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Analytic continuation of the multiple Fibonacci zeta functions
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Abstract:
Fibonacci zeta functions of depth 2:

0<ny<ngy

In this article, we prove the meromorphic continuation of the multiple

1

S S 7
Fnll F!Lz

where F,, is the n-th Fibonacci number, Re(s;) > 0 and Re(sy) > 0. We compute a complete list of
its poles and their residues. We also prove that multiple Fibonacci zeta values at negative integer

arguments are rational.
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1. Introduction. The Riemann zeta func-
tion ((s) is one of the most important objects in the
study of number theory. It is a classical and well-
known result that ((s), originally defined on the half
plane Re(s) > 1, can be analytically continued to a
meromorphic function on the entire complex plane
with the only pole at s = 1, which is a simple pole
with residue 1 [3,6]. One way to generalize the
Riemann zeta function is to define the “multiple
(Euler-Riemann-Zagier) zeta function” of depth d
as follows:

(1.1)

Re(sq) > 1, Z‘j:l Re(s;) > d. Several authors have
studied the analytic continuation of the multiple
zeta function and proved that the multiple zeta
function ((s1,...,sq) of depth d can be analytically
continued to a meromorphic function on all of C%.
For example, Atkinson [5] first proved the analytic
continuation of ((si,sy), with applications to the
study of the asymptotic behavior of the “mean
values” of zeta-functions, using Poisson summation
formula. In [4], Arakawa and Kaneko used analytic
continuation of ((si,...,s4) as a function of one
variable s; when si,...,s4-1 are positive integers
and discussed the relation among generalized
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Bernoulli numbers. For a general d, Zhao [12]
proved the analytic continuation of {(s1,...,54) as
a function of d variables using the theory of
generalized function and Akiyama, Egami and
Tanigawa [1] proved the same result by applying
the classical Euler-Maclaurin formula to the index
of the summation n,. Recently, Mehta et al., in [9]
obtained the meromorphic continuation of multiple
zeta functions by means of an elementary and
simple translation formula for this multiple zeta
function.

The sequence of Fibonacci numbers is defined
by the recurrence relation

Fn:Fn71+Fn727 n>2

with initial values Fy =0, F; = 1. We denote the
n-th term of the Fibonacci sequence by F, and
the Binet form of F;, is %, where o = “T‘/_’ and
8= %3 The Fibonacci zeta function is the

series

and this series is absolutely convergent for
Re(s) > 0. Also it can be considered as an analogue
of the Riemann zeta function ((s) =3 ", L for
Re(s) > 1. André-Jeannin [2] proved that (p(1) =
>oci 7 is an irrational number. Duverney et al.,
in [7] proved that (w(2m) for m =1,2,--- are all
transcendental numbers and Elsner et al. [8] proved
that (p(2),(r(4) and (p(6) are algebraically in-
dependent. In 2001, Navas [10] obtained analytic
continuation of the Fibonacci Dirichlet series (p(s).
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Also Ram Murty [11] obtained that (p(2m) are
transcendental for m >1 using the theory of
modular form and a result of Nesterenko, which is
a slight modification of Duverney’s proof [7].

There is a connection between the special
values of zeta function at positive integers with
theoretical physics. In eighteenth century, Euler
investigated the double zeta values. Though the
multiple zeta values are extremely important, we
do not want to discuss in details here. Similarly, the
arithmetic nature of the multiple Fibonacci zeta
values are important.

The special values of the Fibonacci zeta
function stimulate us to study the analytic contin-
uation of the multiple Fibonacci zeta function. In
particular, we investigate the multiple Fibonacci
zeta function which is defined as
(1.2) Cr(st,. ..

Sd) ‘= —
) ) F Fy;j ]

0<ny<ng-<mg = M "

where F,, is the n-th Fibonacci number. In this
situation, the sum sy + --- + s4 is called the weight
of (r(s1,...,8q4) and d is called its depth. In this
paper, we study the analytic continuation of the
defined series in (1.2) for d =2 on all of C? with
a complete list of poles and their corresponding
residues. Moreover, we investigate the arithmetic
nature of multiple Fibonacci zeta functions at
negative integer arguments. To the best of our
knowledge, this is the first work in this area.

2. Convergence of the multiple Fibonacci
zeta functions. For the sake of completeness, we
include here a small section on the convergence of
the multiple Fibonacci zeta functions.

Proposition 1. The infinite sum

>
Fo Fy?

