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Abstract:

We give an algebraic proof of the determinant formulas for factorial

Grothendieck polynomials obtained by Hudson-Ikeda—Matsumura—Naruse in [6] and by

Hudson-Matsumura in [7].
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1. Definition and Theorems. In [12]
and [14], Lascoux and Schiitzenberger introduced
(double) Grothendieck polynomials indexed by per-
mutations as representatives of K-theory classes of
structure sheaves of Schubert varieties in a full flag
variety. In [4] and [5], Fomin and Kirillov intro-
duced [-Grothendieck polynomials in the frame-
work of Yang-Baxter equations together with their
combinatorial formula and showed that they co-
incide with the ones defined by Lascoux and
Schiitzenberger with the specialization g = —1.
Let x = (x1,...,2q), b = (b1, bs,...) be sets of inde-
termiants. A Grassmannian permutation with de-
scent at d corresponds to a partition A of length at
most d, i.e. a sequence of non-negative integers
A=(A1,...,Aq) such that \; > X1 for each i=
1,...,d — 1. For such permutation, Buch [3] gave a
combinatorial expression of the corresponding Gro-
thendieck polynomial G(x) as a generating series
of set-valued tableaur, a generalization of semi-
standard Young tableaux by allowing a filling of a
box in the Young diagram to be a set of integers.
In [18], McNamara gave an expression of factorial
(double $-) Grothendieck polynomials G(x|b) also
in terms of set-valued tableaux.

In this paper, we prove the following Jacobi—
Trudi type determinant formulas for G,(z|b). For
each non-negative integer k£ and an integer m, let
G5,1f>(a:|b) be a function of x and b given by

G(k)(u) = Z Gﬁ,l? (z|b)u™
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where ( is a formal variable of degree —1 and
1

T3 50T is expanded as > . (—1)"Fu"*. We use
u fl

the generalized binomial coefficients (7) given by
(14 )" =Y ,50 (7)a' for n € Z with the convention
that () =0 for all integers i < 0.

Theorem 1.1.
at most d, we have

G(z|b)

i —d\ o (ntd—i
det(Z( ) )ﬂ G&i;-_,ﬁs(xw)) -
1<i,j<d

For each partition X of length

s>0
Theorem 1.2.
Ga(z(b)

(] s it+d—i
caa(S (' )retston)
1<i, j<d

We have

s>0
In particular, we have
G0 (wlb) = G (alp).

Theorems 1.1 and 1.2 were originally obtained
in the context of degeneracy loci formulas for flag
bundles by Hudson-Matsumura in [7] and Hudson—
Ikeda—Matsumura—Naruse in [6] respectively. The
proof in this paper is purely algebraic, generalizing
Macdonald’s argument in [16,(3.6)] for Jacobi-
Trudi formula of Schur polynomials. It is based on
the following “bi-alternant” formula of G)(z|b)
described by Ikeda—Naruse in [8]:
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o (B0 ),

(1) Ga(z|b) =

H1§i<j§d(x1? — ;)

Here we denote z @ y:=x +y+ Bzy and [y|b]
(y®b)--- (y®b;) for any variable z,y. Note that
the Grothendieck polynomial G,(x) given in [3]
coincides with G (z|b) by setting 5 = —1 and b; = 0.

Determinant formulas different from the ones
in Theorems 1.1 and 1.2 have been also obtained
by Lenart in [15] (¢f. [2], [13]), by Kirillov in [10]
and [11], and by Yeliussizov [22]. Each entry of
these previously known determinant formulas is
given as a finite linear combination of elementary/
complete symmetric polynomials, while in our
formula it is given as a possibly infinite linear
combination of Grothendieck polynomials associat-
ed to one row partitions. A combinatorial proof
of Theorem 1.2 has been also obtained in [17] for
the non-factorial case, as well as an analogous
determinant formula for skew flagged Grothendieck
polynomials, special cases of which arise as the
Grothendieck polynomials associated to 321-avoid-
ing permutations [1] and vexillary permutations.

It is also worth mentioning that in [3] Buch
obtained the Littlewood-Richardson rule for the
structure constants of Grothendieck polynomials
Gy (z), and hence the Schubert structure constants
of the K-theory of Grassmannians (see also the
paper [9] by Tkeda-Shimazaki for another proof).
For the equivariant K-theory of Grassmannians
(or equivalently for Gy(z|b)), the structure con-
stants were determined by Pechenik and Yong
in [20] by introducing a new combinatorial object
called genomic tableauz. Motegi—Sakai [19] identi-
fied Grothendieck polynomials with the wave
functions arising in the five vertex models and
obtained a variant of the Cauchy identity. Using
this framework of integrable systems, Wheeler—
Zinn-Justin  [21] recently obtained another
equivariant Littlewood-Richardson rule for factori-
al Grothendieck polynomials.

