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Abstract:

In this paper we consider the order of holomorphic curves with maximal

deficiency sum in the complex plane. The purpose of this paper is to weaken the condition treated
in the paper [9]. As a special case we obtain the result in [9].
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1. Introduction. Let f={f1, -, fur1] be a
holomorphic curve from C into the n-dimensional
complex projective space P"(C) with a reduced
representation

(fl»"'afnJrl) :C— Cn,+1 \ {0}7

where n is a positive integer. We use the following
notations:

172 = (AP + -+ ()
i) an+1) € Cn+1 \ {O}
lall = (jar | + -+ + |ana )2,
(0'7 f) =a1fi+ -+ ani1fos,
(a, f(Z)) = alfl(z) +-+ an+1fn+1(z)~

We denote by e;,1 < j <n+ 1, the standard basis
of C"*1.

The characteristic function of f is defined as
follows (see [14]):

and for a vector a = (ay, -

1 2m i0
Tr.f) = 5= [ ozl (re")lla8 —1og ]SO}

In addition, put
U(z) =

 max |f(2)];

then U(2) < ||f(2)|| < (n+ 1)"2U(2) and we have

(1.1) T(r,f) = ;/2 log U(re)df + O(1)

™Jo

(see [1]).
We suppose throughout the paper that f is
transcendental, that is to say,
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i 20 ) _
im =
r—oo logr

and that f is non-degenerate over C; namely,
fi,+ -+, fae1 are linearly independent over C.

It is well-known that f is non-degenerate over
C if and only if the Wronskian W = W(f1, -, fut1)
of fi,--+, fuy1 is not identically equal to zero.

We denote the order of f by p(f) and the lower
order of f by p(f) respectively:

logT
pf) = timsup PEL )
r—00 logr
logT
u(f) = liminf 8L S
r—00 logr

It is said that f is of regular growth if p(f) = u(f).
We wuse the standard notation of the
Nevanlinna theory of meromorphic functions in
the complex plane ([3,4]).
For a € C"™\ {0}, we write

L |- [fre®)]
m“””*%l o8 e fremy)

N )

We then have the First Fundamental Theorem
([14,p. 76]):

(12)  T(r,f)=m(r,a f)+N(r a, f)+O(1).
We call the quantity

S(a,f)=1— hI:L%pW - lirrgglf%

the defect of a with respect to f. It is easy to see by
(1.2) that

0<é(a, f) <1,
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since m(r, a, f) > 0 and N(r,a, f) >0 (r > 1).

We shall call an error term denoted by S(r, f) a
quantity such that if p(f) = oo, S(r, f) = o(T(r, f))
as r — +00, possibly outside a set of r of finite linear
measure, and if p(f) < oo, S(r, f) = O(logr) (r —
+00).

Let X be a subset of C™™\ {0} in N-sub-
general position satisfying #X > 2N — n + 1, where
N is an integer such that N > n. It is known that
(1], N =n; [5], N > n)

(1.3) > é(a,f) <2N—n+1.

acX

The purpose of this paper is to prove

Theorem 1.1. Let f be as cited above.
Suppose that p(f) < oo;

(i) 6(ej, f) =1 (j=1,---,n) and that

(ii) Y gexO(a, f) =2N —n+1.

Then f is of regular growth and p(f) is a
positive integer.

The case of N =n was proved in [9].

2. Generalization of Nochka weight func-
tion. Let N, n and X be as in Section 1 such that
2N —n+1<#X <oo. We note that X is in
N-subgeneral position and that #X is not always
finite. For a non-empty finite subset S of X, we
denote by V/(S) the vector space spanned by
elements of S and by d(S) the dimension of V(S5).
We put

O={SCX|0<#S<N+1}.

Lemma 2.1 ([2], p. 68). For RCS(R,S€0),
4R~ d(R) < #S — d(S) < N —n.

