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On the Letac-Massam Conjecture on cones Q 4,
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Abstract:

We prove, for graphical models for nearest neighbour interactions, a conjecture

stated by Letac and Massam in 2007. Our result is important in the analysis of Wishart
distributions on cones related to graphical models and in its statistical applications.
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1. Preliminaries.

In this note, we solve on
an important class of cones, the conjecture stated
by Letac and Massam in [7,p. 1314], and called
“Letac-Massam Conjecture” in [1]. This conjecture
is of fundamental importance in harmonic analysis
of Riesz and Wishart measures on convex cones
connected to graphs and in its applications to
modern multivariate statistics. More generally, the
Conjecture of Letac-Massam is closely related to an
important problem in a wide range of analysis on

1.1. Introduction.

cones:
(P) Is the Laplace transform of a product of powers
of given polynomials equal to a product of powers of
some polynomials?

Let n > 2. We denote by Sym(n, R) the vector
space of real symmetric n X n matrices and by
Sym™(n,R) the cone of symmetric positive definite
matrices. Let G be a graph with vertices 1,2,...,n
and edges E. Let Zg be the subspace of Sym(n,R)
containing matrices z with z; =0 if {i,j} ¢ E.
Cones Pg = Sym™(n,R) N Zg and their dual cones
Q¢ are basic objects of graphical model theory
([5], [7]), one of the most important parts of
contemporary statistics, including big data statis-
tics. We refer to [5] and [7] for all the notions and
notations not explained in detail in this paper.

We show that the Letac-Massam Conjecture is
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true on the cones Q¢ where
G=A,=1-2—---—n,

This is a fundamental class of non-homogeneous
cones appearing in the statistical theory of graph-
ical models [5], corresponding to the practical model
of nearest neighbour interactions. In the Gaussian
character (Xi,Xo,...,X,), non-neighbours X;, X;,
|i —j| > 1 are conditionally independent with re-
spect to other variables.

According to [7,Corollary 3.1], the Letac-
Massam Conjecture is true on the cones (4, and
P4,, but these results are “obtained by a nontrivial
and long computation” and the proofs are omitted.
[7] states that for n =5 “calculations are terrify-
ing.” Our method of proof is simple and based on
methods of [4]: triangular changes of variables on
4, and using natural “future” and “past” power
functions 5§M) and AéM) on (4, and on P4,. Our
method also applies to the cone Py, .

1.2. Letac-Massam Conjecture. The Letac-
Massam Conjecture is a conjecture on the Laplace
transform of functions n — H(a, 8,1), n € Qa,, & =
(O{], . ,Oé"_l), ﬂ = (627 ey ﬁn—l)a introduced in [7],
cf. (2) below. If needed, we will use a more precise
notation H,, for the function H on Q) 4,. Let 7w denote
the projection from Sym™(n, R) onto the cone Q4
and let p14, (dn) be the reference measure on the cone
Qa,, defined by (3) below. The Letac-Massam
Conjecture on the cone @4, says that there exists
Ca,3 > 0 such that

(1) /Q 0 H (@, B, m)dua, (n)

= CosH(a,B,n(y™)  (y€ Pa)

n—1
if and only if (o, 3) € A, where A= U Ay and the
sets Ajs are defined by the followingAé?)Qnditions (C)
and (I):
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(C) oz]:ﬁjH if 1§]SM—2, and Q
M+1<j<n-—1,
(1) a; >4 for all j=1,...
ay — By > 0.
The sufficiency of the condition (a,f) € A was
showed in [7] and the necessity was conjectured and
announced true for n =4. For n = 2 and n = 3 the
equivalence of (1) with (a,3) € A is well known.
The necessity of (I) is evident (consider diagonal
y € Py, cf. Lemma 2.1 below), so the necessity of
(C) is to be proved for n > 4.

In the sequel, the equality (1) will be referred
to as the Letac-Massam formula on @4, and the
conditions (C) as Letac-Massam conditions. In this
note we prove

Theorem 1.1. Let n>4. The formula (1)
implies conditions (C).