0<ny<ng

converges absolutely in the domain
Dy = {(81,82) S 02 | Re(sl) > 0, Re(Sg) > O}

Proof. One can observe that

(2.1) Z FS1F52 = Z Jo e

0<ng <ng N opy= n1+'nz

We know that Fibonacci numbers grow exponen-
tially and also F,, > «™. Thus, for o; := Re(s;) >0
and oy := Re(sy) > 0, we have
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1 1 1
(22) S == =~ )
Fu! E7V— amm
and
1 1 1
2.3 = .
( ) F;H-nz E712+n2 N aUZ(nI+7l2>
From (2.1), (2.2) and (2.3), we get
S e <
0<ng <ng F‘siﬂfg B ni=1 Eﬂ no=1 strnz
[o.¢] o0
S Z:I a1 A a2 m+nz
n = No=
o0 oo
= Z 01+t72 Z ao2n2
ni=1 o=1
L <
= 0.
(a7~ Dfar = 1)
This finishes the proof of the proposition. (I

It is natural to ask whether the domain of
convergence of (r(s1, s9) is extendable or not. In the
following section, we give an affirmative answer to
this question.

3. Analytic continuation of the multiple
Fibonacci zeta functions.

Theorem 2. The multiple Fibonacci zeta
function Cp(s1,s92) of depth d =2 can be analytically
continued to a meromorphic function on C*. It has
poles on the hyperplanes

(€ + 2
32=—2£+M(£,nez,620),
log o
and
im(k+ ¢+ 2m
o5 = (k4 €) 4 TR L 2M)

log
(k,¢,m e Z,k, ¢ >0).

Moreover, all the poles are simple.
Proof. For any z € C,

z an_ﬂn Z_ —z/2 nz _ é "\
= () e (-(0))

1 z
_ r—2/2 nz oyl
=57 <1 +(-1) a2n>

=5 7/22( > (7l+1)kan(z QA)

The above binomial series converges as « > 1.
Substituting this into the multiple Fibonacci zeta
function in (1.2) for d = 2, we get
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S (5 (7) <—1><m+1>kamw>)

n1=1ny=1 k=0
; - —S2 ny+n. 15 —
« 552/2 1 (n1+ng+1) (n14n2)(s2+2¢)
(5 ()
Since |(*,jl)|§(—1)’“<*fl|> and =) <

, we have

()

- s > —S1 ni+1)k —ny(s142k) = s9/2
551/2 ( ) ) Dk i (s142K) s/

(_$2> (7 1)(”1 +n2+l)la7(m+n2)(sg+2€)

X
< i 5<01+‘72>/2a7n101 i <51>(_1)ka2n1/€
B ny,na=1 k=0 k

—(n14n2)os o~ (2l £ =2(ni+n2)l
X -1
@ g ( ¢ (D'«

=0
N —[s1
ny,ny=1
—(n1+ng)o: 9 —ls2]
X o™ n2)02 <1 —a (n1+n2))
3 [s1l
< Z 5(01+02)/2a—n101(1 B a_2)7 51
ny,ne=1

% a—(7L1+7L2)02(1 _ a—4)—|52\

_ (1 _ a*Q)_lsl‘(l _ a*4)—\32\5(01+02)/2
00 o0
% Z a7(0'1+0'2)1’11 Z a7 < 0.
7L1:1 712:1

Let us denote

M := 5t/ g (;1) (1)’“2 (52) (-1

By interchanging the order of summation in (3.1),
we have

(3~2) CF(51,52)
_ Mi <(_1)k+€a—(sl+52+2k+2€))m
n1=1
o0

((_1)£a7<82+25))"1f2

no=1
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(_1)k+é‘a—(sl+s2+2k+w
(1 _ (_1)k+ea7(51+82+2k+2f))
(71)/«‘07(52%6)
(1 _ (,1)f5a7(sz+2e)>
(— 1)
(a(sl+sg+2k+24) + (_1)k+f+1)
(-1
( (s220) 4 (— 1)/+1>

B

X

=M

X

=M

<a51+82+2k+2z + (71)k+£+1)
1

X .
<a52+2£ + (71)Z+1)

For any s1,s2 € C, we have

(33) |asl+sz+2k+22 + (_1)k+€+1| > am+og+2k+2( -1
> a0'1+<72+k+/

for k> ki, £ > 4 and |a(22) 4 (=1)| > a®* for

{ > {y, where ki, and {y are constants given by

klzkl((fl,dg,a) > 0, 51251(01,(1’2,0()»0 and
Uy = ly(09, ) > 0. Define ¢y = max{¢;,f>}. Thus,

o

)é+1

k>ky >4,
k0
y (—*
(a(31+52+2/€+2l) + (_1)/€+€+1)
1
y (-1)
(a(62+2€) + (_1)e+1)

a 01+02+/€+Z a (02+4)

