of z^{-2k+2} is $2^{-k+2}a_2 - 2^{2-k}a_1 + a_{2k-2}$, which becomes 0. So by (16), we have $a_1 = 0$.

If k = 2, then $a_2 = 0$, $a_3 = 0$ and $b_0 = -\sqrt{2}^4 a_4$ by (16). Therefore

$$q(z) = b_0(1 - (\sqrt{2}z)^{-4}).$$

Suppose that $k \ge 3$. We now assume $a_1 = a_2 = \cdots = a_{j-1} = 0$ for $2 \le j \le k-1$. By applying,

again, the partial fraction expansion on the left hand side of (17), the coefficient of $z^{-2k+j+1}$ is $\sqrt{2}^{-2k+2j+2}(-1)^{j+1}a_{j+1} + j2^{-k+j+1}(-1)^{j}a_{j} + a_{2k-j-1}$, which becomes 0. So by (16), $a_{2k-j-1} + a_{j+1}(-1)^{j+1}\sqrt{2}^{-2k+2(j+1)} = 0$, which gives $a_{j} = 0$. Consequently, we have $a_{1} = a_{2} = \cdots = a_{k-1} = 0$. Note that $a_{k} = 0$ if k is even.

Therefore, for $k \geq 3$, q(z) has the form

$$q(z) = \begin{cases} b_0 (1 - (\sqrt{2}z)^{-2k}), & \text{if } k \text{ is even,} \\ b_0 (1 - (\sqrt{2}z)^{-2k}) + a_k z^{-k}, & \text{if } k \text{ is odd.} \end{cases}$$

Since $b_0(1-(\sqrt{2}z)^{-2k})$ satisfies (5) and (6), $q(z) = b_0(1-(\sqrt{2}z)^{-2k}) + a_k z^{-k}$ satisfies (5) and (6) if and only if $a_k z^{-k}$ satisfies (5) and (6). Note that z^{-k} satisfies (5) only when k is odd. We show that for odd k, z^{-k} satisfies (5) and (6) if and only if k=1. For $q(z)=z^{-k}$, the functional equation (6) says

$$-(z-1)^{-k} + (2z-1)^{-k}(z-1)^{-k} + z^{-k}(2z-1)^{-k} + z^{-k} = 0$$

and this is 0 only when k = 1.

(II). The case $k \le 0$. By applying Bol's identity [1] to (5) and (6), we have

$$\begin{split} 0 &= (D^{-2k+1}q)|_{2-2k}W_2(z) + D^{-2k+1}q(z), \\ 0 &= (D^{-2k+1}q)|_{2-2k}U^3(z) + (D^{-2k+1}q)|_{2-2k}U^2(z) \\ &+ (D^{-2k+1}q)|_{2-2k}U(z) + D^{-2k+1}q(z), \end{split}$$

which imply that $q^{(-2k+1)}(z)$ is a rational period function of weight 2-2k>0. Here, $Df(z)=\frac{1}{2\pi i}\frac{df}{dz}$. By part (I) of the proof, $q^{(-2k+1)}(z)=b_0(1-(\sqrt{2}z)^{2k-2})$, since the term b_1z^{-1} does not occur as the derivative of a rational function. Integrating -2k+1 times, we get

$$q(z) = b'_0(2^{k-1}z^{-1} + z^{-2k+1}) + p_k(z),$$

where b'_0 is a complex number and $p_k(z)$ is a polynomial of degree $\leq -2k$.

3. Proofs of Proposition 1.3, Theorem 1.4 and Theorem 1.5.

Proof of Proposition 1.3. Suppose that F is an entire modular integral of weight 2k having the Fourier expansion

$$F(z) = \sum_{n=0}^{\infty} a_n e^{2\pi i n z}, \quad y = \text{Im } z > 0.$$

Since $a_n = O(n^{\nu})$, for sufficiently large $\sigma = \text{Re}(s)$, $\sum_{n=1}^{\infty} a_n e^{-2\pi n y} y^{s-1}$ converges uniformly on y > 0 and $\sum_{n=1}^{\infty} \int_0^b a_n e^{-2\pi n y} y^{s-1} dy$ converges uniformly on b > 0. Hence, we can integrate term by

term to have

$$\Phi_{F}(s) = \int_{0}^{\infty} \sum_{n=1}^{\infty} a_{n} e^{-2\pi n y} y^{s-1} dy$$

