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Abstract: By Hartman–Nirenberg’s theorem, any complete flat hypersurface in Euclidean

space must be a cylinder over a plane curve. However, if we admit some singularities, there are

many non-trivial examples. Flat fronts are flat hypersurfaces with admissible singularities.

Murata–Umehara gave a representation formula for complete flat fronts with non-empty singular

set in Euclidean 3-space, and proved the four vertex type theorem. In this paper, we prove that,

unlike the case of n ¼ 2, there do not exist any complete flat fronts with non-empty singular set in

Euclidean ðnþ 1Þ-space ðn � 3Þ.
Key words: Flat hypersurface; flat front; Hartman–Nirenberg’s theorem; singular point;

wave front; coherent tangent bundle.

1. Introduction. Let Rnþ1 be the Euclidean

ðnþ 1Þ-space. By Hartman–Nirenberg’s theorem [2],

any complete flat hypersurface in Rnþ1 must be a

cylinder over a plane curve. Here, a cylinder is a

regular hypersurface which is congruent to f :

Rn ! Rnþ1 defined by

fðt; w2; . . . ; wnÞ :¼ ðxðtÞ; yðtÞ; w2; . . . ; wnÞ;

where t 7! ðxðtÞ; yðtÞÞ is a regular curve in R2. We

remark that Massey [8] gave an alternative proof

for n ¼ 2.

However, in R3, there are non-trivial flat

surfaces with admissible singularities called flat

fronts. Here, a front is a generalized notion of

regular surfaces (more generally, regular hyper-

surfaces) with admissible singular points. See

Section 2 for precise definitions. Murata–Umehara

[9] gave a representation formula for complete flat

fronts with non-empty singular set, and proved the

four vertex type theorem: Let � : S1 ! S2 be a

regular curve without inflection points, and � ¼
aðtÞdt a 1-form on S1 ¼ R=2�Z such that

R
S1 � � ¼ 0

holds. Then, f�;� : S1 �R! R3 defined by

f�;�ðt; vÞ :¼ �̂ðtÞ þ v �ðtÞð1:1Þ

�̂ðtÞ :¼
Z t

0

að�Þ �ð�Þd�
� �

is a complete flat front with non-empty singular set.

Conversely, let f : M2 ! R3 be a complete flat front

defined on a connected smooth 2-manifold M2. If the

singular set SðfÞ of f is not empty, then f is umbilic-

free, co-orientable, M2 is diffeomorphic to S1 �R,

and f is given by (1.1). Moreover, if the ends of f are

embedded, f has at least four singular points other

than cuspidal edges.

Therefore, it is natural to ask what occurs in

the higher dimensional cases. In this paper, we

prove that there do not exist any non-trivial flat

fronts in higher dimensions:

Theorem 1. If n � 3, there do not exist any

complete flat fronts with non-empty singular set in

Rnþ1.

Combining Hartman–Nirenberg’s theorem [2],

Murata–Umehara’s theorem [9] and Theorem 1,

we have the classification of complete flat fronts

in Rnþ1.

We remark that, although there do not exist

any complete flat fronts in Rnþ1 ðn � 3Þ, there are

many weakly complete ones. For example, we can

construct a weakly complete flat front by a pair

ð�ðtÞ; aðtÞÞ of a complete regular curve �ðtÞ in Sn

and a smooth function aðtÞ on R (cf. Proposi-
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tion 8). Here, we denote by Sn the n-sphere of

constant sectional curvature 1. Moreover, by a

regular curve in Rnþ1, one may construct a flat

front called tangent developable. (See [7] for more

details and properties of singularities of tangent

developables.)

We also remark that there are several works

related to Murata–Umehara’s theorem. Naokawa

[10] gave an estimation of singular points other than

cuspidal edges on asymptotic completions of devel-

opable Möbius strips. On the other hand, flat fronts

can be considered as fronts with one principal

curvature zero. In a previous paper [5], the author

gave a classification of weakly complete fronts with

one principal curvature non-zero constant.

With respect to the case of non-flat ambient

spaces, it is known that flat fronts in Rnþ1 are

identified with fronts of constant sectional curva-

ture 1 (CSC-1 fronts) in Snþ1 via the central

projection of a hemisphere to a tangent space.

