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Abstract:
representation of the exceptional Lie group Eg.
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1. Introduction. Let p be a prime number.
In the study of mod p cohomology of the classifying
space of a simply-connected, simple, compact con-
nected Lie group G, Stiefel-Whitney classes and
Chern classes play an important role. For example,
the mod 2 cohomology of the classifying space of
the exceptional Lie group FEjs is generated by two
generators of degree 4 and of degree 32 as an algebra
over the mod 2 Steenrod algebra, and Toda pointed
out that the generator of degree 32 could be given
as the Chern class of an irreducible representation
p6 : Es — SU(27) in [12]. Mimura and Nishimoto [8],
Kono [7] and the author [5] proved that Stiefel-
Whitney classes wig(p4), wi2s(ps) and Chern classes
c16(ps), c32(pr) are algebra generators of the mod 2
cohomology of the classifying space BG for G =
Fy, Eg, B, E7, where pys, pg are real irreducible
representations of dimension 26, 248, and pg, p7
are complex irreducible representations of dimen-
sion 27, 56, respectively. For G = Fy, Eg, E7, the
mod 2 cohomology of the classifying space is
generated by two elements, that is, one is the
element of degree 4 and the other is wig(p4), c16(p6),
c32(p7), respectively. In the case G = Fg and p =
2,3, the mod p cohomology of the classifying space
is not yet computed. Since the non-triviality of
the Stiefel-Whitney class wjas(ps) tells us that the
differentials in the spectral sequence vanish on the
corresponding element, we expect that it not only
gives us a nice description for the generator but also
helps us in the computation of the mod 2 cohomol-
ogy of BEg.

This paper is the sequel of [5] in the sense that
we consider the mod 3 analogue of the above results.
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We show the non-triviality of the mod 3 Chern class of degree 324 of the adjoint
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In particular, we prove the non-triviality of the
mod 3 Chern class cjg2(ps) of degree 324. For an odd
prime number p and for a simply-connected, simple,
compact connected Lie group, the Rothenberg-
Steenrod spectral sequence collapses at the Fs-level
and so at least additively the mod p cohomology is
isomorphic to the cotorsion product of the mod p
cohomology of G except for the case p =3, G = Fg.
In [6], we proved that there exists an algebra
generator of degree greater than or equal to 324 in
the mod 3 cohomology ring of BEs. On the other
hand, in [9,10], Mimura and Sambe proved that the
FE>-term of the Rothenberg-Steenrod spectral se-
quence is generated as an algebra by elements of
degree less than or equal to 168. Hence the spectral
sequence must not collapse at the Es-level. We
expect that, in the mod 3 cohomology, the mod 3
Chern class ¢142(ps) plays an important role similar
to that of the Stiefel-Whitney class wyss(ps) in the
mod 2 cohomology.

Now, we state our main theorem. Let T be a
fixed maximal torus of the exceptional Lie group F.
We choose a maximal non-toral elementary abelian
3-subgroup A of Fj so that T'N A is nontrivial. We
refer the reader to the paper of Andersen, Grodal,
Mpgller and Viruel [2,Section 8] for the details of
non-toral elementary abelian p-subgroups of excep-
tional Lie groups and their Weyl groups. Let u be a
subgroup of T'N A of order 3. The group p is the
cyclic group of order 3. We consider the following
diagram of inclusion maps.

T ——F, — G

|

W — A



http://dx.doi.org/10.3792/pjaa.93.55

56 M. KAMEKO

We denote by ¢:pu — G the inclusion map of p
to G =F,, FEs,F;, Es. The mod 3 cohomology
H*(Bu; Z/3) of the classifying space By is isomor-
phic to

Z/3[uz] ® A(w),

where wus is the image of the mod 3 Bockstein
homomorphism of a generator u; of H'(Bu;Z/3) =
Z/3. From now on, we consider complex represen-
tations only and we denote complexifications of real
representations py, pg by the same symbols py, ps,
respectively.

Theorem 1.1. The total Chern classes
c(t*(pi)) of the above induced representations
*(pi), where i =4,6,7,8, are as follows:

c(t*(pa)) = 1 —uy”,
o (pe)) =1 — uy’,
o (pr) = (1 —up®)’ =1+ u)® +u’,

e (ps) = (1 —uf®)’ =1~ u}®.

As a corollary of this theorem, using Lemma
3.1, we have the following

Corollary 1.2. The Chern classes cis(ps),
cis(ps), cis(pr), cealps) are nontrivial in
H'(BFy;Z/3), H'(BEgZ/3), H'(BE:Z/3),
H*(BEg;Z/3), respectively. Moreover, the Chern
classes c15(p4), c1s(ps), c1s(pr) are indecomposable,
so that they are algebra generators.