$$= \sum_{n=1}^{\infty} a_{n} \int_{0}^{\infty} e^{-2\pi n y} y^{s-1} dy$$

$$= (2\pi)^{-s} \Gamma(s) \sum_{n=1}^{\infty} a_{n} n^{-s} = \Phi(s).$$

Proof of Theorem 1.4. For large $\sigma = \text{Re}(s)$, we may then write

$$\Phi(s) = \int_{\frac{1}{\sqrt{2}}}^{\infty} (F(yi) - a_0) y^{s-1} dy + \int_{0}^{\frac{1}{\sqrt{2}}} (F(iy) - a_0) y^{s-1} dy.$$

Since $(\sqrt{2}z)^{-2k}F(-\frac{1}{2z}) = F(z) + q(z)$, we observe that

$$\begin{split} & \int_0^{\frac{1}{\sqrt{2}}} (F(yi) - a_0) y^{s-1} dy \\ &= 2^{-s} \int_{\frac{1}{\sqrt{2}}}^{\infty} \left(F\left(-\frac{1}{2\alpha i} \right) - a_0 \right) \alpha^{-s-1} d\alpha \\ &= 2^{-s} \int_{\frac{1}{\sqrt{2}}}^{\infty} ((\sqrt{2}yi)^{2k} (F(yi) + q(yi)) - a_0) y^{-s-1} dy \\ &= (-1)^k 2^{k-s} \int_{\frac{1}{\sqrt{2}}}^{\infty} (F(yi) - a_0) y^{2k-s-1} dy \\ &+ \frac{(-1)^k 2^{-\frac{s}{2}} a_0}{s - 2k} - \frac{2^{-\frac{s}{2}} a_0}{s} \\ &+ (-1)^k 2^{k-s} \int_{\frac{1}{\sqrt{2}}}^{\infty} q(yi) y^{2k-s-1} dy. \end{split}$$

Hence we get

$$\Phi(s) = D_1(s) + (-1)^k 2^{k-s} D_2(s)$$

$$+ 2^{-\frac{s}{2}} a_0 \left(\frac{(-1)^k}{s - 2k} - \frac{1}{s} \right) + (-1)^k 2^{k-s} E(s),$$

where

$$D_1(s) = \int_{\frac{1}{\sqrt{2}}}^{\infty} (F(yi) - a_0) y^{s-1} dy,$$

$$D_2(s) = \int_{\frac{1}{\sqrt{2}}}^{\infty} (F(yi) - a_0) y^{2k-s-1} dy,$$

$$E(s) = \int_{\frac{1}{\sqrt{2}}}^{\infty} q(yi) y^{2k-s-1} dy.$$

Since $F(z) - a_0$ vanishes exponentially as $z \to i\infty$, $D_1(s)$ and $D_2(s)$ are entire functions of s. We note that $D_1(2k-s) = D_2(s)$ and $D_2(2k-s) = D_1(s)$. We now investigate the function E(s). Note that q(z) has the form $q(z) = \sum_{n=-L}^{N} \alpha_n z^n$, and it follows that

$$E(s) = \int_{\frac{1}{\sqrt{2}}}^{\infty} \sum_{n=-L}^{N} \alpha_n (iy)^n y^{2k-s-1} dy$$
$$= \sum_{n=-L}^{N} \alpha_n i^n \frac{2^{\frac{s-2k-n}{2}}}{s-2k-n}$$
so long as $\operatorname{Re}(s) > 2k + N$.

We now consider E(s) for the three cases k > 1, k = 1, and k < 0.

(I) Let k > 1. Then $q(z) = b_0(1 - (\sqrt{2}z)^{-2k})$, and hence

$$E(s) = b_0 2^{-k + \frac{s}{2}} \left(\frac{1}{s - 2k} - \frac{(-1)^k}{s} \right).$$

Thus,

$$\Phi(s) = D_1(s) + (-1)^k 2^{k-s} D_2(s)$$

$$+ 2^{-\frac{s}{2}} (a_0 + b_0) \left(\frac{(-1)^k}{s - 2k} - \frac{1}{s} \right)$$

and $\Phi(s)$ has been extended analytically to the entire s-plane, with possible simple poles at s=0,2k. Moreover, $\Phi(2k-s)=(-1)^k2^{s-k}\Phi(s)$. (II) Suppose k=1. Then $q(z)=b_0(1-(\sqrt{2}z)^{-2})+$

