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Abstract: Let g0 be a simple Lie algebra of type ADE and let U 0qðgÞ be the corresponding

untwisted quantum affine algebra. We show that there exists an action of the braid group Bðg0Þ
on the quantum Grothendieck ring KtðgÞ of Hernandez-Leclerc’s category C 0

g. Focused on the

case of type AN�1, we construct a family of monoidal autofunctors fS igi2Z on a localization T N
of the category of finite-dimensional graded modules over the quiver Hecke algebra of type A1.

Under an isomorphism between the Grothendieck ring KðT NÞ of T N and the quantum

Grothendieck ring KtðAð1ÞN�1Þ, the functors fS ig1�i�N�1 recover the action of the braid group

BðAN�1Þ. We investigate further properties of these functors.

Key words: Quantum affine algebra; quantum Grothendieck ring; braid group action;
quiver Hecke algebra; R-matrix.

1. Introduction. The monoidal category

C g of finite-dimensional representations of a quan-

tum affine algebra U 0qðgÞ has been extensively

investigated because of its rich structure. Among

various approaches, Nakajima [14], Varagnolo-

Vasserot [16], and Hernandez [3] studied t-defor-

mations of the Grothendieck ring of C g. These

t-deformations are interesting, because they provide

a way to calculate the q-character of simple

representations. There is a full subcategory C 0
g of

C g, introduced by Hernandez and Leclerc in [4],

which contains an essential information on C g but

has a smaller set of the classes of simple modules.

The Grothendieck ring of C 0
g is isomorphic to the

polynomial ring in countably many variables, while

that of C g is the one in uncountably many

variables. For the cases where g is one of un-

twisted ADE types, a t-deformation KtðgÞ of the

Grothendieck ring of C 0
g, called the quantum

Grothendieck ring, was investigated from a ring

theoretic point of view in [5]. It turns out that the

Cðt1=2Þ-algebra KtðgÞ has an interesting presenta-

tion: there is a set of generators consisting of a

countable infinite number of copies of Drinfeld-

Jimbo generators of a half of the quantum group

Utðg0Þ, and they satisfy the quantum Serre relations

in a copy, t-boson relations between adjacent

copies, and t-commutation relations between non-

adjacent copies. This presentation reflects the

following feature of the category C 0
g: for each choice

of a Dynkin quiver Q with an additional data, they

defined a monoidal subcategory CQ of C 0
g such

that the quantum Grothendieck ring of CQ is

isomorphic to the half U�t ðg0Þ of the quantum group

Utðg0Þ, and all the fundamental representations in

C 0
g can be obtained from those in CQ by taking

functors Dm (m 2 Z). Here D is the contravariant

functor taking the right dual.

One of main results of this paper is that there

exists an action of the braid group Bðg0Þ of type g0

on the quantum Grothendieck ring KtðgÞ (Theorem

2.3). Since we give the action explicitly, the braid

relations can be checked by the presentation of

KtðgÞ. Recall that the blocks of the category C 0
g is

parameterized by the root lattice of g0 and the

tensor product is compatible with the addition on

the root lattice [10]. It turns out that the action of

the generators �i of Bðg0Þ on KtðgÞ correspond to the

reflections with respect to the simple roots �i on the
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root lattice. Indeed, the action of �i is related with

Saito’s reflection functor as seen in Theorem 2.4.

We conjecture that the braid group action can

be lifted to the action on the monoidal category C 0
g.

We show that it is the case when g is of type A
ð1Þ
N�1.

A key point of view is the use of a rigid monoidal

category T N which is constructed out of the

category A of finite-dimensional graded modules

over the quiver Hecke algebra RA1 of type A1 [7]. It

is a certain localization of A and there is a monoidal

functor FN from T N to C 0

A
ð1Þ
N�1

which sends simple

objects to simple objects. Moreover this functor

induces an isomorphism between the Grothendieck

ring KðT NÞ and the quantum Grothendieck ring

KtðAð1ÞN�1Þ. It is summarized by the diagram

KðT NÞ !
� KtðAð1ÞN�1Þ �!

t¼1
KðC 0

A
ð1Þ
N�1

Þ:

Hence the category T N can be understood as a

graded lift of C 0

A
ð1Þ
N�1

as a rigid monoidal category.

We show that there is a family of monoidal

autofunctors fS ig1�i�N�1 on the category T N
which recover the action of the braid group

BðAN�1Þ under the isomorphism between KðT NÞ
and KtðAð1ÞN�1Þ (Theorem 3.1, Theorem 3.3). There

is a general procedure, developed in [11], to

construct monoidal functors between the categories

of modules over quiver Hecke algebras, and a

similar procedure can be applied for the category

T N . This is a main advantage in working on the

category T N rather than the category C 0

A
ð1Þ
N�1

.

