No. 9]

Proc. Japan Acad., 93, Ser. A (2017) 99

Semi-discrete finite difference schemes for the nonlinear Cauchy problems

of the normal form
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Abstract:

We consider the Cauchy problems of nonlinear partial differential equations of

the normal form in the class of analytic functions. We apply semi-discrete finite difference
approximation which discretizes the problems only with respect to the time variable, and we give
a proof for its convergence. The result implies that there are cases of convergence of finite
difference schemes applied to ill-posed Cauchy problems.
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1. Introduction. Let us consider finite dif-
ference approximation of the Cauchy problems of
nonlinear partial differential equations (PDE’s) of
the normal form, and we show here its convergence
independently of stability of the Cauchy problems.
We know, in the class of analytic functions, unique
existence of solutions to the Cauchy problems of
the normal form as the Kowalevskaya theorem [4]
or the Cauchy-Kowalevskaya theorem ([2], [8] etc.),
and our results correspond to a discretization of the
Kowalevskaya theorem.

Within the standard framework of the theory
of finite difference methods, convergence of finite
difference approximation of the Cauchy problems is
proved under assumption of their well-posedness.
For the linear Cauchy problems, P. D. Lax and
R. D. Richtmyer [5] show that stability and
convergence of finite difference approximation of
the well-posed Cauchy problems are equivalent to
each other, and we are afraid that independence
between the concepts of convergence and stability
may be sometimes misunderstood. We remark the
independence in the present paper and show
convergence of finite difference approximation in
the class of analytic functions.

We follow the approach of L. Nirenberg [6]
and T. Nishida [7] to the nonlinear Cauchy prob-
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lems of the normal form. Whereas the classical
Kowalevskaya theorem requires analyticity of func-
tions with respect to all the variables that appear,
they radically weaken assumptions so that they
do not require analyticity with respect to t. Their
approach is to reduce the Cauchy problems of
PDE’s to that of abstract ordinary differential
equations on a scale of Banach spaces. In the
present work we discretize the reduced Cauchy
problem by forward difference approximation.
There is already a similar result for the linear cases
by Y. Iso [3], and we generalize it in the present
work.

In the final section we show some numerical
results for an ill-posed Cauchy problem. Without
stability of finite difference approximation, it is
difficult to observe convergence property on the
standard double precision arithmetic environments
of computers, but it is possible to do it on a
multiple-precision environment (e.g. exflib [1]).

2. Abstract Cauchy problems on Banach
scale. Following L. Nirenberg [6] and T. Nishida
[7], we introduce the Cauchy problems of abstract
ordinary differential equations on a scale of Banach
spaces. The abstract Cauchy problems contain
those for systems of nonlinear PDE’s of the normal
form (see [6]). Let B={B,},.,, be a scale of
Banach spaces: B is a family of Banach spaces B,
satisfying
(1) By C B, and [lul|, < [[ul|,

for 0 < p<p' < pyand u € By,

where | - [|, is the norm on B,. Let By be a linear
space which contains all B, (0 < p < py). Let F(t,u)
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be a mapping from a subset of R x By to By, and we
consider the Cauchy problem on B of the form

(2) du/dt = F(t,u(t)), u(t)],—y=0.

Suppose the following conditions for some positive
numbers 1, R, C, and K:

(3) F is a continuous mapping of
{t e R; [t| <n} x {ue By;|lull, < R}
to B, for 0 < p < p’ < py;
(4) F satisfies
1F(t,u) = F(t0)ll, < Cllu—=ll,, /(6" = p)
for p < p" < po, [t] <m, [lull, <R, vl < R;
(5) F satisfies
I1E@,0)ll, < K/(po— p)
for 0 < p < po, |t| < m, ||u||pU <R.

The following theorem, called the Nirenberg-
Nishida theorem, holds under the assumptions
above, and it contains the Kowalevskaya theorem.

Theorem 2.1 ([7]). Suppose (1) and (3)—(5).
Then there exists a positive number a < n/py such
that there exists a unique function u(t) which solves
the Cauchy problem (2) in the sense that

for every p < po, the function u(t) is C*
with values in B, on the interval |t| <
a(py — p) and satisfies ||u(t)]|, < R and (2).

I,

Remark 2.2. The choice of the value a
given in [7] implies [[u(t)||, < R/2 for 0 < p < py —
|t|/a, and we use this choice in Theorem 3.1.