2. Proof of Theorem 1.1.
ces to show the identity

det ([o )" (1 + Bay) )

H1§i<j§d(mi — ;)

i—d s ~(ai+d—i
:det<z( S )ﬁ‘sz,:jH)s(xb)) ,
1<i,5<d

s>0

k._

By (1), it suffi-

1<i,j<d
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for each (ay,...,aq) € Z% such that a;+d—1i > 0.

For each j=1,...,d, we let

d=1

E(7>(u) = eé-”(x)up = H (1+ zu).
p—0 1<i<d
_ i#j

We denote 73:= . Since 1+ (u+ =
e V= 1T (u+ By
——— we have
1+ By

el (u

)_ 1 dl+ﬂl‘¢ﬁ1—5¢u
L+ put i1 —mu g 1+ Bby
Consider the identity
G<k)(u)E(J‘) (—u)

1 1 k1 —bu
- 1+ B, =,
1+ﬂu*11—xjuH( +ﬁx)H1+ﬁbg

i=1 =1
By comparing the coefficient of «™,m > k in (2) we
obtain

di il (2[b) (~ 1) e (x)

p=0
k -
] [y (2 — o
Hk:l(l + ﬁbé) 1<i<d
_ i#]
Since 1y_’__;b =y @b, we have
d—1
k .
(2) GM(a]b)(~1)"e) (x)
p=0
= o Mo T (+6m), (m =)
1<i<d
ij

Consider the matrices

T—d\ . (a+d—i
H := (E :( X >ﬂ Gf,jg_@-f&s(xw))
1<i, j<d

s>0

and
M= (-1 e ()
By using (2), we find that the (4, j)-entry of HM is

(HM)ij = [xj|b]ai+d_i(1 + ﬂxj)i_d_l H (14 Bxy).

1<t<d

1<i,j<d’

By taking the determinant of HM, the factor
ITicjca(1 + B2) TTi<ieq(1 + Bz,)* which turns to
be 1 comes out, and therefore we obtain

det H det M = det ([t (1 + foy) ™)

© e et  [z;0] (14 Bz;) 1<i. j<d
By dividing by det M, we obtain the desired
identity since det M =[,o,_;j4(wi —x;) (see
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(16, p. 42]). O
3. Proof of Theorem 1.2. By (1), it suffi-
ces to show the identity

det ([, b1 (1 4 o) )

H1gi<]‘§d($i - )

i_j s ~(a;+d—
det<§ :( X )ﬂ Gl |b>>
520 1<i,j<d

aq) € Z* such that a; +d —i > 0.

1<i, j<d

for each (aq,...,

For each j=1,...,d, let
—(q d-1 .
E(J>(u) = eéj)(f:f)up = H (1 — z;u).
p=0 1<i<d
7]
Since 1+ (u + ) LU e have the identit
ince u = , we have the identi
Y 1+ 35 y
3)  GYwWEY(~u-p)
1 1+ Bz 1 — b

_1—|—ﬂu*11—xjulggk1+65[

By comparing the coefficient of v, m > k in (3) we
obtain

d—1 p )
W X0 (1) -1y (-

p=0 s=0
m—k wj—g[ —k
=z — = 2" "[x|b
J 1§£§k1+5b5 J

where the last equality follows from the identity
r—y
1+ By

Consider the matrices

1 — a
H = <§ ( s )ﬁsGanjders(x“)))
520 1<, j<d

and

=z @y for any variable x, y.

We write the (i, j)-entry of the product H'M as

- 12( d+p>ﬁs

1 ej —T ) .
( a-i(~%) 1<i,j<d
J
=0 s>0

D
x GUEED L (alb)(~1)eY) (~a).

. 1—d+p 1—d p .
B t =
y wri mg( 5 ) ;20 ( ¢ )(s—ﬁ) using

a well-known identity of binomial coefficients and
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then applying (4), we obtain

(H'M),; = [ 7 (1 + Bay) ™ (L + Bary)'
By taking the determinant of H'M, we have
det H'det M = ] (1+ Bay)' ™"

1<j<d

x det ([xﬂb]aﬁd*i(l + ﬁxj)ifl)

1<i,j<d
Since we have (see [16, p. 42])
det M= [[ (& -=z)
1<i<j<d
T — Ty

1§g§d (1 + ﬁxz)(l + ﬂw])
I a+8z0"" I] (@i—=).

1<i<d 1<i<j<d

we obtain the desired identity. O
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