Finally we provide several consequences of the

existence of such functors S i. For a simple object L

which belongs to an orbit of LðiÞ for some i under

the action BðAN�1Þ, one can define an automor-

phism sL which has similar properties with the

automorphisms si (Theorem 4.2). Moreover sLðiÞ
coincides with si.

This paper is an announcement whose details

will appear elsewhere.

Convention 1.1. Throughout this paper,

we keep the following conventions.

(a) For a statement P, �ðPÞ is 1 or 0 according that

P is true or not.

(b) For k; ‘ 2 Z and s 2 Z�1, we write k �s ‘ if s

divides k� ‘ and k 6�s ‘, otherwise.

2. Braid group action on the quantum

Grothendieck rings. Let g0 be a finite-dimen-

sional simple Lie algebra of simply-laced type with

a Cartan matrix A ¼ ðaijÞi;j2I0
, g the untwisted

affine Kac-Moody algebra associated with g0, and

U 0qðgÞ the quantum affine algebra associated with g.

We take the algebraic closure of CðqÞ insideS
m>0 Cððq1=mÞÞ as the base field k for U 0qðgÞ. Let

C g be the category of finite-dimensional integrable

modules over U 0qðgÞ. There is a family fV ð$iÞc j i 2
I0; c 2 k�g in C g, called the fundamental represen-

tations.

Following [4], we denote by C 0
g the smallest

full subcategory of the category C g which is stable

under taking subquotients, extensions, tensor prod-

ucts and contains

fV ð$iÞð�qÞp j i 2 I0; p � dð1; iÞ mod 2g;

where dði; jÞ is the distance between the vertices i

and j in the Dynkin diagram of g0. Here 1 2 I0 is an

arbitrarily chosen element. Then the complexified

Grothendieck ring C	Z KðC 0
gÞ of C 0

g has a t-defor-

mation KtðgÞ, called the quantum Grothendieck

ring of C 0
g. To each simple module S in C 0

g, we

can associate an element ½S
t of KtðgÞ and we have

KtðgÞ ¼
L
S

Cðt1=2Þ½S
t. Here S ranges over the set

of the isomorphism classes of simple modules in C 0
g.

Let Q be a Dynkin quiver with type g0, and let

�Q be a height function, i.e., it associates an integer

�QðiÞ to each vertex i of Q such that �QðiÞ ¼
�QðjÞ þ 1 if i! j. We assume further that

�Qð1Þ 2 2Z. A pair Q ¼ ðQ; �QÞ is called a Q-data.

For a sink i of Q, let siQ :¼ ðsiQ; �siQÞ be the

Q-data consisting of the Dynkin quiver siQ ob-

tained from Q by reversing the arrows of Q adjacent

to i and the height function �siQ of siQ given by

�siQðjÞ ¼ �QðjÞ þ 2�i;j.
To a Q-data Q, Hernandez-Leclerc [5] associ-

ated a full monoidal subcategory CQ of C 0
g, and a

monoidal functor FQ:Rg0
-mod! CQ is constructed

in [2,6], and Fujita [1,2] proved that FQ is an

equivalence of categories. Here, Rg0
-mod is the

monoidal category of finite-dimensional modules

(with nilpotent actions of the generators xk) over

the quiver Hecke algebra Rg0
associated with g0.

Note that FQðLðiÞÞ is a fundamental module for any

i 2 I0, where LðiÞ 2 Rg0
-mod is the simple module

associated with i.

Then, for a Q-data Q, we have an embedding of

Z½t�1
-algebras

jQ:KðRg0
-gmodÞ ,! KtðgÞ

induced by FQ.

Let Ktðg0Þ be the Cðt1=2Þ-algebra generated by
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fyi;m j i 2 I0;m 2 Zg with the defining relations:

For m 2 Z and i; j 2 I0,

(a) yi;myj;m ¼ yj;myi;m if aij ¼ 0,

y2
i;myj;m � ðtþ t�1Þyi;myj;myi;m þ yj;my2

i;m ¼ 0

if aij ¼ �1,

(b) yi;myj;mþ1 ¼ taijyj;mþ1yi;m þ �ijð1� t2Þ,
(c) yi;myj;p ¼ tð�1Þp�mþ1aijyj;pyi;m, for p > mþ 1.