This paper is organized as follows: In Section 2,
we recall complex representations py, pg, p7, ps and
their restrictions to Spin(8). In Section 3, we prove
Theorem 1.1. We end this paper by showing the
non-triviality of the mod 5 Chern class c¢jgo(ps) of
BFEg in the appendix.

2. Complex representations. In this sec-
tion, we consider complex representations py, pg,
p7, ps in Theorem 1.1 and the complexification p) of
the adjoint representation of Fj and their restric-
tions to Spin(8). For the details of representation
rings of Spin groups and cyclic groups, we refer the
reader to standard textbooks on representation
theory, e.g. Husemoller’s book [4] and/or the book
of Brocker and tom Dieck [3].

First, we recall the complex representation ring
of Spin(2n). Let us consider the following pull-back
diagram.

[Vol. 93(A),

n —E e Spin(2n)

™ e S0(2n),

where SO(2n) is the special orthogonal group, 7 :
Spin(2n) — SO(2n) is the universal covering, T™ is
the maximal torus of SO(2n) consisting of matrices
of the form

cosfy —sin b,
sinf; cosb;

cosf, —sinb,

sinf,, cosb,

k,, is the inclusion map and T" is a maximal torus of
Spin(2n). The complex representation ring of

gl _ {( cosf —sinf )}
sin@  cos@
is R(S') = Z[z,271] where z is represented by the
canonical complex line bundle. Considering T" as
the product of n copies of S'’s, let p; : T — S* be
the projection to the i-th factor. We denote by z;
the element pi(z), 7*(pi(z)) in R(T"), R(T"),
respectively, so that 7*(z;) = z;. Then, we have

R(T")=Zlz1,...,2n, (21 zn)_l},
R(T”) =2z, ...z, (21 zn)71/2]
and the complex representation ring of Spin(2n) is
ZAp, . A1, ATUAT]

where
n

Br() =) (z+ 21,

i=1

kn(da) = > (i+z)(z+20),

1<i<j<n,

BA= 30 @'
e1ep=1

B@D)= 3 @
ergp=—1

and ¢; € {£1}. For the sake of notational simplicity,
from now on, we write A for AT +A~. Let i : p —
S' be the inclusion map. We denote by z the
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generator ¢* (z) of R(u). Then, it is also known that
R(u) = Z[/ ().

Next, we recall complex representations
P4, P6, P, ps of dimension 26,27, 56,248 in Section 1
and the complexification p of the adjoint represen-
tation of Fy. We consider the following commuta-
tive diagram.

Spin(8) — Spin(10) LN Spin(12) —— fuohg Spin(16)
Js Jio Ji2 J.iw
Fy 2 B © Er T Es,

where
ion—2 : Spin(2n — 2) — Spin(2n)

is the obvious inclusion map. For py, o}, we refer the
reader to Yokota’s paper [14]. For pg, p7, we refer
the reader to Adams’ book [1, Corollaries 8.3, 8.2].
For Eg, from the construction of FEg in Adams
[1,Section 7] and the fact that the adjoint repre-
sentation of Spin(2n) is the second exterior power of
the standard representation, we have the following
proposition.

Proposition 2.1. We have
Js(p) =2+ M+ A,
Js(P) =4+ M+ A+ X,
Jio(pe) =1+ A1 + AT,
Jia(p7) = 201 + A7,
Jis(ps) =8+ Ao + AT,
in R(Spin(8)), R(Spin(8)), R(Spin(10)),

R(Spin(12)), R(Spin(16)), respectively.
Since the induced homomorphism 4}, , maps
A A, ATUATIA 10 24 A, 20 + Ao, AL A 2A Te-
spectively, we have the following proposition.
Proposition 2.2. For G = Fy, Fg, F7, Eg, let
J : Spin(8) — G be the inclusion map. In R(Spin(8)),
we have
“(ps) =2+ M1 + A,
(pﬁ) :3+)\1+A,
(pr) = 8+ 2\ + 24,
7 (ps) =32+ 8A\1 + 8A + Xa.

3. Mod 3 Chern classes. In this section,
we prove Theorem 1.1. We consider the following
diagram of inclusion maps.

-k

J
J
J
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71— Spin(8) —" Fy

Lo

K - A.

The maximal torus 7% of Spin(8) is the maximal
torus T of F; we mentioned in Section 1. By abuse
of notation, we denote both the inclusion map of u
to T* and its composition with ks by the same
symbol 9. Let /0 be the nilradical of H*(BA;Z/3)
and H*(Bu;Z/3), so that we have the induced
homomorphism

i HY(BA; Z/3) /N0 — H (Bu; Z/3)/V0 = Z/3[us].