Therefore, the local nature of flat fronts in Rnþ1 is

the same as that of CSC-1 fronts in Snþ1. However,

they may display different global properties. In [6],

the author gave a classification of complete CSC-1

fronts, which is a generalization of O’Neill–Stiel’s

theorem [11]. In particular, in the case of n � 3,

there exist many non-trivial complete CSC-1 fronts

in Snþ1, although there do not exist any complete

flat fronts other than cylinders in Rnþ1. (See also [4]

for the case of negative sectional curvature.)

This paper is organized as follows: In Section 2,

we shall review the definition and fundamental

properties of flat fronts. Using them, we shall prove

Theorem 1 in Section 3.

2. Preliminaries. We denote by Rnþ1 the

Euclidean ðnþ 1Þ-space, and Sn the unit sphere

Sn :¼ fx 2 Rnþ1; x � x ¼ 1g;

where the dot ‘�’ is the canonical inner product on

Rnþ1. Let Mn be a connected smooth n-manifold

and

f : Mn ! Rnþ1

a smooth map. A point p 2Mn is called a singular

point if f is not an immersion at p. Otherwise, we

call p a regular point. Denote by SðfÞ ð�MnÞ the

set of singular points. If SðfÞ is empty, we call f a

(regular) hypersurface.

A smooth map f : Mn ! Rnþ1 is called a

frontal, if for each point p 2Mn, there exist a

neighborhood U of p and a smooth map � : U ! Sn

such that

dfqðvÞ � �ðqÞ ¼ 0

holds for each q 2 U and v 2 TqMn. Such a � is

called the unit normal vector field or the Gauss

map of f . If � can be defined throughout Mn, f is

called co-orientable. On the other hand, we say

orientable if Mn is orientable. If

ðL :¼Þ ðf; �Þ : U ! Rnþ1 � Sn

gives an immersion, f is called a wave front (or a

front, for short). The map L ¼ ðf; �Þ is called the

Legendrian lift of f .

2.1. Completeness, weak completeness,

umbilic points. The first fundamental form (i.e.,

the induced metric) is given by ds2 :¼ df � df . For a

front f : Mn ! Rnþ1 with a (possibly locally de-

fined) unit normal vector field �,

ds2
# :¼ ds2 þ d� � d�

gives a positive definite Riemannian metric called

the lift metric. If the lift metric ds2
# is complete, f

is called weakly complete. On the other hand, f is

called complete, if there exists a symmetric cova-

riant ð0; 2Þ-tensor T on Mn with compact support

such that ds2 þ T gives a complete metric on Mn. In

this case, the singular set SðfÞ must be compact. As

noted in [9], if SðfÞ is empty, then f : Mn ! Rnþ1 is

complete as a front if and only if f is complete as

a regular hypersurface (i.e., ðMn; ds2Þ is a complete

Riemannian manifold).

Fact 2 ([9, Lemma 4.1]). A complete front is

weakly complete.

A point p 2Mn is called an umbilic point, if

there exist real numbers 	1, 	2 such that

	1ðdfÞp ¼ 	2ðd�Þp; ð	1; 	2Þ 6¼ ð0; 0Þ

hold. For a positive number 	 > 0, set

f	 :¼ f þ 	�; �	 :¼ �:ð2:1Þ

Then we can check that f	 is a front and �	 gives a

unit normal along f	. Such an f	 is called the

parallel front of f . Umbilic points are common in its

parallel family.

Fact 3 ([6, Lemma 2.7]). Let p 2Mn be a

singular point of a front f . Then, p is an umbilic

point if and only if rankðdfÞp ¼ 0 holds. In this case,

we have rankðd�Þp ¼ n for any unit normal vector

field of f .

26 A. HONDA [Vol. 94(A),



2.2. Flat fronts. In [12,14], Saji–Umehara–

Yamada introduced coherent tangent bundles,

which is a generalized notion of Riemannian mani-

folds.

Let E be a vector bundle of rank n over a

smooth n-manifold Mn. We equip a fiber metric h ; i
on E and a metric connection D on ðE; h ; iÞ. Let

’ : TMn ! E be a bundle homomorphism such that

DX’ðY Þ �DY ’ðXÞ � ’ð½X; Y �Þ ¼ 0ð2:2Þ

holds for arbitrary smooth vector fields X, Y on

Mn. Then

E ¼ ðE; h ; i; D; ’Þ

is called a coherent tangent bundle over Mn.