Remark 2.1. We change t into t�1 in the

presentation in [5].

Theorem 2.2 ([5], Theorem 7.3). Let Q be a

Q-data. Then there is an isomorphism �Q: Ktðg0Þ !
�

KtðgÞ such that �Qðyi;mÞ is equal to ½DmFQðLðiÞÞ
t,
where LðiÞ is the simple module in Rg0

-mod corre-

sponding to i 2 I0.

Let Bðg0Þ be the Braid group associated with

g0. It is generated by f�i j i 2 I0g with the defining

relations

�i�j�i ¼ �j�i�j if aij ¼ �1;

�i�j ¼ �j�i if aij ¼ 0:

One of our main theorems is the following

Theorem 2.3. The Braid group Bðg0Þ acts

on Ktðg0Þ by the following formulas:

�iðyj;mÞ

¼
yj;mþ�ij if aij 6¼ �1,

t1=2yj;myi;m � t�1=2yi;myj;m

t� t�1
if aij ¼ �1,

8<
:

��1
i ðyj;mÞ

¼
yj;m��ij if aij 6¼ �1,

t1=2yi;myj;m � t�1=2yj;myi;m

t� t�1
if aij ¼ �1.

8<
:

Theorem 2.4. Let i be a sink of a Q-data Q.

Then the following diagrams commute:

Here, iRg0
-gmod (resp. iRg0

-gmod) is the full

subcategory of Rg0
-gmod consisting of graded

modules M with E�i M ¼ 0 (resp. EiM ¼ 0), and

Ti is the reflection functor due to S. Kato [12,13]

(cf. Y. Saito [15]). For Ei and E�i , see for exam-

ple, [8].

3. The category T N and reflection func-

tors. Let J be the index set of simple roots of the

root system A1. One can identify J with Z and the

root lattice Q is the subspace of
L
a2Z

Z"a generated

by �a ¼ "a � "aþ1 for a 2 Z. Let RA1 be the

symmetric quiver Hecke algebra of type A1 over

k with the choice of parameters

Qijðu; vÞ ¼ �ði 6¼ jÞðu� vÞ�ðj¼iþ1Þðv� uÞ�ðj¼i�1Þ

for i; j 2 J. It is a family fRA1ð�Þg�2Qþ of associa-

tive Z-graded k-algebras, where Qþ ¼
P

i2J Z�0�i
is the positive root lattice of type A1. Each RA1ð�Þ
is generated by feð�Þg�2J� , fxkg1�k�n and

f	mg1�m�n�1, where n ¼ j�j :¼
P

i2I ni with

� ¼
P

i2J ni�i, and J� :¼ f� 2 Jn j ��1
þ � � � þ ��n ¼

�g. See [7] for a set of defining relations of RA1ð�Þ.
Note that there is an embedding of RA1ð�Þ 	
RA1ð
Þ into RA1ð� þ 
Þ. Hence the category A ¼L

�2Qþ R
A1ð�Þ-gmod of finite-dimensional graded

RA1 -modules is a monoidal category whose tensor

product is given by the convolution product:

M 
N :¼ RA1ð� þ 
Þ 	
RA1 ð�Þ	RA1 ð
Þ

ðM 	NÞ:

For M 2 RA1ð�Þ-gmod, we set wtðMÞ :¼ ��.

For each pair of integers a; b with a � b, let

½a; b
 be the interval fk 2 Z j a � k � bg, and call it

a segment. For each segment ½a; b
, let Lða; bÞ be

the one-dimensional simple graded RA1 -module

generated by a vector uða; bÞ such that eð�Þuða; bÞ ¼
�ð� ¼ ða; . . . ; bÞÞuða; bÞ. We set LðaÞ :¼ Lða; aÞ for

a 2 Z. For each N � 2, let SN be the smallest

subcategory of A which is stable under taking

convolution, subquotients, extensions, and contain-

ing fLða; bÞ j b� aþ 1 > Ng. Then the quotient

category A=SN equips with a new tensor product

? given by

X ? Y :¼ tBðwtðXÞ;wtðY ÞÞX 
 Y ;

where Bðx; yÞ :¼ �
P

k>0ðSkx; yÞ for x; y 2
L
a2Z

Z"a

and S is an automorphism on
L
a2Z

Z"a given by

Sð"aÞ :¼ "aþN . The category T N is constructed in

[7] as a localization of the monoidal category

ðA=SN; ?Þ. The objects of T N is the same with

the ones of A=SN . The group of morphisms is given

by

No. 3] Braid group action on the module category of quantum affine algebras 15



HomTN ðX; Y Þ :¼ lim�!
�;�

HomA=SN ðX 
 P�; Y 
 P�Þ;