In the present research, we apply finite differ-
ence method to approximate the solution to the
Cauchy problem (2) whose unique existence is
established by Theorem 2.1. We approximate d/dt
by forward difference but we do not approximate
the operator F', and therefore we call our scheme a
semi-discrete finite difference scheme.

3. Main result. For a number 7' > 0 and an
integer N > 1, we set At := T/N and t;, := kAt, and
consider the following finite difference scheme:

(" —uF) At = F(tp,ub), 0<k<N-—1,
u’ = 0.

This is equivalent to

k—1
(6) uf = At F(t;,u/), 0<k<N,
=0
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where the summation for £ = 0 equals zero. Our aim
is to show that, for suitable T' and large N, (6)
determines u’,...,u™ € By such that (¢, u*) be-
longs to the domain of F, and «* approximates
u(tx). We suppose additional hypotheses as follows:
(7) Fis a C' mapping of
{t € R; [t| <n} x {u € By; |u|l, < R}
to B, for 0 < p < p' < p;

(8) The partial derivative of F with respect to u
is a bounded operator from B, to B,, and the
operator norm satisfies

[Fu(t, w)]| < C/(p" = p)
for 0 < p<p' < po, t| <m [lull, < R;

(9) There is a number L > 0 such that the partial

derivative of F' with respect to t satisfies

IF (Wl < L/ — o)’

for 0< p< o < g [t <, Ilull, < R

Note that conditions (1), (5), (7), (8) assumed
in Theorem 3.1 imply unique existence of the
solution to (2) because (7) implies (3), (8) implies
(4), and Theorem 2.1 can be applied.

Theorem 3.1. Suppose (1), (5), and (7)-(9).
Let u(t) be the unique solution to (2) as asserted in
Theorem 3.1, and suppose that u(t) satisfies

(10)  lu(®)l, < R/2, 0<p<po—[t|/a.
Let ¢, p1, and T be positive numbers satisfying
(11) ¢ < min{a,1/4C%,

Then there exists a positive number S such that, if
SAt < R/2, equation (6) determines u* € B
for0 <k <N, and

(12)

o1 <po, T <cpr.

pi—ti/c

sup ||u/” — u(tk)Hp < SAt
0<k<N;tr<c(p1—p)
for every positive p < p;.
4. Proof of Theorem 3.1.
mate the second derivative of u(t).
Proposition 4.1. Suppose (1), (5), and (7)-
10). Then the solution u(t) to the Cauchy problem
(2) is a C? function from {t € R; |t| < a(py — p)} to
B,. Moreover, there is a number Vo > 0 such that

1" (@)l < Va/(po — p = |t]/a)?

for p and t satisfying 0 < p < po — |t|/a.
Proof. For p and t with 0 < p < py — |t|/a, let
o(t) = (p+ po — |f/a)/2. Then

First we esti-
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0<p<pt)<po—ltl/a

holds and [lu(?)| ;) < R/2 follows from (10). Using
(4) with p' = p(t) and (5), we have

[ (@O, < [ F(tult)) — F(,0)|, + | F(t,0)],
< Cllu)l )/ [o(t) = pl + K/ (po = p)-
Thus we obtain, with V}, = CR + K,
(13) [’ @®l, < Vi/(po — p = [t|/a)

for 0 < p < po — |t|/a. We apply (13) with p = p(t)
to get

1w @Ol < Vi/(po = p(t) = [t]/a).
Since F is C' by (7) and u(t) is a C' function
satisfying v/ = F(t,u), u is C* and
u'(t) = Fu(t, u(t)u'(t) + Fi(t u(t)).
Using (8) and (9) with p' = p(t), we obtain
" (@), < I1Fut w16 O]y + 1F:(E w@)]
< Va/(po — p— [tl/a)?
for 0 < p < po — |t|/a, with Vo = 4(CV; + L). O

To reduce our proof to Claim 4.2 below, we
define truncation errors wy, (0 < k< N —1) by

(14) [ultier) — u(to)]/At = F(ty, ulty)) + w.