Lemma 3.1.
momorphism

/. H*(BFy;Z.)3) — H*(Bu; Z/3)/v0

is in Z/3[ul®], i.e. Im* C Z/3[ul®] C Z/3[us)].
Proof. 1t is well-known that the Weyl group
W(A) = N(A)/C(A) of A in F} is isomorphic to the
special linear group SL3(Z/3). See the paper of
Andersen, Grodal, Mgller and Viruel [2, Section 8].
Moreover, H*(BA;Z/3)/+/0 is a polynomial algebra
with 3 variables of degree 2 and SL3(Z/3) acts in
the usual manner. The ring of invariants is also a
polynomial algebra
(H'(BA;Z/3)/V0)") = Z/3es, c3.1, ¢50]-
The invariants eg =c30,C31,C32 are known as
Dickson invariants and their degrees are 52,48, 36,
respectively. Moreover, the induced homomorphism
¢} maps c3p,c31,c32 to 0,0,ul®, respectively. See
Wilkerson’s paper [13, Corollary 1.4] for the details.
Since the induced homomorphism ¢* factors through

(H*(BA;2/3)/v0)" ™ — H*(Bu; 2./3)/V0,

the lemma follows. O
Next, we compute the total Chern class
c(5(A + A)).

The image of the induced ho-

Proposition 3.2. The total Chern class
c(ih(A + A)) is equal to 1 — ul®.

Proof. Since dim(A; + A) =24, and since
c(th( M+ A)) = (v (p4)) € Z/3[ul®] by Lemma 3.1,

c(tf(M + A)) is equal to 1 + au28 for some o € Z/3.
On the other hand, ¢ maps z; to 2% for some

«a; € Z/3 and, since ¢y is the inclusion map,
(o, an, a3, a4) # (0,0,0,0). So,
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4

Hl—a

i=1

LO )\1

and ozl # 0 for some i. Hence, ¢(¢(A1)) is divisible by
1 — u3. Therefore,

c(t5(Ar + A)) = c(ig(An))e(ip(A))

is also divisible by 1 —u3 and so a = —1 in Z/3. O

Next, we compute the total Chern class
c(15(X2))-
Proposition 3.3. The total Chern class

(5 (N2)) is equal to 1 — ul®.

Proof. As in the proof of the previous propo-
sition, assume that ¢j(z;) = 2. Let

fij = (1= (i + y)us) (1 = (o — aj)us)
(1= (=i + g)u2)(1 = (i — aj)ug).
Then,

= 11 #

1<i<j<4

LO )\2

and
fii=1=2(} + 2)u3 + (o} — a?)’uj.

For (o, a?) = (1,1), we have
fij=1- ug
(1,0) or

fij:1—2U§+U3:

For (af,a}) = (0,1), we have

(1- ).

Since (o, a2, asz,a4) # (0,0,0,0), there exists (4, 7)
such that (o, ;) # (0,0). Hence the total Chern
class ¢(i(A2)) is not trivial and it is divisible by
1-— ug

Let us consider the total Chern class c(¢*(p))).

By Lemma 3.1, it is in Z/3[u}®] and by Proposition
3.2, we have

c(v(py)) = 5 (X2))e(t5 (M + A))
= c(t5(A2))(1 — up®).
So, c(th(X2)) is also in Z/3[ul®]. Since dim Ay =
24, c(ip(A2)) =1+ aul® for some a € Z/3. Since
c(t5(X2)) is divisible by 1 —u3, o= —1 as in the
proof of the previous proposition. ([
Finally, we prove Theorem 1.1.

Proof of Theorem 1.1. Using Propositions 2.1,
2.2 and using Propositions 3.2, 3.3 above, we have

c(t*(pa)) = cltg(M +4A)) =1~ U18
(¢ (ps)) = cliy(M + A)) = 1 —u,

[Vol. 93(A),

c(¢*(pr))

(A + ) = (1 —w'),
= c(ip (M + A))°e(i5 (X))

O

A. Mod 5 Chern classes. Let p be an odd
prime number. Let G be a simply-connected,
simple, compact connected Lie group. If the integral
homology of G has no p-torsion, then the mod p
cohomology ring of its classifying space is a poly-
nomial algebra and it is well-known. See, for
example, the book of Mimura and Toda [11]. The
integral homology of G has p-torsion if and only if
(G,p) is one of (Fy,3),(Es,3),(Er,3),(Fs,3) and
(Es,5). We dealt with the cases for p =3 in this
paper. For completeness, in this appendix, we
deal with the remaining case, p =5, G = Eg, that
is, we prove the non-triviality of the mod 5 Chern
class ¢100(ps) of the complexification of the adjoint
representation pg of the exceptional Lie group FEg.

The mod 5 analogue of Corollary 1.2 is as
follows:

Theorem A.1. The mod5 Chern
cr00(ps) is non-trivial. Moreover, the mod 5 Chern
class ci0(ps) is indecomposable in H*(BEs; Z/5).