where P� :¼ 
a2ZLða; aþN � 1Þ
�a for � 2 ðZ�0Þ�J
and the limit runs over all the pairs ð�; �Þ such that

wtðX 
 P�Þ ¼ wtðY 
 P�Þ. It turns out that T N is

an abelian rigid monoidal category with a tensor

product ?. We denote the right dual (resp. left dual)

of X by DðXÞ (resp. D�1ðXÞ). Note that Lða; aþ
N � 1Þ ’ 1 in T N for all a 2 Z. We have a chain of

functors

A �!QN A=SN �!
�N T N:

The composition will be denoted by �N . Note that

the Grothendieck ring KðT NÞ is a Z½t�1
-algebra on

which t acts by the grading shift.

From now on, let g be the affine Kac-Moody

algebra of type A
ð1Þ
N�1. We regard T N as a Z-graded

lifting of C 0
g as a rigid monoidal category. Indeed

there exists a monoidal functor FN : T N ! C 0
g

which sends simples to simples. It induces an

isomorphism of Cðt1=2Þ-algebras ½FN 
: Cðt1=2Þ 	Z½t�1

KðT NÞ !

� KtðgÞ ([7], Theorem 4.33). Under the

isomorphism, the generator yi;m corresponds to

½DmLðiÞ
 for i 2 Z, m 2 Z.

For a pair ðM;NÞ of objects in a k-linear

abelian monoidal category in which every object

has a finite length, we denote by MrN the head of

M 	N and by M�N the socle of M 	N , respec-

tively.

We show that there is a family of autofunctors

on T N which recover the braid group action on the

quantum Grothendieck ring KtðgÞ. For this pur-

pose, we adjoin a formal object t1=21 into T N such

that t1=21 ? t1=21 ’ t1. Then the grading shift by 1/2

of X is given by X ! t1=21 ? X.

Theorem 3.1. For i 2 Z, there exists a

monoidal functor

S i: T N ! T N
satisfying

S iðLðjÞÞ ’
DLðjÞ if j �N i,

t1=2ðLðj� 1ÞrLðjÞÞ if j �N i� 1,

LðjÞ otherwise.

8><
>:

The functor S i has an inverse

S�1
i : T N ! T N

satisfying

S�1
i ðLðjÞÞ ’

D�1LðjÞ if j �N i,

t1=2ðLðjÞrLðj� 1ÞÞ if j �N i� 1,

LðjÞ otherwise.

8><
>:

Let us explain briefly how to construct the

functors S i. For each j 2 J , denote �Mj the

RA1 -module t�1Lðjþ 1; jþN � 1Þ if j �N i,

t1=2ðLðj� 1ÞrLðjÞÞ if j �N i� 1 and LðjÞ otherwise.

For each � 2 Qþ and � ¼ ð�1; . . . ; �mÞ 2 J�, set

�ð�Þ ¼M�1

 � � � 
M�m; and �ð�Þ ¼

M
�2J�

�ð�Þ;

where Mj is the affinization of �Mj. Then along a

similar line with ([11], Section 4), one can show that

there exists a ring homomorphism

ðRA1ð�ÞÞopp ! EndAbig=Sbig
N
ðQNð�ð�ÞÞÞ;

where Abig=Sbig
N is a quotient category of the

category of graded RA1-modules which is defined

in a similar way with A=SN (see [7], Section

4.4). Let R0�:RA1ð�Þ-gmod! A=SN be the

restriction of a left adjoint of the functor

HomAbig=Sbig
N
ðQNð�ð�ÞÞ;�Þ. Then we obtain a mono-

idal functor R:A! T N , the composition

A ��������!
L

�2Qþ
R0�

A=SN �!
�N T N:

Note that the family f �Mjgj2J of objects in T N
satisfies for any a 2 J that (1) �Ma ? �Maþ1 ? � � � ?
�MaþN�1 ’ 1, (2) hdð �Ma ? �Maþ1 ? � � � ? �Maþk�1Þ ?
�Maþk is not simple for 1 � k � N � 1, and (3)

D2ð �MaÞ ’ �MaþN . A similar argument as the one in

([9], Section 6.1) shows that there is a monoidal

functor S i: T N ! T N such that R ’ S i 
 �N .

Recall that there is an automorphism T: T N !
T N given by LðjÞ 7! Lðjþ 1Þ for all j 2 Z. It

satisfies that TN ’ D2. The functors fS i j i 2 Zg
satisfy the following properties.