(II) Suppose k = 1. Then $q(z) = b_0(1 - (\sqrt{2}z)^{-2}) - b_1 z^{-1}$, and hence

$$E(s) = b_0 2^{-1 + \frac{s}{2}} \left(\frac{1}{s - 2} + \frac{1}{s} \right) - \frac{b_1 i 2^{\frac{s - 1}{2}}}{s - 1}.$$

Thus,

$$\Phi(s) = D_1(s) - 2^{1-s}D_2(s)$$
$$-2^{-\frac{s}{2}}(a_0 + b_0)\left(\frac{1}{s-2} + \frac{1}{s}\right) + \frac{i2^{\frac{1-s}{2}}b_1}{s-1}$$

and $\Phi(s)$ has been extended analytically to the entire s-plane, with possible simple poles at s=0,1 and 2. Furthermore, $\Phi(2-s)=-2^{s-1}\Phi(s)$. (III) Let $k \leq 0$. Then $q(z)=b_0(2^{k-1}z^{-1}+z^{-2k+1})+\sum_{n=0}^{-2k}c_nz^n$ with $c_n \in \mathbf{C}$. Thus,

$$\begin{split} E(s) &= -\frac{i2^{\frac{s-1}{2}}b_0}{s-2k+1} + \frac{i(-1)^k 2^{\frac{s-1}{2}}b_0}{s-1} \\ &+ \sum_{n=0}^{-2k} \frac{i^n 2^{\frac{s-n-2k}{2}}c_n}{s-2k-n} \,. \end{split}$$

Hence we have

$$\Phi(s) = D_1(s) + (-1)^k 2^{k-s} D_2(s)$$

$$+ 2^{-\frac{s}{2}} a_0 \left(\frac{(-1)^k}{s - 2k} - \frac{1}{s} \right)$$

$$+ 2^{k - \frac{s+1}{2}} i b_0 \left(\frac{(-1)^{k+1}}{s - 2k + 1} + \frac{1}{s - 1} \right)$$

$$+ (-1)^k \sum_{n=0}^{-2k} \frac{i^n 2^{\frac{-s-n}{2}} c_n}{s - 2k - n}$$

and $\Phi_F(s)$ has an analytic continuation to the entire s-plane, except for possible simple poles at $s = 2k - 1, 2k, \ldots, 0, 1$. Note that the functional equation (5) implies that

(18)
$$c_{-n-2k} = (-1)^{n+1} 2^{-k-n} c_n \quad (0 \le n \le -2k).$$

Furthermore, it follows from (18) that $\Phi(2k-s) = (-1)^k 2^{s-k} \Phi(s)$.

Since $F(z) = \sum_{n=0}^{\infty} a_n e^{2\pi i n z}$ (y = Im z > 0) with $a_n = O(n^v)$, the functions $D_1(s)$ and $D_2(s)$ are bounded in every truncated strip of the form $\sigma_1 \leq \text{Re}(s) \leq \sigma_2$, $|\text{Im}(s)| \geq t_0 > 0$. Also, we note that rational functions 1/s, 1/(s-2k), and E(s) are also bounded in the truncated strip. Thus, $\Phi(s)$ is bounded in every truncated strip of the form above.

Proof of Theorem 1.5. Note that it follows from $a_n = O(n^v)$ that the function

$$F(z) = a_0 + \sum_{n=1}^{\infty} a_n e^{2\pi i n z}$$

is holomorphic in **H**. Since $a_n = O(n^{\nu})$, $\sum_{n=1}^{\infty} a_n n^{-s}$ converges in some right half-plane. It follows from the convergence of $\sum_{n=1}^{\infty} a_n n^{-s}$ and $\Phi(2k-s) = (-1)^k 2^{s-k} \Phi(s)$ that $\Phi(s)$ has at most finitely many simple poles at rational integer points. From the integral formula

$$e^{-y} = \frac{1}{2\pi i} \int_{d-i\infty}^{d+i\infty} \Gamma(s) y^{-s} ds$$

for any y, d > 0 and absolute convergence of the Dirichlet series $\sum_{n=1}^{\infty} a_n n^{-s}$ for $\sigma = \text{Re}(s)$ sufficiently large, we see that $F(iy) - a_0$ is the inverse Mellin transform of $\Phi(s)$. Indeed,