Taylor’s theorem and Proposition 4.1 show that
there are vy, ...,vy_1 € By such that

ot P

(15)  u(tpsr) — u(ty) = F(ty, u(ty)) At + v At
(16) lvell, < Va/(po = p — trsr/a)’
for 0 < p < py — tg+1/a,
for 0 <k < N —1. From (14) and (15), we get
(17) wy, = VAt
Claim 4.2. Under the hypotheses of Theo-

rem 3.1, there exists a positive number S such that,
if SAt < R/2, elements ey, ...,ex € By are defined

by
k-1

(18) ex = ALY [F(t;,ulty) +€;) — F(t;, ult;)) — w)]
Jj=0

for 0 < k < N, and they satisfy

(19) lexll, < SAt, 0<p<p—ty/c

for0 <k <N.

We assume Claim 4.2 for the moment. Suppose
SAt < R/2. For 0< k<N and 0<p<p; —t;/c,
(18) determines ey, and [[ex]|, < 12/2 by (19). Since

Semi-discrete difference schemes for the nonlinear Cauchy problems 101

0<p<po—ti/a, we get [[u(ty)]|, < R/2 from (10)
hence ||u(tk) +exll, < R
Put u* := u(tk) + ej. Then we have ||uk|| <R
for 0 <k < N and 0 < p < p; —ti/c. Formula (14)
yields
k-
tk = At

,_.

) +w], 0<k<N.

\:

0
Adding this to (18) shows that u’ ..., u" satisfy
(6), and (19) yields (12). The proof is therefore
completed if we prove Claim 4.2.

5. Proof of Claim 4.2. Let ¢, p;, and T be
as in (11). We regard (18) as a fixed-point equation
for (eq,...,ex) in (By)"' and find a solution by
successive approximation. We introduce a family of
linear subspaces {Y4} . of (Bo)M*! as follows:

Y, = {f = (f()7. . .,fN) S (BO)N+1; [.ﬂ:,y < +OO}’
where

/1 = nf{M > 05 [|f,]l, < Mt/ (pr — p — ti/r)
for0< k< N,0<p<p —tg/a}.
We remark that (a) fy =0 for f € Y,; (b) [-], is a
norm on Y, which makes Y, a Banach space; (c) if
f €Y,, we have

(20) (15 < (714

and therefore Y, C Y3 CY,; and (d) if feY,, we
have

(21) Ifell, < [fla/(1/8 = 1/a)
force<fB8<a,0<k<N,0<p<p—t/B.

We hope to define a sequence {e(™}, _, of
,ext™) in (Bg)NJri1 by
(0,0,...,0); if e™ is
defined for some integer m > 0, define the next term
elm+) = (0, ¢, (M) .,eN (m+1)y by

Atz

- F(tw“( tj)) — wj]
for 1 <k < N. The goal is to show that the above
rule defines a sequence convergent in Y, and the
limit, say e = (e, ..., en), satisfies (18).
(Step 1) By putting m =0 in (22), compo-
nents of e!) are given by

forc<fB<a

elements e™ = (0,¢,(™), ...
the following rule: let e® =

(22) et = (tj, u(t;) + e;™)

(23) er z—Atij, 0<k<N.

We show [eW] < VAt with V = Va/(po — p1).
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For 1 <k < Nand 0 < p < p; — t;/a, we have
k-1
lex DN, < At>  Jlvyll, At
=0
by (17). For 0 < j < k — 1, it follows from (16) that
lvill, < Va/(po — p — ti1/a)®
< Va/(po = p1)(p1 — p — ti/a).
Thus we obtain, with V' =V,/(py — p1),
< (VA)t,/(pr — p — ti/a)

for 1<k<N, 0<p<p —t/a. Since eV =0,
[eW]! < VAL follows.
(Step 2) Take by and ¢y with

¢ < ¢y < by < min{a,1/4C},

lex™1,

and put 6:=1—¢y/by. Then by =c¢y/(1 —6) and
0 <6< 1. Take § with 0 < § < 1 and 4Cb, < 62, and
put by, := ¢/ (1 — 66™) for all integers m > 0. It will
be needed later that

1/bysr — 1/by, = 07 (1
We have c < ¢y < ---
[l < <l <Pl <l <[l
Y, CY, CY, C---C Y, CY,
by (20). Therefore
(24) V) €Yy,

— 9)(()0 — Co)/b()C().

< by < by < by < a, hence

[eV], < VAL,
in view of Step 1. By (21), we also have
(25) eV € B,
(26) e, < [eM];,/(1/br —1/by)
S b()C()VAt/(bO - CO)(l - 0),

for 0 < k< Nand0<p<p —t/b.

