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Abstract:

In this paper, we prove an analog of Younis’s theorem 5.2 in [4] for the

generalized Fourier-Bessel transform on the Half line for functions satisfying the (3, ~)-gener-
alized Bessel Lipschitz condition in the space Lin

Key words:

1. Introduction and preliminaries. Younis
([4], Theorem 5.2) characterized the set of functions
in L?(R) satisfying the Dini-Lipschitz condition by
means of an asymptotic estimate growth of the
norm of their Fourier transforms, namely we have

Theorem 1.1 ([4], Theorem 5.2). Let f¢€
L2(R). Then the following are equivalents:

LolfC+h) = fOllizmr) = O(255) as h— 0,0 <
(logh)
a<l,6>0,
2. fisr \F(F)N)PdA = O(r2(logr) ") as r—
—+o00,

where F stands for the Fourier transform of f.

The main aim of this paper is to establish an
analog of Theorem 1.1 in the generalized Fourier-
Bessel transform. We point out that similar results
have been established in the Dunkl transform [3].

We briefly overview the theory of generalized
Fourier-Bessel transform and related harmonic
analysis (see [2]).

Consider the second-order singular differential
operator on the half line

Ef(r) (2a+1)df(z) 4n(a+n)
Bf(z) = 5 T - B f(z),
dx T dx x
where o > —% and n=0,1,2,.... For n=0, we

obtain the classical Bessel operator

B ey - PI@) | (20 +1) (@)

dx? x dx

For a>—% and n=0,1,2,..., let M be the
map defined by
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Mf(x) = " f(x).
Let wa be the class of measurable functions f

on [0, o[ for which

1200 = IM7 £ll3 042, < 00,

o= ([ 15

1
For a> —3,

spherical Bessel function j, defined by

‘ B 00 (71)k P 2k

where

1/2
2
xQ““dac) .

we introduce the normalized

where T'(z) is the gamma-function. The function
y = jo(x) satisfies the differential equation

Bay+y=0

with the initial conditions y(0) =1 and ¢'(0) = 0.
The function j,(x) is infinitely differentiable, even,
and, moreover entire analytic.

Lemma 1.2. For x € R" the following in-
equalities are fulfilled.

L lja(@)] <1,

2. |1 _Ja(x)| <z,

3. |1 —ja(z)| > ¢ with x> 1, where ¢>0 is a
certain constant which depends only on «.
Proof (See [1]). O
For A € C and z € R, put

oA(x) = T foron ().

From [2] recall the following properties.
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Proposition 1.3. 1. o, satisfies the differ-

ential equation
By = =N
2. ForallAeC, andx € R

|(p)\($)| < x2ne\lm)\||z|.

The generalized Fourier-Bessel transform we
call the integral from [2]
Fa0 = [ e dn A2 0, fE L,
Let f € La .o the inverse generalized Fourier-
Bessel transform is given by the formula

+o00

flz) = Fa(f)(A)ea

0

(7)dptaran(N),

where
1

20+4n
—- S AT
4o2(T (o + 2n + 1))

d,ua+2n ()\) =

From [2], we have
Theorem 1.4. 1. For every f¢€ L}mﬁ
L?m we have the Plancherel formula

+0o0
/ (@) de
0

B /0“0 [Fn () V)P dptaza(N).

2. The generalized Fourier-Bessel transform
Fp extends um'quely to an isometric isomor-
phism from L2 . onto L2([0, +00], ftatan)-
Define the generalized translation operator T},
h > 0 by the relation

Tif(x) = (xh)*"7) 5, (M7 f)(), @ >0,
where "

To+2n
o, are the Bessel translation operators of
order « + 2n defined by

T f(x) = c(,/ f(V/ 22 + h? — 2zhcost) sin® tdt,
0

where

Ca = (/07T51112“td15)_1 = F(l;)(?(z-l*-)%).

By Proposition 3.2 in [2], we have
(1) Fu(Tu))N) = ex(WFs(HN), feLi,.

