No. 5]

Proc. Japan Acad., 94, Ser. A (2018) 43

On a Galois group arising from an iterated map
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Abstract:

We study the irreducibility and the Galois group of the polynomial f(a,z) =

28 + 3ax8 + 3’2 + (a® + 1)az’® + a® + 1 over Q(a) and Q. This polynomial is a factor of the 4-th
dynatomic polynomial for the map o(z) = 2% + az.

Key words:

1. Introduction. The aim of this paper is to
study the Galois group of a certain factor of a 4-th
dynatomic polynomial. In general, the 4-th dyna-
tomic polynomial for the polynomial map o is
defined by

ol(z) —x
Dyp(z) = azgasﬁ’
where o' is the i-fold iteration of o with itself (see [9)]
for details).

Dynatomic polynomials have been intensively
studied by Morton. For example, he computed the
Galois group of ®3,(z) with o(x) = 2* + a [5], and
in particular, he was led to an analogue of Kummer
theory for cyclic cubic extensions by using the
map o(z) = 22 — 1 (s* + 7) over the base field with-
out cube roots of unity [6]. He also proved that the
dynatomic curve ®4,(r) = 0 with o(z) = 2% + a has
no rational points, i.e., ®4,(z) has no rational roots
for rational values of a [7].

In this paper, we consider the 4-th dynatomic
polynomial ®,, with o(z) = 2% + az. The polyno-
mial ®,,(z) has degree 72 and it has a factor:

(1.1) fla,z) = 2® + 3a25 + 3a’2"

+ (a* 4 1)az® + a® + 1.
We shall investigate the Galois groups of the
polynomial f(a,z) over Q(a) and its specializations
over Q.

In general, the Galois group of a dynatomic
polynomial is isomorphic to a subgroup of a wreath
product [8]. We show that the polynomial f(a,x)
has a Galois group which is isomorphic to the whole
wreath product Cy 1 Cy over the function field Q(a)
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(see Theorem 2.1).

The group C;1C5 has order 32 and has the

following presentation:
(01,09, T | 0“/11 = 03 =72 =1,0109 = 0901, TOIT = a9).
Every Galois extension L/Q with this Galois group
can be obtained as a class field of a certain
quadratic field. By choosing the signature of L
carefully, we can find such an extension that is a
class field of a real quadratic field and that has an
odd Artin representations of degree 2 induced from
a character corresponding to the real quadratic
field. This group C4!Cs is known to be a minimal
group with this property (see [4]). This is a strong
motivation to construct Galois extensions with this
Galois group systematically.

The outline of this paper is as follows: In
Section 2, we show that the splitting field of the
polynomial f(a,z) is a C4!Cs-extension over the
function field Q(a). In the rest of this paper, we are
concerned with the Galois groups of the special-
izations f(a,x) with various a € Q. In Section 3,
we determine a condition for the irreducibility of
f(a,z) for specific values of a in Q. For a € Q, let ¢
be the splitting field of f(a,z) over Q. In Section 4,
we give a condition for the Galois group Gal(Z?/Q)
to be isomorphic to Cy1C%, and compute the
signature of X¢. In Section 5, we classify the Galois
group Gal(3%/Q) when it is smaller than Cy 1 Cs.

2. The Galois group over a function field.
In this section, we prove the following main
theorem.

Theorem 2.1. The Galois group of f(a,x)
over Q(a) is isomorphic to Cy 1 Cs.

Proof. By a straightforward computation, we
can check f(a,z)|f(a,o(x)). Hence if « is a root of
f(a, ), then so is o(«).
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The roots of f(a,z) fall into two distinct orbits
under o. To be more specific, if we define

1
5\/3aVa28+\/8+2a22a\/a28,

1
042:5\/—3a+\/a2—8+\/8+2a2+2a\/a2—8,

then the two orbits are {07(ay)} and {0/(as)} for
0< <3 If we set N(z) =[] O(z—aj(ozq)) for
i = 1,2, then \;(z) are polynomials in Q(va? — 8)[z]
of degree 4. Let L; be the splitting field of A\;(z) over
Q(Va? — ) Since o has order 4, the extensions
L;/Q(Va? — 8) are cyclic of degree 4. Let K; be the
intermediate field of L;/Q(va?—8) such that
[K;: Q(Va?—8)] =2. The fields K; and K, are
explicitly given by

(21) K =Q(ad) = (\/8 + 202 — wm)
(22) Ky =Q(ad) = (\/8 +2a? + 2am>
Since

\/8+2a272a\/a278\/8+2a2+2a\/a278
=8vVa’+1¢ Q(Va?-38),

we have K # K. Let ¥y be the splitting field of
fla,z) over Q(va? —8). Since the field ¥; is the
compositum of L; and Ls, the Galois group G’ of
Y;/Q(Va? — 8) is isomorphic to Cy x Cy.

