
Mod 3 Chern classes and generators

By Masaki KAMEKO

Department of Mathematical Sciences, Shibaura Institute of Technology,

307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan

(Communicated by Kenji FUKAYA, M.J.A., June 13, 2017)

Abstract: We show the non-triviality of the mod 3 Chern class of degree 324 of the adjoint

representation of the exceptional Lie group E8.
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1. Introduction. Let p be a prime number.

In the study of mod p cohomology of the classifying

space of a simply-connected, simple, compact con-

nected Lie group G, Stiefel-Whitney classes and

Chern classes play an important role. For example,

the mod 2 cohomology of the classifying space of

the exceptional Lie group E6 is generated by two

generators of degree 4 and of degree 32 as an algebra

over the mod 2 Steenrod algebra, and Toda pointed

out that the generator of degree 32 could be given

as the Chern class of an irreducible representation

�6 : E6 ! SUð27Þ in [12]. Mimura and Nishimoto [8],

Kono [7] and the author [5] proved that Stiefel-

Whitney classes w16ð�4Þ, w128ð�8Þ and Chern classes

c16ð�6Þ, c32ð�7Þ are algebra generators of the mod 2

cohomology of the classifying space BG for G ¼
F4; E8; E6; E7, where �4, �8 are real irreducible

representations of dimension 26, 248, and �6, �7

are complex irreducible representations of dimen-

sion 27, 56, respectively. For G ¼ F4; E6; E7, the

mod 2 cohomology of the classifying space is

generated by two elements, that is, one is the

element of degree 4 and the other is w16ð�4Þ, c16ð�6Þ,
c32ð�7Þ, respectively. In the case G ¼ E8 and p ¼
2; 3, the mod p cohomology of the classifying space

is not yet computed. Since the non-triviality of

the Stiefel-Whitney class w128ð�8Þ tells us that the

differentials in the spectral sequence vanish on the

corresponding element, we expect that it not only

gives us a nice description for the generator but also

helps us in the computation of the mod 2 cohomol-

ogy of BE8.

This paper is the sequel of [5] in the sense that

we consider the mod 3 analogue of the above results.

In particular, we prove the non-triviality of the

mod 3 Chern class c162ð�8Þ of degree 324. For an odd

prime number p and for a simply-connected, simple,

compact connected Lie group, the Rothenberg-

Steenrod spectral sequence collapses at the E2-level

and so at least additively the mod p cohomology is

isomorphic to the cotorsion product of the mod p

cohomology of G except for the case p ¼ 3, G ¼ E8.

In [6], we proved that there exists an algebra

generator of degree greater than or equal to 324 in

the mod 3 cohomology ring of BE8. On the other

hand, in [9,10], Mimura and Sambe proved that the

E2-term of the Rothenberg-Steenrod spectral se-

quence is generated as an algebra by elements of

degree less than or equal to 168. Hence the spectral

sequence must not collapse at the E2-level. We

expect that, in the mod 3 cohomology, the mod 3

Chern class c162ð�8Þ plays an important role similar

to that of the Stiefel-Whitney class w128ð�8Þ in the

mod 2 cohomology.

Now, we state our main theorem. Let T be a

fixed maximal torus of the exceptional Lie group F4.

We choose a maximal non-toral elementary abelian

3-subgroup A of F4 so that T \A is nontrivial. We

refer the reader to the paper of Andersen, Grodal,

Møller and Viruel [2, Section 8] for the details of

non-toral elementary abelian p-subgroups of excep-

tional Lie groups and their Weyl groups. Let � be a

subgroup of T \A of order 3. The group � is the

cyclic group of order 3. We consider the following

diagram of inclusion maps.

T F4 G

μ A.
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We denote by � : �! G the inclusion map of �

to G ¼ F4; E6; E7; E8. The mod 3 cohomology

H�ðB�; Z=3Þ of the classifying space B� is isomor-

phic to

Z=3½u2� � �ðu1Þ;

where u2 is the image of the mod 3 Bockstein

homomorphism of a generator u1 of H1ðB�; Z=3Þ ¼
Z=3. From now on, we consider complex represen-

tations only and we denote complexifications of real

representations �4, �8 by the same symbols �4, �8,

respectively.