< a (o14209) <_|$1>
k>]€1

>0,

k() o

< a7(01+202)(1 N Ofl)*lﬁl(l

— 072)7'32"
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This bound is uniform, when (s;,ss) varies over a
compact subsets of C?. Thus, the series in (3.2)
converges uniformly and absolutely on compact
subsets of C? without containing any of the poles of
the functions
1

(o152 2k420) 4 (_1)k+f+1)

1
(a2 4 (—1)F 0y
Hence, (3.2) defines the analytic continuation of
Cr(s1,82) to a meromorphic function on C? with

and

9k,l(51752) =

92(82) =

simple poles at sy = —2/+ % (UyneZ,>0)
and sy + sy = —2(k+0) + "2 (b 0,m € Z, K,
¢>0). ‘ 0

Remark. The poles sy = —2/ + “Tl(f);ri") lie on

the lines Re(sy) = —2¢ spaced at the intervals of
length 12&3 S3 = —2/ is a pole, when £ is even, and
s9 = =20+ 107;& is a pole, when ¢ is odd. Similarly,
81 + 89 = —2k — 2{ is a pole, when k, £ are both even
or both odd and s1 + s9 = —2k — 2¢ + l(ga is a pole
when either k is odd and £ is even or k is even and ¢
is odd.

4. Residues of the multiple Fibonacci
zeta functions at poles. From Theorem 2, we
know that sy = —2¢+ % for £>0,n€Z are
the simple poles of (p(s1,s2). We define the residue
along the hyperplane given by the equation sy =
—25—}—% to be the restriction to the hyper-
plane of the meromorphic function (s 4+ 24—
%)(F(sl,(s’g). Here we obtain the correspond-
ing residues.

Theorem 3. Let {,ne€Z and ¢£>0. Then
the residue of the multiple Fibonacci zeta function

it (€ L) -
CF(Slv 52) at Qyn = —20 4" %0;2”) 18

(_1)l 50/ (—ay,
CF(SI)W( , )

Proof. First note that a2t 4+ (—=1)"™ is an
analytic function with simple zeros at ay, =
—2¢ + 20 Then we have

log «

(4.1)  lim
So—Qpn (asz+2€ + (_1)f+1)

1
(a52+2e + (_1)”1)
1 (-1)

S2 — Qup

= Resg,—a,,

%(asﬁ»%_’_(_l)“‘l)

Is

loga

$2=0¢n
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The residue of the multiple Fibonacci zeta
function (p(si, s2) at ag, = —20 + % is equiv-
alent to take the restriction to the hyperplane
Sy = a¢y. Hence, the residue of (p(sq,s2) along the

hyperplane sy = ay, is

: _ (52 X (751 o~ (52
i, (82 = 00 )57 Z<k>z<€>

k=0 =0
(-1 1
(a(51+82+2k+2€) + (_1)k+[+1> (a52+21! + (_1)f+1>
— 5/ i (‘31> (-1’
k=0 k (a(sl +s2+2k+20) | (_1)k+£+1)
=0

X

S9=0¢
X lim 58:»/2( 2) (52 — a)
S2—=0pn V4 So120 !
(a2 4 (1))
. > —S81 1
()
; k (a(51+2k) + (_1)k+1)
J4
X 5&&,,/2 _a'(w" (_1)
l log
-1 ¢ 5a1.n/2 _
_ CF(SI) ( ) Ayn '
log a 12
O

Further, we compute the residues at the poles
which lie on the hyperplane s, 4 sy = —2(k +¢) +
%. Similarly, we define the residue along the

hyperplane given by the equation

im(k+ £+ 2m
s1+ 8 =-2(k+7?) +¥
log o
to be the restriction to the hyperplane of the
meromorphic function
im(k + £+ 2m)

(sl+52+2(k+€)— og o

)CF(S1,82)-
Theorem 4. Let k', ¢',m' € Z with k¥',¢ > 0.
Then the residue of the multiple Fibonacci

zeta function Cp(s1,s2) at by = —2(K +10)+
im(K+0'+2m’) is

log o
by ¢ (_1)k’+é’
7 ~ 7
log
<D (‘82) <‘Sl) (-1’
£k>0 14 k (a(sz+2é) + (_1)€+1)
(+k=t'+F

Proof. By proceeding as in Theorem 3, we
have
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. $1+ 82 — bk’,é’,m’
lim —
s1452—=b g gt (as1+s2+2k/+2z’ + (—l)k +¢ +1)

1

= Resg, 4s,=by
1+82=by (a51+sz+2k¥+2€’ N (_1)k/+€/+1)

S om!