(19)
$$F(iy) - a_0 = \sum_{n=1}^{\infty} \frac{a_n}{2\pi i} \int_{d-i\infty}^{d+i\infty} \Gamma(s) (2\pi ny)^{-s} ds$$

$$= \frac{1}{2\pi i} \int_{d-i\infty}^{d+i\infty} (2\pi)^{-s} \Gamma(s) \sum_{n=1}^{\infty} \frac{a_n}{n^s} y^{-s} ds$$
$$= \frac{1}{2\pi i} \int_{d-i\infty}^{d+i\infty} \Phi(s) y^{-s} ds$$

for any large positive d. We can choose d > 2|k| sufficiently large so that all of the poles of $\Phi(s)$ lie between -d and d. Then the integrals

$$\int_{d+iT}^{-d+iT} \Phi(s) y^{-s} ds \quad \text{and} \quad \int_{-d-iT}^{d-iT} \Phi(s) y^{-s} ds$$

have limit 0 as $T \to \infty$ (see [6, p. 1868]). We now integrate around a rectangle with vertices $\pm d \pm iT$. By applying the residue theorem, we obtain

(20)
$$F(iy) - a_0 = \frac{1}{2\pi i} \int_{-d-i\infty}^{-d+i\infty} \Phi(s) y^{-s} ds + \sum_{n=-[d]}^{[d]} \alpha_n y^{-n}$$

where α_n is the residue of $\Phi(s)$ at s = n. Applying the functional equation $\Phi(2k - s) = (-1)^k 2^{s-k} \Phi(s)$, we get

$$\begin{split} &\frac{1}{2\pi i} \int_{-d-i\infty}^{-d+i\infty} \Phi(s) y^{-s} ds \\ &= \frac{(-1)^k 2^k}{2\pi i} \int_{-d-i\infty}^{-d+i\infty} \Phi(2k-s) (2y)^{-s} ds \\ &= (i\sqrt{2}y)^{-2k} \frac{1}{2\pi i} \int_{2k+d-i\infty}^{2k+d+i\infty} \Phi(u) \left(\frac{1}{2y}\right)^{-u} du \\ &= (\sqrt{2}iy)^{-2k} \left(F\left(\frac{i}{2y}\right) - a_0 \right). \end{split}$$

From (20) we have

(21)
$$F(z) - a_0 = (\sqrt{2}z)^{-2k} F\left(-\frac{1}{2z}\right) - a_0(\sqrt{2}z)^{-2k} + \sum_{n=-[d]}^{[d]} \alpha_n i^n z^{-n}$$

holds for z = iy, y > 0. By the identity theorem, (21) holds for all $z \in \mathbf{H}$. Therefore, F(z) is an entire modular integral of weight 2k with rational period function for $\Gamma_0^+(2)$ with poles only at 0 and ∞ . \square

Acknowledgments. We would like to express our thanks to the referee for his/her valuable comments.

References

- [1] G. Bol, Invarianten linearer differentialgleichungen, Abh. Math. Sem. Univ. Hamburg 16 (1949), nos. 3–4, 1–28.
- [2] S. Choi and C. H. Kim, Rational period functions and cycle integrals in higher level cases, J. Math. Anal. Appl. 427 (2015), no. 2, 741–758.
- [3] S. Choi and C. H. Kim, Rational period functions in higher level cases, J. Number Theory **157** (2015), 64–78.
- Y. Choie and L. A. Parson, Rational period functions and indefinite binary quadratic forms.
 I, Math. Ann. 286 (1990), no. 4, 697–707.
- [5] Y. Choie and L. A. Parson, Rational period functions and indefinite binary quadratic forms. II, Illinois J. Math. 35 (1991), no. 3, 374–400.
- [6] A. Daughton, A Hecke correspondence theorem for automorphic integrals with infinite logpolynomial sum period functions, Int. J. Number Theory 10 (2014), no. 7, 1857–1879.
- [7] M. I. Knopp, Some new results on the Eichler cohomology of automorphic forms, Bull. Amer. Math. Soc. 80 (1974), 607–632.
- [8] M. I. Knopp, Rational period functions of the modular group, Duke Math. J. 45 (1978), no. 1, 47–62.
- [9] M. I. Knopp, Rational period functions of the modular group. II, Glasgow Math. J. 22 (1981), no. 2, 185–197.