For RG S (R,S € O), we put

d(S) — d(R)

#S — #R

Then, by Lemma 2.1 we have the following
Proposition 2.1 ([2],p. 67). 0 <A(R;S)<1.
Lemma 2.2 ([12], Lemma 2.3).
#{d(S)/ #S | S € O} is finite.
Definition 2.1 ([12], Definition 2.1).
A= mingeo d(S)/#S
Proposition 2.2 ([12], Proposition 2.2).
1/(N-n+1) <A< (n+1)/(N+1).
Proposition 2.3 ([12], Proposition 2.3). (I)

When A > (n+1)/(2N —n+1), for any Se€ O it
holds that

A(R; S) =

[Vol. 94(A),

n+1 d(S)
2N —n+1 7~ #S°

(II) When A < (n+1)/(2N —n+ 1), there exist
an integer p (1 <p<(n+1)/2) and a subfamily
{T; |1 <i<p} of O satisfying the following con-
ditions:

(1) ¢ =Tp % T % gTIH d(T,) < (n+1)/2;

(i) ATo;Th) < AT To) <+ < ATp-13Tp) <

n+1-dT,)
ON —n+1—#T,

(iii) Let 1 <i<p. For any U € O such that
Ty G U and d(Ti-y) < d(U),

(a) A(Ti-1; T3) < A(Ti-1;U),

and moreover

(b) A(Ti-1;T;) = A(T;-1;U) only if U S T;;

(iv) For any U € O such that T,SU and
a(Ty) < d(U),

n+1-d(T,) < AT, 1)
2N —n+1—#T, ~ "7

According to Proposition 2.3, we define a
weight function w and a constant h for X as follows:

Definition 2.2 ([12], Definition 3.1). (I
When A > (n+1)/(2N —n+1), for any a € X we
set

n+1 2N —n+1
w(a) = ——, =
2N —n+1 n+1
(IT) When A < (n+1)/(2N —n+ 1), we set
AT, T;) for acTi\Ti
=1 .-
n+1—
i for ae X\T,

IN —n+1—#T,

2N —n+1-#T,
 on+1-d(T,)

where Ty = ¢, T; and A(T;—;T;) (i =1,---,p) are
those given in Proposition 2.3 (II).

Proposition 2.4 ([12], Theorem 3.1). (a)
Forany a € X, 0 < hw(a) < 1;

(b-1) For any Q C X satisfying (i) Q@ D {a €
X | hw(a) < 1} and (ii) 2N —n+ 1 < #Q < oo,

#Q—(QN—TL—l-l):h<Zw(a)—n—1>;

ac)
(b-2) 2o gex (1 = hw(a))
=2N-n+1-h(n+1);
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(c) N/n<h<(2N-n+1)/(n+1);

(d) Forany S € O, Y cqw(a) <d(S).

We consider the following set of weight func-
tions on X:

Definition 2.3 ([13], Definition 4.1).

W= {T:X_> 0,1]|VS €0, > 7(a) < d(S)}.
acS
Example 2.1 ([13], Example 4.1). (a) The
weight function w in Definition 2.2 is in W by
Definition 2.2 and Proposition 2.4 (d).
(b) Set 7y : X — (0,1] such that 7y(a) = A for
all a € X. Then 7, € W. In fact, for any S € O,

S (@) = MES < (d(S)/#S)#S = d(S).

acsS

(c¢) Let aq,---,ay (k> 2) be positive numbers
satisfying oy + -+ -+ = 1. If wy, -+ -, w, € W, then
awy + -+ + apwg € W.

3. Lemmas and theorems.
etc. be as in Section 1 or 2.

Lemma 3.1 ([6], Théoreme 2; [7], Théoréme
3). If there are n+ 1 linearly independent vectors
a, -, ayy1 tn X such that

6(aj’f) =1

then f is of regular growth and p(f) is equal to a
positive integer or co.

We note that f is not assumed to be non-
degenerate in this lemma.