_ (_1)k’+é’

log o

Hence the residue of {#(s1, $2) along the hyperplane
§1+ S2 = bk/,é’,m’ is

. e 0 —S89
lim $1 + S — byt g )51 H92)/2 < )
51+52"b£’.m’,n’( ! : s ) ; é
ST
=\ k (a(52+2l) + (_1)1€+1)
1
X

<a51 et k2 (,1)’%“1)

S (0)5()

=0 k=0
=
(a0 + (1))

81+ So — b/f,mm,

X lim
s1+52—=bpmn <a81+52+2k+2£ + (_1)k+€+1)

by o ( —1 ) K+t

= 5 2
log
_ _ _1Y!
X Z < 32)( 51) (1) .
£,k>0 ¢ k (a(52+25) + (_1)€+1>
l+k=0+F
g
5. Values at negative integers. Now we

discuss the values of (p(s1,s2) at the negative
integers. We already know that s, =0,—4,-8,---
are simple poles and there are also other poles which
lie on the hyperplane s; + sy = —2k — 2¢ when both
k, ¢ are even or odd simultaneously.

Theorem 5. Let m,n€Zsy with n=2
(mod 4), m=0 (mod4) or n is odd, m=0
(mod 4). Then

Cr(—m,—n) € Q.

Proof. From (3.2), we have

50 Grommy =5 oS (1) 552
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(-1 1

X .
(a,nl,n+2k+25+(_1>k+l+1) (or”*%—f— (_1)Z+1)

Note that (’,:’) and (”) are 0 for k>m and ¢/ >n
respectively. Therefore this is a finite sum belonging

to Q(v/5). Let

Oty

and
o ()
L (a7m7n+2k+% n (_1)k+£+1) .

Thus (5.1) can be rewritten as

(5.2) Cr(-

n m

m,—n) = 5 (M2 Z Z 0Ok

(=0 k=0

5— (m+n)/2 _n m
= Z[wa)kwrzon Ok (n— /1

5— (m+n)/2 _n

= Z[(Zwekﬁ-zoﬂm kf)
+ (Z OOk (n—t) + Z Une9mk,(né)>] :
k=0 k=0

Let us denote by

13 m n m

= Z Z O’(@kjﬁ@ 1I := Z Z Ulem—k,fa

(=0 k=0 (=0 k=0

I = Z Z 0—nféek,(n7€)

(=0 k=0
and

n m

IV .= Z Z Un—éemfk,(nfl) .

(=0 k=0
Put oyp=I+I+II+1V. Let ¢p#1d be an

automorphism of Gal(Q(v/5)/Q) and hence
¥(a) = B. Cousider,
(5.3)

Un—éemfk,(nfl)

— n 1
T \n—v o 2(n—=0) 4 (_1>n—£+1

x(mfk>a (—1)""

(ntm)+2(m—k+n—0) | (_1)(m7k+nfé+1)




_(n 1
— , anfﬂ N (_1)n+Z+1

m (_1)71,-5’(
% k a(n+m)—2(k+k)_1_(_1)(m+k+n+f+1)'

Using af=—1 and (af)" % = (-1)"* = (=1)",
we have o 2= (—1)"g"*2¢ Similarly, we get
am+n72(k'+é) — (_1)7'l+71/57(m+n)+2(k+l). Substituting

the above expression in (5.3), we obtain

(54) Un*femfk,(n—l{)
_ (" 1 m
v (_1)"5—n+2€ 4 (_1)71,-%-»—1 k

(_1)n+l
(71)"”+71ﬁ7(n+m)+2(k+1{) + (71)m+77,+k+f+1

<>ﬂ QE+2”

)m+(
( > —(n+m)+2( k+e) + (=1)krrre
D"

Similarly,

n m
(5:5)  On-ibr(n-0) = (g) B2t 4 (1) (k)
(_1)m+€

ﬂmfnJrZ(Z—k) 4 (_1)k+f+m+1 .

X

)f—‘rl

Case I: (m and n are both even or both odd).

Note that (m +n)/2 is an integer. Therefore
from (5.4) and (5.5), we conclude that ¥(I) = IV
and () = III. Thus, from (5.2), ayy, € Q. Since
5mtm/2 ¢ Q, we have (p(—m, —n) € Q.

Case II: (Either m is even and n is odd or m is
odd and n is even).

In this case, 5("*"/2 ¢ \/5Q. From (5.4) and
(5.5), we have ¢(I) = =1V and ¢(II) = —III. Also
we know that, if ¢(x) = —z, then z — ¥(z) € V5Q.
Thus, from (5.2), ayy, is of the form ﬂg,k\/g for some
Bex € Q and hence (p(—m, —n) € Q. O

6. Concluding remark. We know that
Fibonacci zeta function has trivial zero at
—2,—6,—10,---. The determination of the zeros of
the multiple Fibonacci zeta functions depth d = 2 is
still unknown. It seems to be a delicate problem to
find out the zeros of (p(s1,s2).
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