Theorem 1.1. The total Chern classes

cð��ð�iÞÞ of the above induced representations

��ð�iÞ, where i ¼ 4; 6; 7; 8, are as follows:

cð��ð�4ÞÞ ¼ 1� u18
2 ;

cð��ð�6ÞÞ ¼ 1� u18
2 ;

cð��ð�7ÞÞ ¼ ð1� u18
2 Þ

2 ¼ 1þ u18
2 þ u36

2 ;

cð��ð�8ÞÞ ¼ ð1� u18
2 Þ

9 ¼ 1� u162
2 :

As a corollary of this theorem, using Lemma

3.1, we have the following

Corollary 1.2. The Chern classes c18ð�4Þ,
c18ð�6Þ, c18ð�7Þ, c162ð�8Þ are nontrivial in

H�ðBF4; Z=3Þ, H�ðBE6; Z=3Þ, H�ðBE7; Z=3Þ,
H�ðBE8; Z=3Þ, respectively. Moreover, the Chern

classes c18ð�4Þ, c18ð�6Þ, c18ð�7Þ are indecomposable,

so that they are algebra generators.

This paper is organized as follows: In Section 2,

we recall complex representations �4; �6; �7; �8 and

their restrictions to Spinð8Þ. In Section 3, we prove

Theorem 1.1. We end this paper by showing the

non-triviality of the mod 5 Chern class c100ð�8Þ of

BE8 in the appendix.

2. Complex representations. In this sec-

tion, we consider complex representations �4; �6;

�7; �8 in Theorem 1.1 and the complexification �04 of

the adjoint representation of F4 and their restric-

tions to Spinð8Þ. For the details of representation

rings of Spin groups and cyclic groups, we refer the

reader to standard textbooks on representation

theory, e.g. Husemoller’s book [4] and/or the book

of Bröcker and tom Dieck [3].

First, we recall the complex representation ring

of Spinð2nÞ. Let us consider the following pull-back

diagram.

T̃n Spin(2n)

Tn SO(2n),

k̃n

π π

kn

where SOð2nÞ is the special orthogonal group, � :
Spinð2nÞ ! SOð2nÞ is the universal covering, T n is

the maximal torus of SOð2nÞ consisting of matrices

of the form

cos θ1 − sin θ1

sin θ1 cos θ1

cos θn − sin θn
sin θn cos θn

,

kn is the inclusion map and ~T n is a maximal torus of

Spinð2nÞ. The complex representation ring of

S1 ¼
cos � �sin �

sin � cos �

� �� �

is RðS1Þ ¼ Z½z; z�1� where z is represented by the

canonical complex line bundle. Considering T n as

the product of n copies of S1’s, let pi : T n ! S1 be

the projection to the i-th factor. We denote by zi
the element p�i ðzÞ, ��ðp�i ðzÞÞ in RðT nÞ, Rð ~T nÞ,
respectively, so that ��ðziÞ ¼ zi. Then, we have

RðT nÞ ¼ Z½z1; . . . ; zn; ðz1 � � � znÞ�1�;
Rð ~T nÞ ¼ Z½z1; . . . ; zn; ðz1 � � � znÞ�1=2�

and the complex representation ring of Spinð2nÞ is

Z½�1; . . . ; �n�1;�
þ;���

where

~k�nð�1Þ ¼
Xn
i¼1

ðzi þ z�1
i Þ;

~k�nð�2Þ ¼
X

1�i<j�n
ðzi þ z�1

i Þðzj þ z�1
j Þ;

~k�nð�þÞ ¼
X

"1���"n¼1

ðz"1

1 � � � z"nn Þ
1=2;

~k�nð��Þ ¼
X

"1���"n¼�1

ðz"1

1 � � � z"nn Þ
1=2;

and "i 2 f�1g. For the sake of notational simplicity,

from now on, we write � for �þ þ��. Let i : �!
S1 be the inclusion map. We denote by z the
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generator i�ðzÞ of Rð�Þ. Then, it is also known that

Rð�Þ ¼ Z½z�=ðz3Þ.
Next, we recall complex representations

�4; �6; �7; �8 of dimension 26; 27; 56; 248 in Section 1

and the complexification �04 of the adjoint represen-

tation of F4. We consider the following commuta-

tive diagram.