To prove this theorem, we need the mod 5
analogue of Lemma 3.1. As in the case p=3, G =
F), there exists a non-toral maximal elementary
abelian 5-subgroup of rank 3 in the exceptional Lie
group Fs. We choose the maximal torus T" of Fg. If
necessary, by replacing A by its conjugate, we
may assume that ANT is non-trivial. We choose a
subgroup p of ANT of order 5. Indeed, it is the
cyclic group of order 5. We denote by ¢ : u — FEg the
inclusion map. The mod 5 cohomology of By is

H*(Bu; Z2/5) = Z/5[uz] @ Aur),

where u; is a generator of H'(Bu;Z/5) = Z/5 and
uy is its image by the mod 5 Bockstein homo-
morphism. As in the previous section, we denote the
nilradical by v/0 and we denote the inclusion map of
wto Aby e p— A
Lemma A.2.
momorphism

V" H*(BEs; Z/5) — H*(Bu; Z/5)/v0
is in Z/5[ui®] ¢ H*(Bu; Z/5) /0.

Proof. Since the induced homomorphism ¢*
factors through

class

The image of the induced ho-
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G ¢ (Y (BAZ/5)V0)" W — 1 (B 2/5)/V0,

all we need to do is to recall the fact that the Weyl
group W(A) of Ain Esis SL3(Z/5), that

(H*(BA; Z/5)/V0)"™W = Z/5[es, c3, ¢34

and that the above induced homomorphism ¢} maps
€3, 31,32 to 0,0,ul% respectively. We find these
facts in [2, Section 8] and in [13, Corollary 1.4]. O

To compute (*(ps), we need the following
commutative diagram similar to the diagram in
Section 3. However, in this case, the map jig:
Spin(16) — Ejg is not injective.

78—+ Spin(16) —%» By

p - - A
We choose the maximal torus T of FEg so that
j16(T®) = T. Then, since T — T is a double cover
and since p is of order 5, there exists a map ¢ :
1 — T® such that the above diagram commutes.

We use the following propositions to prove
Theorem A.1.

Proposition A.3. The total mod5 Chern
class of 1(X2) is a product of copies of 1 —u and
1 +u2. Moreover, it is non-trivial.

Proof. Let

fiy= (1 = (qi + aj)uz)(1 = (—a; + aj)us)
(1 = (s — ay)u2)(1 — (= — j)us).

Then, we have

L() )\2 H fzy

1<i<j<8
and
fij:1—2(a?+a Jui + (a? —OcJ)2 .
In Z/5, a? =0 or £1. So,

Fim1bd o (ead) = (1)
fij=1—u2 for (af,a?) = (=1,-1),
fy=(=u3)’ for (a},03) = (1,0), (0,1),
fi=(1+w)" for (af,07) = (=1,0),(0, ~1),
fi=1 for (« f, a?) = (0,0).

Since p is a non-trivial subgroup of 7%, a; is non-
zero for some i. So, the total Chern class is not equal
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to 1 and so we have the proposition. ([

Proposition A.4. The total mod5 Chern

class of 15(A") is also a product of copies of 1 — u3

and 1+ u3.

Proof. Suppose that Zo R(Spin(16)) — R(u)

1/2 -

maps (2" - z°) /2 to z%-=. Then, it maps

& —
(' ---28) "7 to 2z %=, where €, = —¢;, and we
have
* + _ 2 2
C<L0(A )) - H (1 - aslsz.”sgu?)'

e1=l,g169-e5=1

Since 0‘51-4-63 = 0 or £1, we have the desired result.OJ

Now we complete the proof of Theorem A.1.

Proof of Theorem A.1. By Propositions A.3,
A4, the total Chern class c¢(t*(ps)) is a product
of copies of 1 —u3 and 1+ w3 and it is non-trivial.
On the other hand, by Lemma A.2, since dim(\s +
A*) = 240,

C(L*(ps)) =14 O[’UJIOO +ﬂ 200

for some o, 8 € Z/5 and (o, 8) # (0,0). Since it is
divisible by 1 —u? or 1 +u3, we have 1 + a+ 3= 0
in Z/5 and
(v (ps)) = 1+ (=B — D™ + fuz”
— (1 100)( ,8’(1,100).

Since it is a product of copies of 1 — w3 and 1 + u3,
1+ Bu is also divisible by 1—u} or 1+4uj if
B#0. So, =0 or —1 and we have that c(¢*(ps))
is equal to 1—u® or (1 —u%OO)Q. In particular,
c1o0(ps) = —ud? or —2ul" and by Lemma A.2, it is
indecomposable in H*(BEg;Z/5). O
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