1.3. Letac-Massam Conjecture for power
functions 6™ and AM). Now wc 1ntroduco the
power functions 6< D on @4, and A on Py,. For
all2< M <n-—1,

=8, if

,n—1, and oy +

M-1 s N
500 () = ITis gy ™ Tl |77{i 1}

s M - ’
: [Ii= 2177;97 Ry R Hz M+1 U
1) y) = H |y{1;7:}|syiisi+l|y|s‘u H |y{i:n}|sﬁs,>17
i<M i>M

where, for I C {1,...,n}, the matrix A; is the
submatrix of A indexed by I, and the symbol {a : b}
with 1 <a <b<7r denotes the set of ¢ for which
a <1i<b. The relation 6§M>(7r(y’1)) = A@?(y) is
proved in [4]. Define r; = a; 11 — f§; and p; = o — 5;
for all 2 <i <mn —1. We have, as defined in [7],

HEll |77{'::+1}|a'
(2) H(a = : nflwﬂ,:
ITi= i

M) M-1_ri 1
so that H(O{,I@, ) - 6( ( )Hz 2 T,ZL H? M+1 "1
where s; = o, for all 1 <i< M —1; s; = a;_1, for
all M +1<i<mnand sy = ap—1 + ay — By. This
implies ry = sy — syv1 and py = sy — sy—1. We
notice that s = (s;) depends on M, whereas neither

,3,m)

r = (r;) nor p = (p;) does.
Let ¢(y) = (y‘l) and
(3) H |77{17+1}| 3/2 H nndn

i#1n
be the reference measure used in [7], where dn is the
Lebesgue measure.

The Letac-Massam formula (1) is equivalent,
foreach2 < M <n-—1, to
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M-1 n—1
(4) / e s H mi [T nidua, ()
¢ An i=M+1
M-1 n—1
= CosA ) [T e T ¢
=2 =M+1

The Letac-Massam conditions (C) are equivalent to
the following n — 2 alternative conditions:

(5) ro=---

for an M € {2,.
the equality
n—1}.

A positive answer to the Letac-Massam Con-
jecture implies that the natural generalized power
functions on @4, are the families 5;M)(77), motivated
by analysis on symmetric and homogeneous cones,
with n-dimensional parameter s. Power functions
H(a,8,m), n€ Qa, are motivated by advanced
graph theory, more exactly by cliques and separa-
tors formalism. The parameters «, 3 have dimen-
sion 2n — 3. Even if we start with a larger family
H(w, B,m), in order to have the property (P)
satisfied, we boil down to the families 6£M)(n), with
M =2,....,n— 1. Moreover, the families 6,;21)(77) and
6§">(n) are “forgotten” in the graph theory approach
of [7].

2. Proof. We are going to prove the Letac-
Massam Conjecture by induction on n. The proof of
the initiation part (n =4) and the heredity part
(n > 5) are the same, so they are given together. We
use extensively the bijections ¥, and ¥, between
R* xR X @4, , and Q4, and the bijections ®,, and
®, between R* x R x Py, , and Py, studied in [4]
(see Appendix for more information).

First, in the following lemma, we express, for
each M, the constant C, g as a function of M,s =
(8i),r = (r;) and p = (p;). This is convenient and
needed in further study of the formula (4).

Lemma 2.1. If the formula (4) holds for all
y € Py, then we have

(6)  Cop = a1/ mm{ 11 F<5i - %) }

=TM-1=PM+1 =" =Pp-1 =0

.,n—1}, or, in other words, to
( , By )—6M) for an M €{2,.

M
" Aﬁl D(s;+r) 5 ! L(s; + pi)
i L) g T(s)

Ify is diagonal, then (4) holds if and only if s; > 3 for
1# M, spr >0, s,4+1, >0 for 2<i< M and s; +
pi >0 for M <i<n-—1.
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Proof. We take y diagonal. The proof is a by-
product of the Step 1 of the main proof. (I

Step 1 (descent in Letac-Massam formula,
from Qu, to Qa,,). Let n>4, a=(aq,...,0n_1)
and 8= (Bay ..., Ln-1)-

Suppose that the Letac-Massam formula (1)

holds for H,(a, B8,-) on Q4,. Then the Letac-Massam
formula holds on Q4, , for:

(1) Hn—l((ala R an—?); (627 sy 6’@—2)3 ) and the
graph 1 — -+ — (n—1),

(ll) Hn_l((OAQ, . ,an_l), (,837 ey ﬂn—l)a ) and the
graph 2 —--- —n.