Spin(8) Spin(10) Spin(12) Spin(16)

F E E E ,

i

j

i

j

i ◦i

j j

i i i

where

i2n�2 : Spinð2n� 2Þ ! Spinð2nÞ

is the obvious inclusion map. For �4; �
0
4, we refer the

reader to Yokota’s paper [14]. For �6; �7, we refer

the reader to Adams’ book [1, Corollaries 8.3, 8.2].

For E8, from the construction of E8 in Adams

[1, Section 7] and the fact that the adjoint repre-

sentation of Spinð2nÞ is the second exterior power of

the standard representation, we have the following

proposition.

Proposition 2.1. We have

j�8ð�4Þ ¼ 2þ �1 þ�;

j�8ð�04Þ ¼ 4þ �1 þ�þ �2;

j�10ð�6Þ ¼ 1þ �1 þ�þ;

j�12ð�7Þ ¼ 2�1 þ��;

j�16ð�8Þ ¼ 8þ �2 þ�þ;

in RðSpinð8ÞÞ, RðSpinð8ÞÞ, RðSpinð10ÞÞ,
RðSpinð12ÞÞ, RðSpinð16ÞÞ, respectively.

Since the induced homomorphism i�2n�2 maps

�1; �2;�
þ;��;� to 2þ �1; 2�1 þ �2;�;�; 2�, re-

spectively, we have the following proposition.

Proposition 2.2. For G ¼ F4; E6; E7; E8, let

j : Spinð8Þ ! G be the inclusion map. In RðSpinð8ÞÞ,
we have

j�ð�4Þ ¼ 2þ �1 þ�;

j�ð�6Þ ¼ 3þ �1 þ�;

j�ð�7Þ ¼ 8þ 2�1 þ 2�;

j�ð�8Þ ¼ 32þ 8�1 þ 8�þ �2:

3. Mod 3 Chern classes. In this section,

we prove Theorem 1.1. We consider the following

diagram of inclusion maps.

T̃ 4 Spin(8) F4

μ A.

k̃ j84

ι0

ι1

The maximal torus ~T 4 of Spinð8Þ is the maximal

torus T of F4 we mentioned in Section 1. By abuse

of notation, we denote both the inclusion map of �

to ~T 4 and its composition with ~k4 by the same

symbol �0. Let
ffiffiffi
0
p

be the nilradical of H�ðBA; Z=3Þ
and H�ðB�; Z=3Þ, so that we have the induced

homomorphism

��1 : H�ðBA; Z=3Þ=
ffiffiffi
0
p
! H�ðB�; Z=3Þ=

ffiffiffi
0
p
¼ Z=3½u2�:

Lemma 3.1. The image of the induced ho-

momorphism

�� : H�ðBF4; Z=3Þ ! H�ðB�; Z=3Þ=
ffiffiffi
0
p

is in Z=3½u18
2 �, i.e. Im �� 	 Z=3½u18

2 � 	 Z=3½u2�.
Proof. It is well-known that the Weyl group

W ðAÞ ¼ NðAÞ=CðAÞ of A in F4 is isomorphic to the

special linear group SL3ðZ=3Þ. See the paper of

Andersen, Grodal, Møller and Viruel [2, Section 8].