2. Main result. In this section we give the
main result of this paper. We need first to define the
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(8, 7)-generalized Bessel Lipschitz class
Definition 2.1. Let 8 € (0,1) and v>0. A

function f € L(Zm is said to be in the (3, )-general-

ized  Bessel Lipschitz class, denoted by

BLip(B3,2,7), it
IThf() +Tonf() = 207" F()lly.0m

hf3+2n
=0|———=| ash—0.
(log 1)

Theorem 2.2. Let f € L2 . Then the follow-

ing are equivalents
1. f € BLip(B,2,7), N
2 [ Fp (DO dtasan(N) = O( 52 ) as 7 —
+o0.
Proof. 1) = 2) Assume that f € BLip((,2,7).
Then

a,n’

ITuf() + Tonf() = 20°" F ()l qm

hﬁ+2n
= O Y as h — 0.
(log ;7)

Formula (1), we have
Fu(Tnf + T nf — 20> f)(A)
= (oa(h) + oa(=h) — 20" F(f)(\)
= (h*"Jaran(AR) + (= 1) forzn (= MD)
— 20" Fg(f)(N)

= 21" (Jar2n(AR) — D) Fn(f)(N).

Plancherel identity gives

ITwf () + T f () =202 F Ol

400
- / AL~ G ORI F B ) Pt san (M),

IfAe] then Ah > 1 and (3) of Lemma 1.2

o i

implies that
1 ) 9
1< o) |1 _]a+2n()\h)| .
c
Then
/ |fB | d,ua—o—?n()‘)

/ — oron OB PIF B ) Pt 30 (V)

/ — Jaron OB PIFB ) )Pt (V)
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< g m ||Thf() + Tfhf(~) - 2h2n.f(')||§,a,n

h?
=0 <7127> :
(log ﬁ)

We obtain

2r
/ F(f) ) 2t s2n (V)

28
=0 W as r — +o0o.
ogr

Thus these exists C' > 0 such that

2r ) 7“_2'3

| 00 Pl < 02
r (logr)

So that

/ 1 Fs () Pdasan(N)

MRV

]fB (D) Pdtasan(V)

2k (2r) 2 (4r) 2

<C 2y +C 2y 2v

(logr) (log 2r) (log 47)

2k

< CW (14272 4 (2720 4 (272 )

—2k

<CK——,

(logr)™
where K = (1 —2°2)7" since 272 < 1.

This prove that

[ 0 P

2k
=0 W as r — —+oo.

2) = 1) Suppose now that

/ I F (O Pdptasan(N)

2k
=0 W as r — +o0o.
ogr

We write
—+00
/0 11— G ORI ) Pptasan (V) = L + I,

where

Generalized Bessel transform of (/3,y)-generalized Bessel Lipschitz functions 87

Il - /OE |1 - ]a+2n(>‘h)|2|fB(f)(>\)‘2d#a+2n(/\)
and

+00 5 9
I, — / 11— Gorsan ) PIF B () V) Pdprasn (V).

h

Estimate the summands I; and Io.
From inequality (1) of Lemma 1.2, we have

+00
L= A 1 _ja””()‘h)|2“7:B(f>()\)|2dﬂa+2n()\)

h

<4 / T 1FB () Pdasan(N)

h
h*?
=0\ —15 |-
(10gz) !

Then
h2ﬂ+4n
4h,4"]:2 = O<—12'Y .
(log7)
To estimate I;, we use the inequality (2) of
Lemma 1.2. Set

o) = [ T 1FB (V) ().

Using integration by parts, we obtain
1
n
I < —Cth/ s*¢/(s)ds

Cl¢< >+2C’1h2 Sgb(s)ds

/h
< C2h2/
0

1\ %

< C5h? <logh) ,

where C, Cy and C3 are positive constants.

Then
h2ﬂ+4n
4h*"T; = O (ﬁ) .
(log ﬁ)

Furthermore, we have

IThf() + Tonf () = 20*" F )l

h2ﬂ+4n
= O 71% ash —0
(log7)

and this ends the proof. O

“2(log s) Pds
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