It is known that, in general, coherent tangent

bundles can be constructed only from positive

semi-definite metrics called Kossowski metrics (cf.

[3,15]).

We shall review the coherent tangent bundles

induced from frontals (cf. [14, Example 2.4]). For a

frontal f : Mn ! Rnþ1, set Ef , h ; if , Df and ’f ,

respectively, as follows:

. Ef is the subbundle of the pull-back bundle

f�TRnþ1 perpendicular to �,

. h ; if is the metric on Ef induced from the

canonical metric on Rnþ1,

. Df is the tangential part of the Levi–Civita

connection on Rnþ1,

. ’f : TMn ! Ef defined as ’fðXÞ :¼ dfðXÞ.
Then, Ef ¼ ðEf ; h ; if ;Df ; ’fÞ is a coherent tangent

bundle, which we call the induced coherent tangent

bundle.

Definition 4 ([6]). A coherent tangent bun-

dle is said to be flat if

RDðX; Y Þ� ¼ 0

holds for all smooth vector fields X, Y on Mn and

each smooth section � of E, where RD is the

curvature tensor of the connection D given by

RDðX; Y Þ� :¼ DXDY � �DYDX� �D½X;Y ��:

A frontal f is called flat, if the induced coherent

tangent bundle Ef is flat.

In [6], the following characterization of flatness

was proved by using the Gauss equation for frontals

given by Saji–Umehara–Yamada [13, Proposition

2.4].

Fact 5 ([6, Lemma 3.3]). Let f : Mn ! Rnþ1

be a frontal with a unit normal vector field �. Then

f is flat if and only if

rankðd�Þ 	 1ð2:3Þ

holds on Mn.

We remark that Murata–Umehara [9] defined

the flatness for frontals in R3 by the condition (2.3).

Therefore, our definition of flatness is compatible to

that given by Murata–Umehara. We also remark

that, if SðfÞ is empty, then f : Mn ! Rnþ1 is flat as

a front if and only if f is flat as a regular

hypersurface.

3. Proof of Theorem 1. Denote by Uf the

set of umbilic points. Since Uf is a closed subset in

Mn, the non-umbilic point set Mn n Uf is open.

Lemma 6. Let f : Mn ! Rnþ1 be a non-

totally-umbilic flat front. For each non-umbilic point

q 2Mn n Uf , there exist a local coordinate neigh-

borhood ðU ; u1; . . . ; unÞ of q and a smooth function


 ¼ 
ðu1; . . . ; unÞ on U such that

�
�u1
¼ fu1

; �uj ¼ 0; �u1
� fuj ¼ 0ð3:1Þ

hold for each j ¼ 2; . . . ; n, and f�u1
; fu2

; . . . ; fung is a

frame on U. For each u1, set the slice Uu1
of U as

Uu1
:¼ fu 2 Rn�1; ðu1;uÞ 2 Ug:

Then, the restriction f jUu1
: Uu1

! Rnþ1 is a totally

geodesic embedding for each u1.

Proof. Since f is flat, Fact 5 implies that there

exists a local coordinate system ðV ; v1; . . . ; vnÞ
around q 2Mn n Uf such that

�vj ¼ 0 ðj ¼ 2; . . . ; nÞ

holds. Then, we have

Lv1
¼ ðfv1

; �v1
Þ; Lvj ¼ ðfvj ; 0Þ ðj ¼ 2; . . . ; nÞ:

Since f is a front, fLv1
; Lv2

; . . . ; Lvng is linearly

independent around q. And hence, we have that

ffv1
; fv2

; . . . ; fvng or f�v1
; fv2

; . . . ; fvng is linearly

independent around q. In each case, there exists a

positive number 	 > 0 such that the parallel front

f	 :¼ f þ 	 � is a flat immersion around q (cf. (2.1)).

Since f is umbilic-free around q, so is f	. Let

ðU; u1; . . . ; unÞ be a curvature line coordinate sys-

tem of f	 around q 2Mn n Uf . That is, for each

j ¼ 2; . . . ; n,

ð�	Þuj ¼ 0; ðf	Þu1
� ðf	Þuj ¼ 0ð3:2Þ

and

�ð�	Þu1
¼ �ðf	Þu1

ð3:3Þ
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hold, where � ¼ �ðu1; . . . ; unÞ is a smooth function

on U . In this case, the principal curvatures

�	1; . . . ; �	n of f	 are given by �	1 ¼ �, �	j ¼ 0 ðj ¼
2; . . . ; nÞ. Since f	 is umbilic-free, � 6¼ 0 on U.