Moreover, H�ðBA; Z=3Þ=
ffiffiffi
0
p

is a polynomial algebra

with 3 variables of degree 2 and SL3ðZ=3Þ acts in

the usual manner. The ring of invariants is also a

polynomial algebra

ðH�ðBA; Z=3Þ=
ffiffiffi
0
p
ÞW ðAÞ ¼ Z=3½e3; c3;1; c3;2�:

The invariants e2
3 ¼ c3;0; c3;1; c3;2 are known as

Dickson invariants and their degrees are 52; 48; 36,

respectively. Moreover, the induced homomorphism

��1 maps c3;0; c3;1; c3;2 to 0; 0; u18
2 , respectively. See

Wilkerson’s paper [13, Corollary 1.4] for the details.

Since the induced homomorphism �� factors through

ðH�ðBA; Z=3Þ=
ffiffiffi
0
p
ÞWðAÞ ! H�ðB�; Z=3Þ=

ffiffiffi
0
p

;

the lemma follows. �

Next, we compute the total Chern class

cð��0ð�1 þ�ÞÞ.
Proposition 3.2. The total Chern class

cð��0ð�1 þ�ÞÞ is equal to 1� u18
2 .

Proof. Since dimð�1 þ�Þ ¼ 24, and since

cð��0ð�1 þ�ÞÞ ¼ cð��ð�4ÞÞ 2 Z=3½u18
2 � by Lemma 3.1,

cð��0ð�1 þ�ÞÞ is equal to 1þ �u18
2 for some � 2 Z=3.

On the other hand, ��0 maps zi to z�i for some

�i 2 Z=3 and, since �0 is the inclusion map,

ð�1; �2; �3; �4Þ 6¼ ð0; 0; 0; 0Þ. So,
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cð��0ð�1ÞÞ ¼
Y4

i¼1

ð1� �2
i u

2
2Þ

and �i 6¼ 0 for some i. Hence, cð��0ð�1ÞÞ is divisible by

1� u2
2. Therefore,

cð��0ð�1 þ�ÞÞ ¼ cð��0ð�1ÞÞcð��0ð�ÞÞ

is also divisible by 1� u2
2 and so � ¼ �1 in Z=3. �

Next, we compute the total Chern class

cð��0ð�2ÞÞ.
Proposition 3.3. The total Chern class

cð��0ð�2ÞÞ is equal to 1� u18
2 .

Proof. As in the proof of the previous propo-

sition, assume that ��0ðziÞ ¼ z�i . Let

fij ¼ ð1� ð�i þ �jÞu2Þð1� ð�i � �jÞu2Þ
ð1� ð��i þ �jÞu2Þð1� ð��i � �jÞu2Þ:

Then,

cð��0ð�2ÞÞ ¼
Y

1�i<j�4

fij

and

fij ¼ 1� 2ð�2
i þ �2

j Þu2
2 þ ð�2

i � �2
jÞ

2u4
2:

For ð�2
i ; �

2
jÞ ¼ ð1; 1Þ, we have

fij ¼ 1� u2
2:

For ð�2
i ; �

2
jÞ ¼ ð1; 0Þ or ð0; 1Þ, we have

fij ¼ 1� 2u2
2 þ u4

2 ¼ ð1� u2
2Þ

2:

Since ð�1; �2; �3; �4Þ 6¼ ð0; 0; 0; 0Þ, there exists ði; jÞ
such that ð�i; �jÞ 6¼ ð0; 0Þ. Hence the total Chern

class cð��0ð�2ÞÞ is not trivial and it is divisible by

1� u2
2.

Let us consider the total Chern class cð��ð�04ÞÞ.
By Lemma 3.1, it is in Z=3½u18

2 � and by Proposition

3.2, we have

cð��ð�04ÞÞ ¼ cð��0ð�2ÞÞcð��0ð�1 þ�ÞÞ
¼ cð��0ð�2ÞÞð1� u18

2 Þ:
So, cð��0ð�2ÞÞ is also in Z=3½u18

2 �. Since dim�2 ¼
24, cð��0ð�2ÞÞ ¼ 1þ �u18

2 for some � 2 Z=3. Since

cð��0ð�2ÞÞ is divisible by 1� u2
2, � ¼ �1 as in the

proof of the previous proposition. �

Finally, we prove Theorem 1.1.