The group G’ is generated by the following
automorphisms:

A= )
(23) 1 { o-j(a2) Uj(a2) (j O,. ,3),
(Tj(Oll) — O'j(Oll)

4 o9 : . =0,...,
@4) o { o () — o7 () (=0 3
If we set

- O'j(Oq) '—>Jj(a2) C_
(2.5) : { aj(a2) aj(al) (j=0,...,3),

then this map 7 is an extension of the generator of
Gal(Q(Va? - 8)/Q(a)) to Gal(X;/Q(a)).

If we set Gy = (01, 09, 7), then the generators of
G satisfy cr‘l1 = J% =712 =1, 0,09 = 090y and 7o, T =
0y. Thus Gy is isomorphic to Cy ! Cy. Since the field

Y s is an extension over Q(a) of degree 32, the group
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Gal(X7/Q(a)) is isomorphic to Cy 1 Cs. O

Next, we describe some intermediate fields of
Y/Q(a) for our later use. The subgroups of index 2
in Cy1Cy = <0’1,0’2,T> are

<0-%70-1T>7 <O—170—2>7 <O'§,0'10’27T>.

The quadratic fields over Q(a) corresponding to
these subgroups are

- <Uf,c71‘r>
(2.6) oy = X7,
(2.7) ki =37 = Q(Va? = 8),
(28) k2 = ijimazﬂ') Q(U)

with v = va? + 1.
Proposition 2.2. The quadratic extensions
of ke inside Xy are given by the following

My, = Q(v/(v—1)(v—3)),

My = Q(v/(v+1)(v+3)),

M; = Q(vv(v—1)),

My = Q(v/v(v—3)),

Ms = Q(v/v(v+3)),

M = Q(v/v(v —1)(v = 3)(v + 3)).

The Galois groups of the extensions ¥p/M; (i =
3,4,5,6) are

Gal(X;/Ms) = (0309, 0409, T) 22 Dy,
Gal(Xy/M,) = (o109, T) >~ Oy x Cy,
Gal(X;/Ms) = (0%, 0102) ~ Oy x O,
Gal(X;/Ms) = (0702, 007) = Qs.

Proof. We can show our assertions by calcu-
lating the fixed subgroups in (o1, 09, T) correspond-
ing to these fields. We omit the detail. 0

3. Irreducibility under specializations.
The Hilbert irreducibility theorem guarantees that
there are infinitely many a € Q such that f(a,z) is
irreducible and that the Galois group of f(a,z) over
Q is isomorphic to Cy ! Cs. In the next section, we
shall give an explicit description of such rational
a’s. In this section, we give a criterion for the
irreducibility of the specialization f(a,z) with a in
Q. Recall that X% is the splitting field of the
specialization f(a,x) with a in Q.

Theorem 3.1. The specialization of the pol-
ynomial f(a,z) with a € Q is irreducible if and only
if a is not omne of the following forms with a rational
solution (A, B) of the Diophantine equation A* —
2B% =1:
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(3.1) 2,

2(A + B)(A +2B)
(32) B(2A + 3B)

Proof. We recall that f(a,z)|f(a,o(x)). Let oy
and a2 be the roots of f(a,z) given in the proof
of Theorem 2.1. By o*(a;) = a; (i = 1,2), we have
0'2 (Olz) = —Q;.

Now we consider the following six polynomials:

Ai(z) = (2 — i) (@ — o(n))(z + o) (z + o(ai))
€k [.’17],
pi(2) = (z — i) (z + i) (z — o(ey)) (z + o())
€ M [z];
vi(z) = (z — o) (@ + o) (x
with 1 <4,j <2 and i # j.