Now, suppose that f is non-degenerate. Let
d(z) be an entire function such that

Fd =1 m) and W,

Let f and X

(J:177n+1)a

) fn+1)/d

are entire functions without common zeros.
Definition 3.1 ([8]). We call the holomor-
phic curve induced by the mapping

(f{H_la'"7f:LL+17W(f17"'afn+1)) :C — Cn+1

the derived holomorphic curve of f and we write it
by f*:
f* = [f{l+l/d7 ) f:+l/d7 W(fh ) fn+1)/d]'

Remark 3.1. When n=1, f* corresponds
exactly to the derivative of the meromorphic
function fo/ f1.

Remark 3.2 ([8], Proposition 1). The defi-
nition of f* does not depend on the choice of a
reduced representation of f.

Lemma 3.2 ([8], Lemma 3). We have
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T, f)<(n+1)T(r,f) — N(r,1/d) + S(r, f).

Proposition 3.1 ([8], Theorems 1, 2 and 3).
(a) f* is transcendental. (b) p(f*) = p(f). (¢) Even
if f is non-degenerate, f* can be degenerate.

Lemma 3.3 ([11], Proposition 10). Let
a1, -, a, bein X (N+1<¢g<o0)and T be in W.
Then the following inequalities hold:

M X rlamlr, e f) < (4 DTG f) -

N(r,1/W) + S(r, f).

(I > sext(a)é(a, f) <n+1.

Corollary 3.1. If the equality holds in Lem-
ma 3.3 (II) and p(f) < oo, then

TILH;) N(Tv 1/W(f17 T fn+l))/T(T7 f) =0.
Proof. From Lemma 3.3 (I) we obtain the
inequality

zq:r(aj)é(ajaf) + hmsup% =

]:1 r—00
since f is transcendental and S(r, f) = O(logr) as
p(f) < c0. So we easily obtain this corollary. O
For X € O we put

X(0) = {a = (@,

Then, #X(0) < N since X is in N-subgeneral
position. We mnote that d(X(0)) <n from the
definition of X(0).

Proposition 3.2 (see [10], Theorem 1 (a)).
Let f be as in Section 1 and T be in W. For any
a,---,a, i X\ X(0) (1<g<oo) we have the
following inequality:

n+1,

: 7a7z+1) eX ‘ Upt1 = O}

q
>_rla)m(r, aj, f) < mlr, exr, ) + S(r, ).
=1
We used [10, Lemma 2] to prove [10, Theorem 1
(a)]. The property of w used to prove [10, Lemma 2]
is only that w is in W, and 7 is also in W. This
implies that we can use 7 instead of w in [10, Lemma
2]. Due to this fact we can proceed the proof of
Proposition 3.2 as in [10, Theorem 1 (a)] with 7 and
we obtain this inequality.
Corollary 3.2. Let f and 7 be as in Propo-
sition 3.2 and p(f) < oo. Then we have the following
inequalities:

1
n+1

(3.1) Z T(a)é(a, f) < 6(ept1, f*),

ae X\ X(0)
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32) > 7(a)(a,f)

acX\X(0)
T * T *
< lim inf (r, ") < lim sup (r. ") <n+1.
T—00 T(T‘, f) r—00 T(T, f)

Proof. First we prove the inequality (3.1). For
any ai,---, a6, in X\ X(0) (1 < ¢ < ), from Prop-
osition 3.2 we obtain the inequality

z‘l: 7(a;) liminf 7171(7“, % f)

2 e BTG )
. . m(r, en+17f*) T(Taf*)
< = T )

Since f is transcendental and p(f) < oo, S(r, f) =
O(logr) and so
G
im ———=
r—00 T(r, f)
We have limsup,_ . T(r, f*)/T(r, f) <n+1
by Lemma 3.2. Therefore we obtain that

q

ZT((L]‘)(S(O,J‘, f) < (n + 1>6(en+17 f*)

J=1

(3.3)

As a; (j=1,---,q) are any elements of
X\ X(0), we easily obtain our inequality (3.1) from
(3.3).