Proposition 3.2. We have

(i) S iþ1 ’ T 
S i 
 T�1 for i 2 Z,

(ii) S i 
D ’ D 
S i for i 2 Z,

(iii) S i ’ SNþi for i 2 Z,

(iv) S 1S 2 � � �SN�1 ’ T,

(v) S i 
S j ’ S j 
S i for ji� jj > 2,

(vi) S i 
S iþ1 
S i ’ S iþ1 
S i 
S iþ1 for i 2 Z.

The family of functors fS ig1�i�N�1 recovers

the braid group action in Theorem 2.3 in the case of

type AN�1.

Theorem 3.3. For each 1 � i � N � 1 the

Z½t�1=2
-algebra automorphism on KðT NÞ induced

16 M. KASHIWARA et al. [Vol. 97(A),



by S i is equal to �i in Theorem 2.3 under the

isomorphism ½FN 
: Cðt1=2Þ 	Z½t�1
 KðT NÞ !
� KtðgÞ.

4. Reflections by root modules. Recall

that for each pair of non-zero modules ðX; Y Þ of

A, there exists a distinguished nonzero morphism

rX;Y : t�ðX;Y ÞX 
 Y ! Y 
X called the r-matrix

[7]. Here, t is the grading shift functor. We

have �NðrX;Y Þ: t�N ðX;Y ÞX ? Y ! Y ? X in T N ,

where �NðX; Y Þ ¼ �ðX; Y Þ � BðwtðXÞ;wtðY ÞÞ þ
BðwtðY Þ;wtðXÞÞ.

For a pair ðX; Y Þ of objects in T N , set

dðX; Y Þ :¼
1

2
ð�NðX; Y Þ þ �NðY ;XÞÞ:

Note that dðX; Y Þ ¼ 1

2
ð�ðX; Y Þ þ �ðY ;XÞÞ if

�ðrX;Y Þ 6¼ 0.

A simple object X in an abelian monoidal

category is called real if X 	X is simple. A real

simple object L in T N is called a root module if

dðL;DkðLÞÞ ¼ �ðk ¼ �1Þ:

For example, the objects Lða; bÞ with b� aþ 1 <
N are root modules. If L is a root module, then

DðLÞ, D�1ðLÞ and S iðLÞ for i 2 Z are root

modules.

The following is the main theorem of this

section.

Theorem 4.1. Let X be a simple object in

T N . For i 2 Z, if

dðDkðLðiÞÞ; XÞ ¼ n�ðk ¼ aÞ

for some n � 0 and a 2 Z, then

S iðXÞ ’ ðDaLðiÞÞ
nrX

up to a multiple of a power of t.

The following is one of the applications of

Theorem 4.1.

Theorem 4.2. Let ½L
 belongs to the orbit of

LðiÞ for some 1 � i � N � 1 under the braid group

BðAN�1Þ action in Theorem 2.3. Then there is an

automorphism sL on KðT NÞ such that

(a) sLðiÞ ¼ si for 1 � i � N � 1.

(b) sðsLðL0ÞÞ ¼ sL 
 sL0 
 s�1
L if L0 also satisfies the

condition in the theorem.

(c) sDaL ¼ sL for all a 2 Z.

(d) sLð½X
Þ ¼ ½ðDaLÞ
nrX
 up to a power of t, if

dðDkL;XÞ ¼ n�ðk ¼ aÞ for some n � 0 and

a 2 Z.

5. Conjectures. Let U 0qðgÞ be an arbitrary

quantum affine algebra. We say that a real simple

module L in C 0
g is a root module if dðDkM;MÞ ¼

�ðk ¼ �1Þ for any k.

Conjecture. For any root module L 2 C 0
g,

there exists a monoidal autofunctor S L of C 0
g which

satisfies the following conditions:

(a) S L satisfies similar properties in Theorem 4.1

and Theorem 4.2.

(b) (Braid relation) For root modules L and L0,
(1) if dðDkL; L0Þ ¼ 0 for any k 2 Z, then

S L 
S L0 ’ S L0 
S L;

(2) if dðDkL; L0Þ ¼ �ðk ¼ 0Þ for any k 2 Z, then

S L 
S L0 
S L ’ S L0 
S L 
S L0 :

(c) Let Q be a Q-data, and L :¼ FQðLðiÞÞ. Then

the automorphism of KtðgÞ induced by S L

coincides with �i, i.e., the following diagram

commutes:
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