We shall show that f(a,z) is reducible if and
only if one of the fields ki, M; and M, coincides
with Q.

At first, if k1 =Q, M; = Q or M; = Q, then
f(a, ) is obviously reducible over Q.

Conversely, we assume that f(a,x) is reducible
over Q. Let 3 be a root of an irreducible factor of
f(a,z). Since f(a,z)|f(a,o(x)), we see that —( and
+o0(0) are also roots of f(a,z). Similarly, if v is a
root of f(a,x) which is different from +3 and +o(/3),
then so are —v,=+o(vy). Now we set g(z) = (z —
B)@—o()a+ Bz +0(8) and hlz) = (-
(x—=o(¥)(x+7)(x+o0(y), and we obviously
have f(a,x) = g(x)h(z). Hence the pair (g(x), h(z))
coincides with one of (A(x), XAa(x)), (u1(x),pu2(z))
or ((z),v2(x)). Thus we get ky =Q, M1 =Q or
M2 = Q

Next we consider the conditions for k;, My or
M> to coincide with Q.

We first consider the case k; = Q, equivalently
Va? —8 € Q. We can show that this condition is
equivalent to a =2A/B with a rational solution
(A, B) of the Diophantine equation A? — 2B% = 1.

Next, if M; = Q, then we get v € Q because
M, D ky. Noting that v* = a? + 1, we can write a in
the form a = (n? — 1)/(2n) with n € Q. This equa-
tion yields v = (n? +1)/(2n). Therefore M; = Q is
equivalent to the condition that

(v=1)(v—3) = ((n—1)/(2n))*((n —

is a square. If there exists ¢ in Q* such that
(n —3)? —8 = ¢2, then we have

—aj)(z + o) € My[z]

3)? —8)
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() ()
—2(2) =1
q q
If we set n—3=2A/B with (A, B) satisfying
A% —2B% =1, then the element (v—1)(v—3) is a
square. Hence we can get the following equality:
_ 2(A+ B)(A+2B)
~ B(2A+3B)

The converse is clear.

We can treat the case My = Q similarly. In-
deed, if n + 3 = 2A/B where (A, B) satisfies A? —
2B% = 1, then the element (v + 1)(v + 3) is a square.
Thus, in this case, a has the form

_ 2(A—-B)(A-2B)
~ B(2A-3DB)

Replacing the sign of B implies (3.2). The converse
is clear again. (|

Remark 3.2. We can obtain infinitely many
non-isomorphic fields if we specialize a € Q. To
prove this, it is enough to show that there are
infinitely many quadratic fields k; when a runs
through the rational integers. This follows from the
result of Estermann [3].

4. Non-degenerate case. In this section,
we see exactly when the Galois group of a special-
ization f(a,z) with a € Q is isomorphic to Cy 1 Cs.

Theorem 4.1. We assume that the special-
ization f(a,xz) with a € Q is irreducible. The Galois

group of f(a,x) is isomorphic to Cy 2 Cy if and only if
2

a # -
Proof. Since f(a,z) is irreducible, it follows
from Theorem 2.1 that the extensions L;/k; are
cyclic extensions of degree 4 and we have k; # Q.
If Gal(X$/Q) is isomorphic to Cy1Cs, then
E?/kl is an extension of degree 16, hence we get
K; # Ky. By (2.1) and (2.2), the fields are K; # K»
if and only if va® + 1 ¢ Q, equivalently a does not
have the form (n?> —1)/(2n) with n € Q.
Conversely, if a # (n? — 1)/(2n) for any n € Q,
then the extensions L;/k; and Lo/k; are distinct
cyclic extensions of degree 4 because K; # K.
Moreover k;/Q is a quadratic extension because
the polynomial f(a,x) is irreducible; hence we get
(X% : Q] = 32. O
The complex conjugation lies in one of the
conjugacy classes of order less than or equal to 2.
The following conjugacy classes of G are of order

with a rational number n.
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less than or equal to 2:
CI(1), Cl(o}03) of length 1;
Cl(o?) of length 2;
Cl(7) of length 4.

The following theorem describes the signature
of 2§ whose Galois group is isomorphic to Cy 1 Cs.

Proposition 4.2. We assume that the spe-
cialization f(a,x) with a € Q has the Galois group
isomorphic to Cy 1 Cs.