Next we prove the inequality (3.2). For any
a, -+, a, in X\ X(0) (1 <g¢<o0), from Proposi-
tion 3.2 we obtain the inequality

q

Z T(aj)m(rﬁ aj, f) < m(r, €n+tl, f*) + S(T, f)

j=1
<T(r, f)+S(r, f),
so that from Lemma 3.2

q . T
Z 7(a;) liminf M < liminf ——~~
=1 r=o T(r, f) "
=

which is the inequality (3.2). O
Lemma 3.4. Let f and 7 be as in Proposi-
tion 3.2. Then we have the inequality

[Vol. 94(A),

Z 7(a)é(a, f) < n.
acX(0)
Proof. We note that X(0) € O since #X(0) <
N.AsT e Wand é(a, f) <1, we have the inequality

Y. m(@da.f) < )y 7(a) <d(X(0) <n.
aeX(0) aeX(0)
(I

Theorem 3.1. Let f be as in Section 1 and T
be in W. Suppose that p(f) < oo and that

(1) 6(ej7f) =1 (.]: 17"'3”);

(ii) There exist ai,---,a, in X 2N —n+1<
q < 00) satisfying

S r(a)éaz f) = + 1.

=1
Then f is of regular growth and p(f) is a
positive integer.
Proof. From Theorem 3.1 (ii), Corollary 3.2
and Lemma 3.4 we obtain the inequality

34) 1=n+l-n< Y r(a)a,f)
aceX\X(0)

T(r, f")
(r, /)
T %

() Ly
T(r,f)
The inequality (3.4) implies that f* is transcenden-
tal, and

(3.5)

< liminf
rT—00

< lim sup

r—00

p(f) =p(f), w(f)=pn(f).

From Definition 3.1, we obtain for r > 1

N(r,0,W/d) = N(r,1/W) — N(r,1/d)

< N(r,1/W).
From Corollary 3.1 and (3.4) it follows that
N(r,0,W/d) N(r,1/W)
— - <limsup————=
T(r, f*) r—oo T(r, f*)

T(r,1/W) T(r,f) _

s S R e

Thus we obtain the relation

0 < limsup

r—00

N(r,0,W/d)

(3.6) T, )

6(ens1, fF) =1 —limsup =1.

For j=1,---,n, we obtain
N(r,0, fi*1/d) = N(r, 1/ f*") = N(r,1/d)
<SN(r, 1/ (r=1)

and
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N(r,0, fo/d N(r,1/f!
o<y e g
<(n+1) lirrnﬁs;lp Nrﬁﬂ(;l?{]) : IT(Y7]£‘)) =0

from the condition (i) and (3.4), so that

n+1
o(ej, ff)=1- limsupw =1
r—o00 T(r, f*)
By using (3.6) and (3.7) we apply Lemma 3.1
to f*. Then we see that f* is of regular growth
and p(f*) is a positive integer since ey, ---, €,41
are linearly independent. From (3.5) we obtain
that f is of regular growth and p(f) is a positive
integer.

(3.7)

O

Lemma 3.5. We have the equality

AN -n+1-Y &a,f)

acX

= "1~ hu(a)(1 - 8(a )

acX

+ h<n +1-> w(a)i(a, f)) .
acX

We obtain this equality as in [13], p. 371,
Lemma 5.2.

Proof of Theorem 1.1. For any a € X it fol-
lows from Proposition 2.4 (a) and the fact, 0 <
6(a, f) <1, that

(3.8) (1—hw(a))(l-46a,f))>0(acX).
Further from Lemma 3.3 (II) we obtain the inequal-
ity

(3.9) n+1-> w(a)é(a,f) >0.

acX

From the condition (ii) of this theorem, Lemma 3.5,
(3.8) and (3.9), we obtain that

n+1- ZUJ((I)(S(G,,JC) :Oa
acX
which is the condition (ii) of Theorem 3.1 with
7 = w. Considering the condition (i) of this theorem
we obtain our conclusion from Theorem 3.1. O
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Remark 3.3. We note that the condition
(ii) of this theorem, Lemma 3.5, (3.8) and (3.9)

imply
(1—-hw(a))(1-46(a,f)=0(acX).
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