Proof. Let us prove (i). We choose 2 < M <
n—2. For all y& Py, let, successively, y=
®,(d, b, z) and z = @, _1(a”,b", Z). We easily check
that for 2 <i<n—1, o(y),;, = ¢(2); = ©(Z);, see
Lemma 4.2 (by our convention, z is indexed by
1,...,n—1 and Z is indexed by 2,...,n—1).
Integration on 4, with two successive changes

of variables 7 =,(y,/,6) and then &=
U, (", V", 2) gives
o M-1
—tr(ZZ) /1 — =T
U SN |
Qa, i=2
X H d:u’An 2 E
i=M+1
2 M-1 n—1
=oAL H o2 II (20,
' 71:M+1
where C(" 2 = Cag and the rows and

T al(s1=5HT(su—3)
columns of = and Z are numbered 2,...,n— 1.
Now, we apply one more change of variable

E:\i/ o(p,v,©) in formula (7) and we set
Z =®, 5(a,0,T). The lines and columns of ©

and T are numbered 2,...,n—2. Let F(u,v,©)
be the integrand. We first compute J =

2 J Fdpdy =2 [° [° Fdudy. Using the change
of variables u = au,t = a@n,gvn,gﬂ we get

_2apnl/ /

% /JLSILfl 3/2(a/14+ a®n72,n72y2)p”71dudl/
7(Snfl+pn71>@71/2

n—2,n—2

Now, wusing the change of variables
(u,u+t), we get

aH'Hl@n am-at?)

=a

3 1
—(u+t) Sn 1=5473 (u

+ )" dudt.

(ua ’U) =
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(8) J = a—(snfl+pn,1)6;i/2?n_2
DC v 3 1
X/ </ u577l§(v_u)2du> efvvpn,ldlu
0 0
= a7(571—1+pn—1)@;ié?n_g
B 11 F( N )
X B sp1 — =, = |T(su_1 + Pnt),
T2 1+ P

where, in the integral with respect to du we made a
change of variable x = u/v. We get

(9) / eftr(T(—))(SEy) . ‘)(@)
QA,,,;g 825000352
M-1 n—2
x [Tei II ©hdua, .(©)
i=2 i=M+1

n—3 M
:cfl_ﬂ )A§<? 2>(T)

M-1
x [] o(T H p(T),
=2 i=M+1
where
_ C
n—3 a,p
(10) C((y.ﬂ )= 3 1 1 1
m2l(sy — )T (50 — 3)T (8021 — 3)
F(Snfl)

F(pn—l + 571—1) )

Recall that throughout the paper C, g denotes the
constant from formulas (1) and (4). By the same
argument as to obtain formula (7), we observe
that the Letac-Massam formula for the function
Hy (0. yan—2), (B2, ..., Bn—2),) on Qa,, and
the graph 1—2—.--—(n—1) is equivalent to
formula (9). This finishes the proof of (i).

By a similar “mirror-like” argument with the
change of variables = = ¥, _5(u,v,0) in (7), we get

the Letac-Massam formula for H,_1((, ..., @,—1),
(B3, .-, Bn-1),") and the graph 2 —--- —n, and we
prove part (ii) of Step 1. O

Proof of Lemma 2.1. For y diagonal, formula
(10) leads by induction to formula (6), observ-
ing that the last equation we get is
R :C(S%a—&u7 so that C’((M}
F(S]\j).

Step 2 (induction step).
Conjecture on Qa
Conjecture on Q 4, .