Substituting (2.1) into Eqs. (3.2) and (3.3), we may

conclude that (3.1) holds with


 :¼ 1þ 	�
�

:

With respect to the third assertion, n :¼ �u1
=j�u1

j
gives a unit normal vector field of f jUu1

. Set  :¼
1=j�u1

j. Then, for each j ¼ 2; . . . ; n,

nuj ¼  uj�u1
þ  �u1uj ¼  �1 ujn

and n � nuj ¼ 0 yield nuj ¼ 0 on Uu1
. Together with

�uj ¼ 0 ðj ¼ 2; . . . ; nÞ on Uu1
, we have the conclu-

sion. �

By Lemma 6, since the image of f jUu1
is

included in an ðn� 1Þ-dimensional affine subspace

An�1
u1

of Rnþ1 for each u1, by a coordinate change of

ðu2; . . . ; unÞ, we may take a new coordinate system

ðU 0; u1; w2; . . . ; wnÞ such that ðw2; . . . ; wnÞ is the

canonical Euclidean coordinate system of An�1
u1

for

each u1. Namely, fwj � fwk ¼ 	jk holds for j; k ¼
2; . . . ; n.

Set �ðu1Þ and ejðu1Þ ðj ¼ 2; . . . ; nÞ as

�ðu1Þ :¼ fðu1; 0; . . . ; 0Þ;
ejðu1Þ :¼ fwjðu1; 0; . . . ; 0Þ;

respectively. Then, we have

fðu1; w2; . . . ; wnÞ
¼ �ðu1Þ þ w2e2ðu1Þ þ � � � þ wnenðu1Þ:

Since f has no umbilic point on U , the Gauss map �

depends only on u1 and �u1
6¼ 0 holds. Therefore,

�ðu1Þ :¼ �ðu1; 0; . . . ; 0Þ

is a regular curve in Sn. By a coordinate change

of u1, we may take a new coordinate system

ðW ; t; w2; . . . ; wnÞ such that the spherical regular

curve t 7! �ðtÞ is parametrized by arc-length. Thus,

we have

fðt; w2; . . . ; wnÞð3:4Þ
¼ �ðtÞ þ w2e2ðtÞ þ � � � þ wnenðtÞ:

Denote by eðtÞ :¼ �0ðtÞ the unit tangent vector

of �ðtÞ. Since fwj ¼ ej for each j ¼ 2; . . . ; n and �ðtÞ
is the Gauss map of f , we have

�ðtÞ � ejðtÞ ¼ 0 ðj ¼ 2; . . . ; nÞ:ð3:5Þ

In addition, the third equation of (3.1) yields

�0ðtÞ � ejðtÞ ¼ 0 ðj ¼ 2; . . . ; nÞ:ð3:6Þ

Therefore, fejðtÞgj¼2;...;n is an orthonormal frame of

the normal bundle ð�0ðtÞÞ? along the spherical

regular curve �ðtÞ. Moreover, Eqs. (3.5) and (3.6)

yield

�ðtÞ � e0jðtÞ ¼ 0 ðj ¼ 2; . . . ; nÞ:ð3:7Þ

Hence, by (3.4), ft � � ¼ 0 implies �0ðtÞ � �ðtÞ ¼ 0.

Therefore, there exist smooth functions aj ¼ ajðtÞ
ðj ¼ 1; . . . ; nÞ such that

�0ðtÞ ¼ a1ðtÞeðtÞð3:8Þ
þ a2ðtÞe2ðtÞ þ � � � þ anðtÞenðtÞ:

Thus, we have the following

Lemma 7. Let f : Mn ! Rnþ1 be a non-

totally-umbilic flat front. For each non-umbilic point

q 2Mn n Uf , there exist a local coordinate neigh-

borhood ðW ; t; w2; . . . ; wnÞ of q, a regular curve �ðtÞ
in Sn, an orthonormal frame fe2ðtÞ; . . . ; enðtÞg of the

normal bundle ð�0Þ? along �ðtÞ and smooth functions

fajðtÞgj¼1;...;n such that f is given by (3.4) on W ,

where

�ðtÞ :¼
Z t

0

�ð�Þ d�ð3:9Þ

�ð�Þ :¼ a1ð�Þeð�Þ þ
Xn
j¼2

ajð�Þejð�Þ
 !