(i) Ifa < —2V/2, then X% is a real field.

(i) If —2v2 < a < 2V/2, then X§ is an imaginary
field and the complex conyugatzon lies in CI(T).
If 2v2 < a, then Y% is a CM-field (i.e., the

complex conjugatwn lies in Cl(o}03) contamed

in the center of the group).

Proof. By the proof of Theorem 2.1, the group
C41Cy is generated by o1, 09 and 7 defined by (2.3),
(2.4) and (2.5), respectively. Let a; and ay be the
roots of f(a,z) defined in the proof of Theorem 2.1.
The quadratic fields contained in Z} are kg, k1 and
ko (see (2.6), (2.7) and (2.8)). In particular, ks is a
real quadratic field for any a € Q.

(i) If a < —2v/2, then it is easy to see that the
four elements af, a3, 01(a1)2 and ag(a2)2 are
positive. This gives the result.

(ii) If —2v/2 < a < 2v/2, then k; and ko are imag-
inary quadratic fields. The field ks is contained
in the totally imaginary quartic field

Q(vVa® —8,va*>+1) and the fixed group of

this quartic field is (0?,0102). On the other
hand, the fixed subgroup of ks is (02, 0102, 7).
This implies that the complex conjugation lies
in the conjugacy class of 7.

If 2v/2 < a, then both o? and a3 are negative.
The field ¥} contains subfields N = Q(a1az),
Ny = Q(al,%) and Ny = Q(al,ag) of degree
16. Since both o and o3 are negative, the
fields N; and N, are totally imaginary. Thus
the field X = Q(a1, a9) is also totally imag-
inary. On the other hand, the field N is the
composite field of all M;’s in Proposition 2.2.
We can show that N is totally real by
examining the generators. Since the fixed
subgroup of N is <a?a§) the complex con-
jugation acts as o%03.

(iii)

(iii)

O
Remark 4.3. By Proposition 4.2, if —2/2 <
a <22, then Gal(¥%/Q) has an odd faithful

irreducible 2-dimensional complex representation
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induced from a character corresponding to the real
quadratic field k.

In the paper [4], they constructed Cy!Cy-ex-
tensions with the complex conjugation lying in
Cl(a?).

5. Degenerate cases. In this section, we
classify the Galois groups Gal(¥%/Q) when it is
smaller than Cy41Cy and the polynomial f(a,x) is
irreducible over Q.

By Theorem 4.1, Gal(¥%/Q) # C11C, if and
only if a = (n? — 1)/(2n) w1th n € Q. Then we have
v=(n?+1)/(2n) € Q and this implies ky = Q.

Since the Galois group of f((n?—1)/(2n),z)
over the function field Q(n) is Gal(X;/Q(n)) =
Gal(Xs/ks) = Qs x Cs, the Galois group of a spe-
cialization f((n®> —1)/(2n),z) with n € Q is isomor-
phic to a subgroup of Qg x Cy. If f(a,z) is irredu-
cible with a specific a € Q and the Galois group
of f(a,x) is smaller than Qg x Co, then we have
[X%:Q] =8. Hence, in this case, f(a,z) is an
irreducible Galois polynomial. The fields M; and
M> in Proposition 2.2 cannot coincide with Q by
the proof of Theorem 3.1. Hence from Proposition
2.2, it follows that one of M3, My, My or Mg has to
coincide with the base field Q. Therefore, we
conclude that the Galois group of f(a,x) is isomor-
phic to one of the groups Dy, Cy x Cy, Qs by the
same proposition.

Proposition 5.1. We

n?—1

2n

(i) If there exists Y € Q which satisfies Y? = n? +
1, then Gal(3%/Q) =

(ii) If there exists Y €Q whzch satisfies Y2 = nt —

6n3 +2n2 —6n+1 or Y2=n'+6n+2n%+

6n + 1, then Gal(X$/Q) = Cy x Cs.

If there exists Y 6 Q which satisfies Y? =

assume that a =

for somen € Q.

(iii)

(N2 +1)(n? —6n+1)(n* +6n + 1), then
Gal(4/Q) = Qs

(iv) If none of the conditions above holds, then
Gal(24/Q) = Qs x Ca.