Proof of Theorem 1.1. Using Propositions 2.1,

2.2 and using Propositions 3.2, 3.3 above, we have

cð��ð�4ÞÞ ¼ cð��0ð�1 þ�ÞÞ ¼ 1� u18
2 ;

cð��ð�6ÞÞ ¼ cð��0ð�1 þ�ÞÞ ¼ 1� u18
2 ;

cð��ð�7ÞÞ ¼ cð��0ð�1 þ�ÞÞ2 ¼ ð1� u18
2 Þ

2;

cð��ð�8ÞÞ ¼ cð��0ð�1 þ�ÞÞ8cð��0ð�2ÞÞ
¼ ð1� u18

2 Þ
9:

�

A. Mod 5 Chern classes. Let p be an odd

prime number. Let G be a simply-connected,

simple, compact connected Lie group. If the integral

homology of G has no p-torsion, then the mod p

cohomology ring of its classifying space is a poly-

nomial algebra and it is well-known. See, for

example, the book of Mimura and Toda [11]. The

integral homology of G has p-torsion if and only if

ðG; pÞ is one of ðF4; 3Þ; ðE6; 3Þ; ðE7; 3Þ; ðE8; 3Þ and

ðE8; 5Þ. We dealt with the cases for p ¼ 3 in this

paper. For completeness, in this appendix, we

deal with the remaining case, p ¼ 5, G ¼ E8, that

is, we prove the non-triviality of the mod 5 Chern

class c100ð�8Þ of the complexification of the adjoint

representation �8 of the exceptional Lie group E8.

The mod 5 analogue of Corollary 1.2 is as

follows:

Theorem A.1. The mod 5 Chern class

c100ð�8Þ is non-trivial. Moreover, the mod 5 Chern

class c100ð�8Þ is indecomposable in H�ðBE8; Z=5Þ.
To prove this theorem, we need the mod 5

analogue of Lemma 3.1. As in the case p ¼ 3, G ¼
F4, there exists a non-toral maximal elementary

abelian 5-subgroup of rank 3 in the exceptional Lie

group E8. We choose the maximal torus T of E8. If

necessary, by replacing A by its conjugate, we

may assume that A \ T is non-trivial. We choose a

subgroup � of A \ T of order 5. Indeed, it is the

cyclic group of order 5. We denote by � : �! E8 the

inclusion map. The mod 5 cohomology of B� is

H�ðB�; Z=5Þ ¼ Z=5½u2� � �ðu1Þ;

where u1 is a generator of H1ðB�; Z=5Þ ¼ Z=5 and

u2 is its image by the mod 5 Bockstein homo-

morphism. As in the previous section, we denote the

nilradical by
ffiffiffi
0
p

and we denote the inclusion map of

� to A by �1 : �! A.

Lemma A.2. The image of the induced ho-

momorphism

�� : H�ðBE8; Z=5Þ ! H�ðB�; Z=5Þ=
ffiffiffi
0
p

is in Z=5½u100
2 � 	 H�ðB�; Z=5Þ=

ffiffiffi
0
p

.

Proof. Since the induced homomorphism ��

factors through
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��1 : ðH�ðBA; Z=5Þ=
ffiffiffi
0
p
ÞWðAÞ ! H�ðB�; Z=5Þ=

ffiffiffi
0
p

;

all we need to do is to recall the fact that the Weyl

group W ðAÞ of A in E8 is SL3ðZ=5Þ, that

ðH�ðBA; Z=5Þ=
ffiffiffi
0
p
ÞWðAÞ ¼ Z=5½e3; c3;2; c3;1�

and that the above induced homomorphism ��1 maps

e3; c3;1; c3;2 to 0; 0; u100
2 , respectively. We find these

facts in [2, Section 8] and in [13, Corollary 1.4]. �

To compute ��ð�8Þ, we need the following

commutative diagram similar to the diagram in

Section 3. However, in this case, the map j16 :

Spinð16Þ ! E8 is not injective.