and eðtÞ :¼ �0ðtÞ.
Finally, we shall reduce the numbers of func-

tions. For a unit speed regular curve � ¼ �ðtÞ : I !
Sn defined on an open interval I, set eðtÞ :¼ �0ðtÞ.
Then, there exist an orthonormal frame

fejðtÞgj¼2;...;n of the normal bundle along � and

smooth functions 
jðtÞ ðj ¼ 2; . . . ; nÞ such that

e0jðtÞ ¼ �
jðtÞeðtÞ

for each j ¼ 2; . . . ; n. Such a frame fejðtÞgj¼2;...;n is

called the Bishop frame (cf. [1]).

Let f ¼ fðt; w2; . . . ; wnÞ be the flat front given

by (3.4) with the Bishop frame fejðtÞgj¼2;...;n. Set


ðt; w2; . . . ; wnÞ :¼ a1ðtÞ �
Xn
j¼2

wj
jðtÞ:

Since fwj ¼ ejðtÞ for j ¼ 1; . . . ; n,

ft ¼ 
ðt; w2; . . . ; wnÞ eðtÞ
þ a2ðtÞe2ðtÞ þ � � � þ anðtÞenðtÞ;
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and d� � d� ¼ dt2, the lift metric ds2
# ¼ df � df þ d� �

d� is given by

ds2
# ¼ 1þ 
2 þ

Xn
j¼2

ðajðtÞÞ2
 !

dt2

þ
Xn
j¼2

2ajðtÞdwjdtþ ðdwjÞ2
� �

:

By a straightforward calculation, it can be checked

that each wj-curve ðj ¼ 2; . . . ; nÞ gives a geodesic of

the lift metric ds2
#. Thus, if f is weakly complete,

every wj-curve ðj ¼ 2; . . . ; nÞ can be defined on the

whole real line R. For each j ¼ 2; . . . ; n, set

bjðtÞ :¼ �
Z t

0

ajð�Þd�:

By a coordinate change

ðt; w2; . . . ; wnÞ 7! ðt; w2 þ b2ðtÞ; . . . ; wn þ bnðtÞÞ;

we have

fðt; w2 þ b2ðtÞ; . . . ; wn þ bnðtÞÞ

¼ �ðtÞ þ
Xn
j¼2

ðwj þ bjðtÞÞejðtÞ

¼ �̂ðtÞ þ
Xn
j¼2

wjejðtÞ;

where we set �̂ðtÞ as

�̂ðtÞ :¼ �ðtÞ þ b2ðtÞe2ðtÞ þ � � � þ bnðtÞenðtÞ:

By (3.9), we have �̂0ðtÞ ¼ aðtÞeðtÞ, where

aðtÞ :¼ a1ðtÞ � b2ðtÞ
2ðtÞ � � � � � bnðtÞ
nðtÞ:

Therefore, we have the following

Proposition 8. Let f : Mn ! Rnþ1 be a

weakly complete flat front which is not totally-

umbilic. Around each non-umbilic point, there

exist an interval I, a local coordinate system ðI �
Rn�1; t; w2; . . . ; wnÞ, a regular curve � : I ! Sn

parametrized by arc-length, an orthonormal frame

fe2; . . . ; eng of the normal bundle ð�0Þ? along � and a

smooth function aðtÞ on I such that f is given by

fðt; w2; . . . ; wnÞ ¼ �̂ðtÞ þ
Xn
j¼2

wjejðtÞð3:10Þ

�̂ðtÞ :¼
Z t

0

að�Þ�0ð�Þd�
� �

on I �Rn�1. Conversely, for a given unit speed

regular curve � : I ! Sn defined on an interval I, an

orthonormal frame fe2; . . . ; eng of the normal bundle

ð�0Þ? along � and a smooth function aðtÞ on I, f :

I �Rn�1 ! Rnþ1 defined as (3.10) is an umbilic-

free flat front.

Theorem 9. Let f : Mn ! Rnþ1 be a weakly

complete flat front. If n � 3 and the singular set SðfÞ
is not empty, then SðfÞ cannot be compact.