Proof. (i) If there exists a rational number
Y satisfying Y?=n?+1, then we have
vivt1l)=(nx1)/(2n)Y € Q; and hence,

Mz = Q. Thus we get Gal(X4/Q) = Dy
(ii) If there exists a rational number Y satisfying
Y2 =n*—6n342n? —6n + 1, then we have
v(v—3)=(n—1)/(2n)Y € Q; and hence,
M, = Q. If there exists a rational number Y
which satisfies Y? = n* + 6n® + 2n% 4+ 6n + 1,
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(iii)

(iv)

(i)
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then we get Ms; = Q similarly. Thus in the
cases where My =Q or M;=Q, we have
Gal(E?/Q) >~ () x Cy.

If there exists Y € Q such that Y? = (n?+
1)(n? —6n+1)(n*>+ 6n+1), then we have
Vol —1)(v=3)(v+3) = (n—1)/(4n*)Y €Q.
This implies Mg = Q. Therefore, we get
Cal(2%/Q) = Qs.

If none of the conditions in (i) and (ii) and (iii)
is satisfied, then none of the fields M; (i =
3,4,5,6) coincides with Q. Hence, we get
Gal(2%/Q) = (03,0109, T) =2 Qg x Cs.

O
Remark 5.2. (i) The curve Y?=n?-—
6n° +n? —6n + 1 in Proposition 5.1 (ii) is a
non-singular plane curve of genus 1 and has
a rational point (0:1:0) in the projective
coordinates. Therefore it has a Weierstrass
model E: Y?Z —6XYZ —54Y 7% = X3 +
14X%2Z +45X27% with  (y:n:2)— (2n%z —
6nz% + 2yz? — 72° : 4nd — 12n%z + 4dnyz —
14n2% : 2%). The Mordell-Weil group of E is

EQ)=(-9:0:1),(9:126:1)) 2 Z/2Z & Z.

Since the inverse map gives n =4X% —
12X%7 +4XYZ — 14X Z?, the point (9:126 :
1) on E gives a=24/7, for example. In
general, these corresponding a’s have huge
heights. All these elliptic curve computation
were done with Magma [1].

The genus 2 curve

C:Y?=n?>+1)(n*—6n+1)(n*+6n+1)

appeared in Proposition 5.1 (iii) has rational
points (1:£1:0) and (0:=£1:1) in the pro-
jective coordinates. These points are irrelevant
for our purpose. It is very probable that these
are all the rational points on C. The anony-
mous referee suggested us to use the elliptic
Chabauty method by Bruin and Stoll [2] to
prove this assertion. We describe the method
here.

We decompose the right-hand side of the
defining equation of C' as a product of

A(n) = (n+i)(n* — 6n + 1)
and
B(n) = (n —i)(n* +6n + 1) € Q(i)[n].

The resultant computation shows 6=

Acknowledgments.
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ged(A(n), B(n)) | 2(14i)"3%. We
an elliptic curve Ejs: 622 = A(n) defined over
Q(7). We shall compute the rational points on
Es over Q(i) whose n-coordinates are rational
and substitute the value of n to C to find the
corresponding Y. Since the point (n,z) on
622 = A(n) corresponds to the point (n,dz) on
d?62* = A(n), it suffices to consider squarefree
8’s. Thus we may assume 6 € {1,4,3,3i,1+ i,
3(1+4)}. If 6€{1,3i,3(1 +4)}, then we find
rank s = 0 and the n-coordinates of the
torsion points are 1, which gives (1:41:0)
on C. For the other §, we have rank Fs = 1.
Using Magma, we can compute the subgroup
E' of Es(Q(7)) of an odd finite index. We apply
the elliptic Chabauty method with the map
w:E — P (X:Y:2)— (X:Z) to find
the subset of E’ whose image under u is
contained in P'(Q). The program successfully
finds some points on Es with rational n-coor-
dinates but, at this moment,
guarantee that they are all. For example,
when 6 = 3, the program finds three possible

points on FEj
5 46 + 691
©:1:0), (=229 1
4 8
but the bound of the number of the possible
points is greater than 3.
The author would like

consider

we cannot

to thank the anonymous referee for his/her helpful
and constructive comments on Proposition 5.1. The
author also would like to express his gratitude to
Prof. Masanari Kida and Dr. Genki Koda for their
helpful discussion during the preparation of this

paper.
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