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Abstract: We give an algebraic proof of the determinant formulas for factorial

Grothendieck polynomials obtained by Hudson–Ikeda–Matsumura–Naruse in [6] and by

Hudson–Matsumura in [7].
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1. Definition and Theorems. In [12]

and [14], Lascoux and Schützenberger introduced

(double) Grothendieck polynomials indexed by per-

mutations as representatives of K-theory classes of

structure sheaves of Schubert varieties in a full flag

variety. In [4] and [5], Fomin and Kirillov intro-

duced �-Grothendieck polynomials in the frame-

work of Yang-Baxter equations together with their

combinatorial formula and showed that they co-

incide with the ones defined by Lascoux and

Schützenberger with the specialization � ¼ �1.

Let x ¼ ðx1; . . . ; xdÞ, b ¼ ðb1; b2; . . .Þ be sets of inde-

termiants. A Grassmannian permutation with de-

scent at d corresponds to a partition � of length at

most d, i.e. a sequence of non-negative integers

� ¼ ð�1; . . . ; �dÞ such that �i � �iþ1 for each i ¼
1; . . . ; d� 1. For such permutation, Buch [3] gave a

combinatorial expression of the corresponding Gro-

thendieck polynomial G�ðxÞ as a generating series

of set-valued tableaux, a generalization of semi-

standard Young tableaux by allowing a filling of a

box in the Young diagram to be a set of integers.

In [18], McNamara gave an expression of factorial

(double �-) Grothendieck polynomials G�ðxjbÞ also

in terms of set-valued tableaux.

In this paper, we prove the following Jacobi–

Trudi type determinant formulas for G�ðxjbÞ. For

each non-negative integer k and an integer m, let

G
ðkÞ
m ðxjbÞ be a function of x and b given by

GðkÞðuÞ :¼
X
m2Z

GðkÞm ðxjbÞum

:¼
1

1þ �u�1

Yd
i¼1

1þ �xi
1� xiu

Yk
j¼1

ð1þ ðuþ �ÞbjÞ;

where � is a formal variable of degree �1 and
1

1þ �u�1
is expanded as

P
s�0ð�1Þs�su�s. We use

the generalized binomial coefficients n
i

� �
given by

ð1þ xÞn ¼
P

i�0
n
i

� �
xi for n 2 Z with the convention

that n
i

� �
¼ 0 for all integers i < 0.

Theorem 1.1. For each partition � of length

at most d, we have

G�ðxjbÞ

¼ det
X
s�0

i� d
s

� �
�sG

ð�iþd�iÞ
�iþj�iþsðxjbÞ

 !
1�i; j�d

:

Theorem 1.2. We have

G�ðxjbÞ

¼ det
X
s�0

i� j
s

� �
�sG

ð�iþd�iÞ
�iþj�iþsðxjbÞ

 !
1�i; j�d

:

In particular, we have

Gðk;0;...;0ÞðxjbÞ ¼ Gðkþd�1Þ
k ðxjbÞ:

Theorems 1.1 and 1.2 were originally obtained

in the context of degeneracy loci formulas for flag

bundles by Hudson–Matsumura in [7] and Hudson–

Ikeda–Matsumura–Naruse in [6] respectively. The

proof in this paper is purely algebraic, generalizing

Macdonald’s argument in [16, (3.6)] for Jacobi–

Trudi formula of Schur polynomials. It is based on

the following ‘‘bi-alternant’’ formula of G�ðxjbÞ
described by Ikeda–Naruse in [8]:

doi: 10.3792/pjaa.93.82
#2017 The Japan Academy

2010 Mathematics Subject Classification. Primary 05E05,
14M15, 19E08.

82 Proc. Japan Acad., 93, Ser. A (2017) [Vol. 93(A),

http://dx.doi.org/10.3792/pjaa.93.82


G�ðxjbÞ ¼
det

�
½xjjb��iþd�ið1þ �xjÞi�1

�
1�i; j�dQ

1�i<j�dðxi � xjÞ
:ð1Þ

Here we denote x� y :¼ xþ yþ �xy and ½yjb�k :¼
ðy� b1Þ � � � ðy� bkÞ for any variable x; y. Note that

the Grothendieck polynomial G�ðxÞ given in [3]

coincides with G�ðxjbÞ by setting � ¼ �1 and bi ¼ 0.