Proof. Let n > 4. Suppose that the Letac-
Massam formula (1) holds for some a and § and
suppose that the Letac-Massam Conjecture is true

on QAnfl'

DII

The Letac-Massam

., 4implies the Letac-Massam
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For n > 5, we use Step 1 and the induction
hypothesis. Thus one of the following n — 3 con-
ditions has to be satisfied:

Ty = =Tyl = PyMel = = Ppa2 = 0,

for an M € {2,---,n — 2}, and, simultaneously, one
of the following n — 3 “shifted” conditions has to be
satisfied:

r3=-c =Ty =pyuiz =" =pp-1 =0,

for an M € {2,...,n —2}. This implies that either
conditions (5) are satisfied or

(11)

Let us assume this single remaining case and show
that it also implies conditions (5).

p3=-"=pp2=0;r3=---=m_9=0.

The equality 7y, =0 implies s = sy+1 and
py = 0 implies sy = sy—1. Also, from p; =r; for
all 3<j<n—2, we get so=---=sy-1 and
Sya1=+++=8,-1. Thus, ss=---=s5, 1=s. In
the case (11), using the cofactor formula for Z~!,
equation (7) reduces to
L NN = S

Ao

reeny

oo 1 Zm I\ (1 Z ey N
_ C((yn 2)|Z| s< {3:n—1} > ( : )
’ |Z| 1Z]

We apply the second derivative with respect to
Zy—9,-1 on both sides of (12) and we take
Zn—2n-1 = 0. Theorem 2.7.1 in [6] ensures that the
derivatives of all orders of the integral (12) can be
computed under the integral sign. We obtain
) [ e @

Ap_s

Syeen

X 53172,71716[:“%1”72 (2) |z,,,m,1:0

(n—2)
G 0| )
4 8272172.7171 Zn-22-1=0

where g(7) = |7]" (Bl ) (Zegal )™,

Let us change the variables Z = W, _»(f, 7, ©)
and set Z = ®,,_5(a,0,T), i.e. Zyp—9n-1 = 0. Similar-
ly as in the proof of (9) in Step 1, we find that the
left hand side of (13) is

(14) a—(s+p"71+1>r‘(s + Pn1 + 1)3(5 _ %7 %)

X /Q e—tr(T(—)) 65?71)',) (@)9522 @71,72,n72d:u14n73 (@) :
An-3

We write %C’fﬁg?)D the right hand side of (13) and
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we compute D. Denoting S = —(s+ 73+ p,—1) and
hZ) = |Z|S|Z{3;n_1}|r2 we have

82

D: Z n— pﬂil—
| Z 2n—2} 0Zy 1

h(Z).

Zp—2n-1=0

We apply formulas
|Z| = anl,n71|Z{2:an}| - Z72172,n71|Z{25"*3}|’
|Z|S = (Zn—l,n—1|Z{2:n—2}DS

272172 n—llZ 2:n—3 |
x (1—5 PR 022y, ) ).

anLnfl |Z{2:n72} |

S
Thus, for Z,_3,-1 =0, we get aZZ)‘,ZJ == 0 and
?)2)° S-1,,
322‘ [ _ZS(Z"_177L_1|Z{2;7172}|) |Z{2:n73}|'

n—2,n—1

Similarly, |Z{3:nfl}|

= 7L*1{!L71|Z{3:n72}| - Z'rQL—27n—1|Z{3:n73}|

(for n =5 we set | Zy3.,-33| = 1) and
82|Z{3:7’L71}|T2
8Z72172,n71 Zp—2.n-1=0
= _2712(Zn71,n71|Z{3:n72}|)T271|Z{3:n73}|'
Using Z = én,g(a,O,T), where the matrix T
is indexed by 2,...,n —2, we obtain Z,_ 1,1 =
a, Z{Q:n72} =T, Z{3:n72} = T{3:n72}7 |Z{3:n71}‘ =
a|T(3:n—2y| and |Z| = a|T|. By Leibniz formula,
D = 20 S TP Iy
X (S| T -2 | T3y + 72| Tizen—sy [IT1),
where for n =5 we set |Ty3,_3| = 1. Hence, for
Zy—9n-1 = 0, the right hand side of (13) is
(n—2)