Proof. Take a singular point q 2 SðfÞ. By

Facts 3 and 5, q is not an umbilic point. By

Proposition 8, we have that f is given by (3.10)

on U :¼ I �Rn�1. Without loss of generality,

fe2; . . . ; eng is the Bishop frame such that

e0jðtÞ ¼ �
jðtÞeðtÞ holds for each j ¼ 2; . . . ; n. We

remark that the curvature function ��ðtÞ of �ðtÞ is

given by ��ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
2ðtÞÞ2 þ � � � þ ð
nðtÞÞ2

q
.

Differentiating (3.10), we have

ft ¼ 
̂ðt; w2; . . . ; wnÞeðtÞ; fwj ¼ ejðtÞ

for j ¼ 1; . . . ; n, where


̂ðt; w2; . . . ; wnÞ :¼ aðtÞ �
Xn
j¼2

wj
jðtÞ:

Since

ft ^ fw2
^ � � � ^ fwn

¼ 
̂ðt; w2; . . . ; wnÞeðtÞ ^ e2ðtÞ ^ � � � ^ enðtÞ;

we have

SðfÞ \ U ¼ fp 2 U ; 
̂ðpÞ ¼ 0g:

Let S1, S2 be the subsets of SðfÞ \ U defined by

S1 :¼ fðt; w2; . . . ; wnÞ 2 U ; aðtÞ ¼ ��ðtÞ ¼ 0g;
S2 :¼ fðt; w2; . . . ; wnÞ 2 U ;


̂ðt; w2; . . . ; wnÞ ¼ 0; ��ðtÞ 6¼ 0g;
respectively. Then, we have SðfÞ \ U ¼ S1 [ S2.

Since �ðt; w2; . . . ; wnÞ ¼ �ðtÞ gives a unit normal

vector field along f , the lift metric ds2
# is given by

ds2
# ¼ 1þ 
̂2

� �
dt2 þ

Xn
j¼2

dw2
j

on U .

If q ¼ ðto; wo2; . . . ; wonÞ 2 S1, aðtoÞ ¼ ��ðtoÞ ¼ 0

holds. In this case, we have ðto; w2; . . . ; wnÞ 2 S1

for any wj 2 R ðj ¼ 2; . . . ; nÞ. In particular, c1 :

R! S1 ð�MnÞ given by

c1ðxÞ :¼ ðto; x; 0; . . . ; 0Þ

is a geodesic with respect to the lift metric ds2
# such

that ĉ1 :¼ f 
 c1 is a straight line in Rnþ1, and hence

SðfÞ ð� S1Þ cannot be compact.
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If q ¼ ðto; wo2; . . . ; wonÞ 2 S2, we have ��ðtoÞ 6¼ 0.

Without loss of generality, we may assume that


nðtoÞ 6¼ 0. Then, there exists " > 0 such that


nðtÞ 6¼ 0 for each t 2 Iðto; "Þ :¼ ðto � "; to þ "Þ.
Thus,

S2½to� :¼
(
ðt; w2; . . . ; wnÞ 2 Iðto; "Þ �Rn�1;

wn ¼
aðtÞ

nðtÞ

�
Xn�1

j¼2


̂jðtÞwj

)

is a subset of S2, where 
̂jðtÞ :¼ 
jðtÞ=
nðtÞ for j ¼
2; . . . ; ðn� 1Þ. Set a positive number ko as ko :¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð
̂2ðtoÞÞ2
q

. Since c2 : R! S2½to� given by

c2ðxÞ :¼ to;
1

ko
x; 0; . . . ; 0;

aðtoÞ

nðtoÞ

�

̂2ðtoÞ
ko

x

� �
is a geodesic with respect to the lift metric ds2

# such

that ĉ2 :¼ f 
 c2 is a straight line in Rnþ1, and hence

SðfÞ ð� S2½to�Þ cannot be compact. �

Proof of Theorem 1. We shall give a proof by

contradiction. Let f : Mn ! Rnþ1 a complete flat

front ðn � 3Þ. By Fact 2, f is weakly complete.

Assume that the singular set SðfÞ is not empty. By

the completeness of f , the singular set SðfÞ must be

compact, which contradicts Theorem 9. Hence, we

have that SðfÞ must be empty, and then f is a

complete flat regular hypersurface. �
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