Determinant formulas different from the ones

in Theorems 1.1 and 1.2 have been also obtained

by Lenart in [15] (cf. [2], [13]), by Kirillov in [10]

and [11], and by Yeliussizov [22]. Each entry of

these previously known determinant formulas is

given as a finite linear combination of elementary/

complete symmetric polynomials, while in our

formula it is given as a possibly infinite linear

combination of Grothendieck polynomials associat-

ed to one row partitions. A combinatorial proof

of Theorem 1.2 has been also obtained in [17] for

the non-factorial case, as well as an analogous

determinant formula for skew flagged Grothendieck

polynomials, special cases of which arise as the

Grothendieck polynomials associated to 321-avoid-

ing permutations [1] and vexillary permutations.

It is also worth mentioning that in [3] Buch

obtained the Littlewood-Richardson rule for the

structure constants of Grothendieck polynomials

G�ðxÞ, and hence the Schubert structure constants

of the K-theory of Grassmannians (see also the

paper [9] by Ikeda-Shimazaki for another proof).

For the equivariant K-theory of Grassmannians

(or equivalently for G�ðxjbÞ), the structure con-

stants were determined by Pechenik and Yong

in [20] by introducing a new combinatorial object

called genomic tableaux. Motegi–Sakai [19] identi-

fied Grothendieck polynomials with the wave

functions arising in the five vertex models and

obtained a variant of the Cauchy identity. Using

this framework of integrable systems, Wheeler–

Zinn-Justin [21] recently obtained another

equivariant Littlewood-Richardson rule for factori-

al Grothendieck polynomials.

2. Proof of Theorem 1.1. By (1), it suffi-

ces to show the identity

det ½xjjb�aiþd�ið1þ �xjÞi�1
� �

1�i; j�dQ
1�i<j�dðxi � xjÞ

¼ det
X
s�0

i� d
s

� �
�sG

ðaiþd�iÞ
aiþj�iþsðxjbÞ

 !
1�i; j�d

;

for each ða1; . . . ; adÞ 2 Zd such that ai þ d� i � 0.

For each j ¼ 1; . . . ; d, we let

EðjÞðuÞ :¼
Xd�1

p¼0

eðjÞp ðxÞup :¼
Y

1�i�d
i6¼j

ð1þ xiuÞ:

We denote �y :¼ �y
1þ �y. Since 1þ ðuþ �Þy ¼

1� �yu

1þ ��y
, we have

GðkÞðuÞ ¼
1

1þ �u�1

Yd
i¼1

1þ �xi
1� xiu

Yk
‘¼1

1� �b‘u

1þ ��b‘
:

Consider the identity

GðkÞðuÞEðjÞð�uÞ

¼
1

1þ �u�1

1

1� xju
Yd
i¼1

ð1þ �xiÞ
Yk
‘¼1

1� �b‘u

1þ ��b‘
:

By comparing the coefficient of um;m � k in (2) we

obtain

Xd�1

p¼0

GðkÞm�pðxjbÞð�1ÞpeðjÞp ðxÞ

¼ xm�kj

Qk
‘¼1ðxj � �b‘ÞQk
‘¼1ð1þ ��b‘Þ

Y
1�i�d
i6¼j

ð1þ �xiÞ:

Since
y� �b

1þ ��b
¼ y� b, we have

Xd�1

p¼0

GðkÞm�pðxjbÞð�1ÞpeðjÞp ðxÞð2Þ

¼ xm�kj ½xjjb�k
Y

1�i�d
i6¼j

ð1þ �xiÞ; ðm � kÞ:

Consider the matrices

H :¼
X
s�0

i� d
s

� �
�sG

ðaiþd�iÞ
aiþj�iþsðxjbÞ

 !
1�i; j�d

and

M :¼
�
ð�1Þd�ieðjÞd�iðxÞ

�
1�i; j�d

:

By using (2), we find that the ði; jÞ-entry of HM is

ðHMÞij ¼ ½xjjb�
aiþd�i 1þ �xj

� �i�d�1
Y

1�t�d
ð1þ �xtÞ:

By taking the determinant of HM , the factorQ
1�j�dð1þ �xjÞ

�dQ
1�t�dð1þ �xtÞ

d which turns to

be 1 comes out, and therefore we obtain

detH detM ¼ det
�
½xjjb�aiþd�ið1þ �xjÞi�1

�
1�i; j�d

:

By dividing by detM, we obtain the desired

identity since detM ¼
Q

1�i<j�dðxi � xjÞ (see
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[16, p. 42]). �

3. Proof of Theorem 1.2. By (1), it suffi-

ces to show the identity

det
�
½xjjb�aiþd�ið1þ �xjÞi�1

�
1�i; j�dQ

1�i<j�dðxi � xjÞ

¼ det
X
s�0

i� j
s

� �
�sG

ðaiþd�iÞ
aiþj�iþsðxjbÞ

 !
1�i; j�d

for each ða1; . . . ; adÞ 2 Zd such that ai þ d� i � 0.

For each j ¼ 1; . . . ; d, let

E
ðjÞðuÞ :¼

Xd�1

p¼0

eðjÞp ð��xÞup :¼
Y

1�i�d
i6¼j

ð1� �xiuÞ:

Since 1þ ðuþ �Þy ¼ 1� �yu

1þ ��y
, we have the identity

GðkÞðuÞEðjÞð�u� �Þð3Þ

¼
1

1þ �u�1

1þ �xj
1� xju

Y
1�‘�k

1� �b‘u

1þ ��b‘
:

By comparing the coefficient of um;m � k in (3) we

obtain

Xd�1

p¼0

Xp
s¼0

p

s

� �
�sG

ðkÞ
m�pþsðxjbÞð�1ÞpeðjÞp ð��xÞð4Þ

¼ xm�kj

Y
1�‘�k

xj � �b‘

1þ ��b‘
¼ xm�kj ½xjjb�k

where the last equality follows from the identity
x� �y

1þ ��y
¼ x� y for any variable x; y.

Consider the matrices

H 0 :¼
X
s�0

i� j
s

� �
�sG

ðaiþd�iÞ
aiþj�iþsðxjbÞ

 !
1�i; j�d

and

M :¼
�
ð�1Þd�ieðjÞd�ið��xÞ

�
1�i; j�d

:

We write the ði; jÞ-entry of the product H 0M as

ðH 0MÞij ¼
Xd�1

p¼0

X
s�0

i� dþ p
s

� �
�s

�Gðaiþd�iÞaiþd�iþs�pðxjbÞð�1ÞpeðjÞp ð��xÞ:

By writing
i� dþ p

s

� �
¼
X
‘�0

i� d
‘

� �
p

s� ‘

� �
using

a well-known identity of binomial coefficients and

then applying (4), we obtain

ðH 0MÞij ¼ ½xjjb�
aiþd�ið1þ �xjÞi�1ð1þ �xjÞ1�d:

By taking the determinant of H 0M, we have

detH 0 detM ¼
Y

1�j�d
ð1þ �xjÞ1�d

� det
�
½xjjb�aiþd�ið1þ �xjÞi�1

�
1�i; j�d

:

Since we have (see [16, p. 42])

detM ¼
Y

1�i<j�d
ð�xj � �xiÞ

¼
Y

1�i<j�d

xi � xj
ð1þ �xiÞð1þ �xjÞ

¼
Y

1�i�d
ð1þ �xiÞ1�d

Y
1�i<j�d

ðxi � xjÞ;

we obtain the desired identity. �
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