(15) % a_(s‘*'p"*""l)|T|_<S+"2+1)|T{3:n72}|"2_1f(T),

where

f(T) = (S +r2+ pn71)|T{3:n—2}||T{2:n—3}|
- T2|T{3:7z—3} | |T|

Equating (14) and (15), we obtain, using (10),

(16) /Q e IO 010, . adua, ,(O)
An-3

sd(s,19,T
— 72)]0(7’),
S +pn—1

where

d(s, 9, T) = CU V| T |~y o2

B

Formula (16) is supposed to be true for our
Pn1 = Q1 — Bn_1. It is surely true for p, ; =0,
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because the Letac-Massam conditions (5) are then
satisfied. Equating (16) for these two values of p,_1,
and noting that by (6) the constant C((:gg) does not
depend on p,,_1, we get ”

(S +ry+ pnfl)|T{3:n72}||T{2:n73}| - T2|T{3:n73}||T|
S+ Pn-1
o (S + r?)|T{3:7172}||T{2:nf3}| - 702|T{3:n73}||T|

S
which is equivalent to

(17)  rop1 (ITan-2 | Ton—3y| = | Tizn—n |1 T]) = 0,

where for n =5 we set [T(3,,_3;| = 1. We observe
that |T{3:n72}||T{2:7173}| - |T{3n,5}||T‘ 7é 0, for exam-
ple for T such that T; =2 for all 2<i<n-—2,
Tijv1 =Tiq1;=1for 2<i<n—-3 and Tj; =0 for
all other 4, j (in this case, this expression equals 1).
Thus, for n > 5, in the remaining case (11), we also
have ro = 0 or p,_1 = 0. In both cases we fall in the
Letac-Massam conditions (5) and the proof of the
induction step is finished.

For n =4, we get formula (7) for M =2, the
computations are simpler (no use of Leibniz formula
is needed), and no condition s; = s3 = s appears.
The analogue of formula (16) is

13\ [~ , .1
(18) T(s3+ps+1)Bls3—=,= / e "u*u—du
2°2 0 u

o —

2
C(u, 153

== (82 + pa)t~ (2T,

t>0.

After substitution of the constant

1 1\ T'(s3 + p3)
c? = 3T 35 ) V=~
g =2 (s2)T'( s3 T(s5)

@ 2
one gets (s3+ p3)se = s3(so +p3) equivalent to
rop3 =0, so 79 =0 or p3 =0. We get the Letac-
Massam conditions for @) 4,. O

Remark 2.2. The expression on the RHS
of (17)’ Le. |T{327L—2}||T{227L—3}| - |T{3I7L—3}||T|’ where
T = T{3.n—2) is known in matrix theory. It is treated
in Desnanot-Jacobi identity ([2, Thm 3.12]), called
also Lewis Caroll (or Dodgson’s) identity ([3]) and
is equal to (H:':_;’ Ti,Hl)Q, the square of the mono-
mial of the off-diagonal entries.

Remark 2.3. The same method applies in
order to prove the Letac-Massam Conjecture on
P,,. We take M =2 and apply two changes of
variables ®, and <i>3 on Py, and Py, see Lemma 4.1.
We obtain an integral on P4, = Sym* (2, R), which
is the same as the integral on Q4, = Sym™ (2, R) in
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the proof above. The work on the Letac-Massam
Conjecture on P4, for n >5 is in progress. The
analysis on these cones is more difficult.

Remark 2.4. Our method of differentiating
the Letac-Massam formula with respect to Z;2 gives
a simple proof of the “Mellin transform” Lemma 3.1
in [7,p. 1302], announced without proof. However,
instead of the second derivative in Z;5, the complete
Taylor expansion in Zjo is needed.

Remark 2.5. Sufficiency of Letac-Massam
conditions follows from Gamma-Siegel integrals,
i.e. formulas for the Laplace transform of 5£M) and
AéM), proved in [4], using the triangular changes of
variables from Lemma 4.1.