(Step 3) We take a positive number S as

S = b()C()V/(b() — C())(]. — 9)2,

and suppose that SAt < R/2. Then the following
assertions hold for all integers m > 0:

(1),, €9,...,e™) are defined by (22) and belong
to me,

(2)m [e(m+1) e(m)];} 92mVAt

) Nex™ ), < (1 ~ o) sal

for 0 < k< N,0<p<p;—tp/bps1-
We prove them by induction on m. The assertions
(1), (2)y, (3), follow from (24) and (26). Next
suppose (1),,, (2),,, (3),, for some integer m > 0.
The inductive step consists of paragraphs (A)—(C).
(A) Here we write \; := p; — t3/by41. For each
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k,1<k<N, we show that the formula

m+2 = At Z

- F(tjw u(t;)) — w;]
defines an element of B),.
Since \; < p1 — /b1, (23) and (25) show that
k-1

+ e](m+1))

—AtZwlj S B)\k.
=0
For 0<j<k-—1, it follows from (3), that
[|e;(m+Y) || < R/2. Since \j < py—t;j/a by p1 < po

and by,41 < a, we have ||u( Dy, < R/2 from (10)
and hence |u(ty) + e ™) || < R. Since Ak < Aj for
0<j< k-1, we have

F(tj,u(tj) + e,y € By, Fl(tj,u(t;)) € By,

from (8). Thus e,(™*? belongs to By,.
(B) Let ™2 := (0,e,(™2) ... ex(™+?)). To
prove (1), ., it suffices to show that

(m+2) _ e(erl) €Y,

e

m+1

since we already have e ... e ¢ Y, in view
of (1),,and ¥, CY, . For1<k<Nand0<p<

P1— tk/berla put
;= (p+p1—t;/bms1)/2

for 0 <j<k—1. Note that p < p; <p
Using (8) with p' = o, we compute

- tj/bm+1.

(m+2) (m-+1) H

llex™ " — ek

<AtZHF

—F(t- U( i)+ el

p

+ e (7n+1))

p
< Atz ||ej(m+1) _ €j<m)”p’]7
j=0 J ’
and using e(™*+1) — e(m) €Y, ., and [];H < []g,
k—1 e(erl) _ e(m) / t:
< At /C [ Jia t
= o pr— P =t/ b
k=1 ¢ e(erl) _ 6(m) ! y
_ Atz [ }bmg J
=0 (o1 —p—tj/bmsi1)" /4
k—1 At

< 4Ctk[€(m+l) _ e(m)];
" ; (p1 = p = tj/bns1)”
— ™),

b

- 4Cbm+1[e(m+l)
pP1L—pP— tk/bm+1

ti

)
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where the last inequality is obtained by using

kz—i At _ U tin —t;
T(A-t) T T A-H)(A-tn)
CAA-t)

and tj, < by,41(p1 — p). Since 4Cb,, 1 < 62, we get

62 [e(m-‘rl) _ e(m)};)mtk

p1— P —tr/bmi1
for 1<k<N and 0< p< p; —tg/by11. This in-
equality holds also for £ = 0 and thus

m+2) m+1) ”

lex! ex!

p =

e(m+2) _ 6(7n+1) 27

m+17

[e(m+2) _ e(erl)];)mH < P2 [e(erl) _ e(m)};}m‘

The former proves (1),., as remarked above.
Combining the latter with (2),, proves (2),,.;.

(C) For 0<k<N and 0< p<p; —tp/bms2,
it follows from (21) and (2),,,, that

Hek(m+2) _ (m+1) ||p

< e b= 1)
<™ (1 - 0)SAt.

Adding this with (3),, proves (3),,,,. Thus we finish
the inductive step, and the assertions (1), (2),,,
(3),, hold for all integers m > 0.

(Step 4) Formulas (2),, of Step 3 imply that
(22) defines a Cauchy sequence {e™}, _; in the
Banach space Y. Let e = (ep,...,ex) denote the
limit: [e™) —e] — 0 as m — oo. The definition of

li
co

[ ]/CO shows that
(27)

for 0 < k<N and p with 0 < p < p; —tr/co. For
such k and p, formulas (3),  hold for all m, and by
letting m — oo we obtain

lexll, < SAL.

€k

Hek(m) — 6k||,, —0asm — oo

m

Thus (19) follows since ¢ < ¢.