T̃ 8 Spin(16) E8

μ

k̃ j

ι

ι
A.

We choose the maximal torus T of E8 so that

j16ð ~T 8Þ ¼ T . Then, since ~T 8 ! T is a double cover

and since � is of order 5, there exists a map �0 :

�! ~T 8 such that the above diagram commutes.

We use the following propositions to prove

Theorem A.1.

Proposition A.3. The total mod 5 Chern

class of ��0ð�2Þ is a product of copies of 1� u2
2 and

1þ u2
2. Moreover, it is non-trivial.

Proof. Let

fij ¼ ð1� ð�i þ �jÞu2Þð1� ð��i þ �jÞu2Þ
ð1� ð�i � �jÞu2Þð1� ð��i � �jÞu2Þ:

Then, we have

cð��0ð�2ÞÞ ¼
Y

1�i<j�8

fij

and

fij ¼ 1� 2ð�2
i þ �2

j Þu2
2 þ ð�2

i � �2
jÞ

2u4
2:

In Z=5, �2
i ¼ 0 or �1. So,

fij¼ 1þ u2
2 for ð�2

i ; �
2
j Þ ¼ ð1; 1Þ;

fij¼ 1� u2
2 for ð�2

i ; �
2
j Þ ¼ ð�1;�1Þ;

fij¼ ð1� u2
2Þ

2 for ð�2
i ; �

2
j Þ ¼ ð1; 0Þ; ð0; 1Þ;

fij¼ ð1þ u2
2Þ

2 for ð�2
i ; �

2
j Þ ¼ ð�1; 0Þ; ð0;�1Þ;

fij¼ 1 for ð�2
i ; �

2
j Þ ¼ ð0; 0Þ:

Since � is a non-trivial subgroup of ~T 8, �i is non-

zero for some i. So, the total Chern class is not equal

to 1 and so we have the proposition. �

Proposition A.4. The total mod 5 Chern

class of ��0ð�þÞ is also a product of copies of 1� u2
2

and 1þ u2
2.

Proof. Suppose that i�0 : RðSpinð16ÞÞ ! Rð�Þ
maps ðz"1

1 � � � z
"8

8 Þ
1=2 to z�"1 ..."8 . Then, it maps

ðz"
0
1

1 � � � z
"08
8 Þ

1=2 to z��"1 ..."8 , where "0i ¼ �"i, and we

have

cð��0ð�þÞÞ ¼
Y

"1¼1;"1"2���"8¼1

ð1� �2
"1"2..."8

u2
2Þ:

Since �2
"1..."8

¼ 0 or �1, we have the desired result.�

Now we complete the proof of Theorem A.1.

Proof of Theorem A.1. By Propositions A.3,

A.4, the total Chern class cð��ð�8ÞÞ is a product

of copies of 1� u2
2 and 1þ u2

2 and it is non-trivial.

On the other hand, by Lemma A.2, since dimð�2 þ
�þÞ ¼ 240,

cð��ð�8ÞÞ ¼ 1þ �u100
2 þ 	u200

2

for some �; 	 2 Z=5 and ð�; 	Þ 6¼ ð0; 0Þ. Since it is

divisible by 1� u2 or 1þ u2
2, we have 1þ �þ 	 ¼ 0

in Z=5 and

cð��ð�8ÞÞ ¼ 1þ ð�	 � 1Þu100
2 þ 	u200

2

¼ ð1� u100
2 Þð1� 	u100

2 Þ:
Since it is a product of copies of 1� u2

2 and 1þ u2
2,

1þ 	u100
2 is also divisible by 1� u2

2 or 1þ u2
2 if

	 6¼ 0. So, 	 ¼ 0 or �1 and we have that cð��ð�8ÞÞ
is equal to 1� u100

2 or ð1� u100
2 Þ

2. In particular,

c100ð�8Þ ¼ �u100
2 or �2u100

2 and by Lemma A.2, it is

indecomposable in H�ðBE8; Z=5Þ. �
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