3. Generalized Letac-Massam Conjec-
ture. In the first part of the proof of Theorem 1.1,
we showed that the Letac-Massam formula (1) on
Qa,, with M =2,...,n—1, is equivalent to a
Laplace transform formula (4) on Qa,,, for a
function 555).4,,(;,},.)' Next we proved that (4) implies
that the formula is rewritten for an M’ € {2,...,
n—1} with r,=0=p;,1=2,..., M —1,j=M +
1,...,n—1. Thus, in fact we showed a stronger
result that we call Generalized Letac-Massam
Conjecture (GLMC):

Theorem 3.1. Let M e {l,...,n}. There
exist a multi-inder s € R" and a constant C > 0
such that for all y € Py,

M-1 n
/ e M) T mi T1 i dua, ()
Qa, i=1 i=M+1
’ M-1 . n
=A@ [T e T] ew)
i=1 i=M+1

if and only if the formula is rewritten with M’ €
{1,...,n} such that r,=0=p;i=1,...,M —
Lj=M+1,....,nands; > 5,i# M sy > 0.

The GLMC gives a partial answer to the
question which products of powers of well-defined
minors on @4, have the property (P).

4. Appendix.

4.1. Changes of variables.

Lemma 4.1. Letn > 2.

(i) Let D, R"XRX Py, , — Py
(a,b,z) — y with

n?

y=A() “A(b),
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0o ... 0 1
and let ¥, : R" xR x Qa, , — Qa,, (1,v,&) — 1
with
g 0 - 0
n=m|"Av) A(v)
0

Then the maps ®,, and V,, are bijections.

(ii) Let ®,:R" xR X Py, — Py,
(a,b,z) — g with
0
§="B(b) z - [ BO),
0
0 --- 0 a
1
0 1
B(b) = ,
0 ... b 1

and let U, :RT xR x Qa, , — Qa,, (1, &) — 7
with

0

q=n|Bw)| ¢ ‘B(v)

0
0 - 0 pu
Then the maps ®,, and ¥, are bijections.
(iii) Let y=®,(a,b,2) and n=T,(u,v,§).
Then, for all M =2,...,n,

A(AD (y) = q” Agi»i),Sn) (2)7

El

5§M>(n) = 625‘”0 (©):

Let y = ®,(a,b,2) and n= U, (u,v,£). Then, for all
M=1,...,.n—1,

o A (M
AéM)(y) =a ”’AESL)...,SV,A)(Z)’

s (M
800 () = o ().
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(iv) If y = ®,(a,b,2) andn =V, (u,v,§), then
tr(yn) = ap + abos(b+ v)* + tr(z€).
Ify=®,(a,b,2) and n= T, (u,v,§), then
tr(yn) = ap + a&u1,0-1(b + v)° + tr(2€).

(v) The Jacobian of the change of variables

n= \Iln(,u'; v, g) on QA,, 18 J‘I/,, (p, v, f) = 522-
The Jacobian of the change of variables

n= \IITL(/UH v, g) on QA,I is J\iJn (H’v v, f) = gn*l,nfl'

The Jacobians of the changes of variables
y=®,(a,bz2) or y=®,(a,b,z) on Py are equal
to a.

Lemma 4.2. Considery € Py, .

(1) If y=Pn(a,b,2), then o(z); =
iz2.

(ii) If y= ®u(a,b,z), then ‘P(z)]‘j = ‘P(y)]‘j for
j1<n—1.

Proof. (i) Note that y = ®,(a, b, 2) is expressed

in the form T(a z)tT’ where T = A(b) in Lemma

@(y)jj for

4.1. In general, let M, R, S be n x n matrices with
R upper triangular and S lower triangular. Then
(RMS){jm} = R{j:n}M{j:n}S{j:n}- It follows that

W ) jmy = ((tT>_1){j:n}(z_1){j:n}(T_l){jm,} =z jm
for j>2 since (T_l){j:n} = Idgjny = ((tT)_l){jm}.
In particular (y’l)jj = (z’l)jj. The proof of (ii) is
similar. ]
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