For 0 < k < N fixed, we put p := p; — t;/c and
p i=p1 —tg/co. For 0<j<k—1, we have p <
p1 —t;/co and therefore ||e;™ — ejll, =0 as m—
oo by (27). Since p < g/, it follows from (8) that for
0<j<k-1,

||F(tj, u(tj) + €j<m)) - F(t]’, U(tj) + €j)Hp -0
as m — oQ.

Taking the limit of (22) shows that e satisfies (18) in
B,. Thus we finish the proof of Claim 4.2. (I
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6. Numerical experiment. We illustrate
our main result by the Cauchy problem for a
system of quasi-linear PDE’s of the normal form for
u=u(t,x) and v = v(t, z):
(28) up = (u— v)u, + (u® + 1),

+ 14 (tu+ 1)(zu —v),

(29) v = —(V* + Duy — (u—v)vy + 1+ 2(1 — u?),
(30)
The Cauchy problem (28)-(30) has a unique

solution

(31)

uly_g =0, v|,_o=0.

u=t, v=t(l+x).

The system of PDE’s (28)—(29) has a characteristic
polynomial
T—(u—v)¢ —(u?+1)¢
@ +1) T4 (u—v)
Thus in the region z > —1—1/t? the system is
elliptic along the solution (31) since uv > —1, and
the problem (28)—(30) is ill-posed in Hadamard’s
sense.

Theorem 3.1 discusses discretization only in ¢,
but we discretize the system (28)—(29) also in x for
numerical computation. For positive numbers At
and Az, we replace u, ug, u; by

uFt (z) —uF(x)  uF(x 4+ Az) — uF (o)
At ’ Az ’

=7 4 (uwv + 1)25.

uk(ac)7

where u¥(z) is a function of x that is expected to be
an approximation to u(ty,x). We replace vy, v,, v
in a similar way. Let us consider (28)—(30) in the
complex domain, and let B, be the Banach space of
holomorphic functions in {z € C;|z| < p} with sup-
norm. Then Theorem 3.1 implies that if we were
able to compute exact solutions to a scheme that
discretizes only in ¢ but not in z, they would
converge to the exact solution to the Cauchy
problem (28)—(30) with the maximum error of order
O(At) as At — 0.

Figures 1 and 2 are profiles of the numerical
solution v*(x) with At = Az = 0.01 over the region
0<t<0.5,0<z<10. Figure 1 is obtained by the
standard double precision arithmetic, and the oscil-
lation results from instability of the scheme and
effect of the growth of rounding errors. Figure 2 is
obtained by 200 decimal digits arithmetic on exflib
[1], and we see that the use of multiple precision
arithmetic prevents the growth of rounding errors.
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v double dx=dt=0.01 —
6
5
4
3
2
1
0
0
Fig. 1. Numerical solution v*(z) with At = Az = 0.01 obtained
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by the standard double precision arithmetic.

Fig. 2.

v 200digits dx=dt=0.01 —

O=MNWHhOIO®

by 200 decimal digits precision arithmetic.

»
-
.
16-04 | /,_l: +,
g -
£ 1e05 |-
£ . o X X
£ .
4t xX
< - X
g 1606 | _F X 1
= -+ X
& .
S . "F Ve
% 1607 | . —F X ]
< .
sl X erorinu |
o@y - -
: aroriny X
O(AY) «--eer
1e-09 L L L
1e-05 1e-04 1e-03 1e-02 1e-01
At=Ax (logarithmic scale)
Fig. 3. The maximum error between the exact solution and

the numerical solution over 0 <t < 0.2, 0 < z < 10, plotted
versus h = At = Az and computed with 5000 decimal digits

1e-03 T T T T

precision.

Figure 3 is the plot of the maximum errors

sup [uh(a) — ulty, @),
0<t;<0.2, 0<z<10

Numerical solution v*(z) with At = Az = 0.01 obtained
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sup |Uk(x) - v(tka .’E)|,
0<t,<0.2, 0<z<10

versus h = At = Az. Both axes are in logarithmic
scale and the numerical solutions are computed
with 5000 decimal digits precision. The dashed line
and the dotted one indicate the rate of convergence
of order O(At), and the numerical results are in
good agreement with Theorem 3.1 for sufficiently
small At.

The numerical experiment given above sug-
gests that the order of magnitude of the errors
coming from Az does not exceed that coming from
At as long as Az = At. We consider that the
experiment visualizes Theorem 3.1 and suggests a
convergence result for fully discretized schemes
under suitable restriction on the ratio Az/At.
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