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Abstract:

We give Sturm bounds for Siegel modular forms of degree 2 with Fourier

coefficients in an arbitrary algebraic number field K and for any prime ideal p in K.
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1. Introduction. Sturm [8] studied how
many Fourier coefficients we need, when we want
to prove that an elliptic modular form vanishes
modulo a prime ideal. We call such the numbers
Sturm  bounds. Poor-Yuen [7] studied initially
Sturm bounds for Siegel modular forms of degree
2 having p-integral rational Fourier coefficients for
any rational prime p. After their study, in [2], the
author, Choi and Choie gave other type bounds
with simple descriptions for them. However, the
results in [2] are restricted to modular forms with
Fourier coefficients in Q and a rational prime p with
p #£2, 3. In this paper, we study the remaining
parts, namely, we give such bounds for modular
forms with Fourier coefficients in an arbitrary
algebraic number field K and for any prime ideal
pin K.

2. Statement of results. In order to state
our results, we fix notation. Let 'y = Spy(Z) be the
Siegel modular group of degree 2 and Hy the Siegel
upper-half space of degree 2. For a modular group I'
in Ty, we denote by M(T") the C-vector space of all
Siegel modular forms of weight k for I'.

Any fin My (T') has a Fourier expansion of the

form
[2)="> a(D)d",
0<TexA,
qT — 62‘Ir7:tr(TZ)7 Z c HQ,

where T runs over all positive semi-definite ele-
ments of 1 Ay, N is the level of I' and

Ay = {T = (t;;) € Syma(Q) | tui, 2ti; € Z}.
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For simplicity, we write T = (m,r,n) for T =
m 1/2 € + Ay and also ay( ) £ (T)
12 n ~ A2 #(m,r,n) for ar(T).

Let R be a subring of C and M(T"), C M;(T")
the R-module of all modular forms whose Fourier

coefficients lie in R.

Let fi, fo be two formal power series of the
forms f; = ZOSTG%AH as(T)q" with ay(T) € R. For
an ideal I of R, we write

fi = fo mod I,

if and only if ay, (T) = ay,(T) mod I for all T € 1 Ay
with 7" > 0.

Let K be an algebraic number field and O =
Ok the ring of integers in K. For a prime ideal p in
O, we denote by O, the localization of O at p. Under
these notation, we have

Theorem 2.1. (1) Let k be even, p an any
prime ideal and f € My(I')o (with level N). Assume
that ag(m,r,n) =0 mod p for allm, n € ]%] Z with

k
0<m,n<—[[y:T]
10

and r € %Z with 4mn —r*> >0, then we have
f=0 mod p.

(2) Let k be odd, p an any prime ideal and f €
M(T)o, (with level N). Assume that af(m,r,n) =
0 mod p for allm, n € ]%]Z with

k+ 35
0<m,n< + [Ty : T
10
and TE%Z with 4mn — 1% >0, then we have
f=0 mod p.
Remark 2.2. (1) For the case where k is

odd, other type bounds were given in [3].
(2) Our bounds for the case of level 1 and even
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weight are sharp, because a similar argument in [2]
works for the case p |2 - 3.

3. Proof of the theorem. In order to prove
our theorem, we prepare two lemmas:

Lemma 3.1 (see [4] Lemma 3.7). Letp be a
prime. Assume that @, Mk(l"n)z(m =Zylfi,-- f
with f; € My, (F,L)Z(p). Then we have @, M;c(I’n)Op =
Oplf1,- -+, fs] for any prime ideal p above p.

Lemma 3.2. Letp be a prime. Let W be the
Witt operator. If f € My(T'2)q, satisfies W(f) =0,
then f/X10 S Mk_lo(rg)op, where Xy € SlO(FQ)Z 18
Iqusa’s cusp form of weight 10 normalized as
ax,(1,1,1) = 1.

Proof. Taking g;; := €™ with Z = (z;;) € Ha,
we can write

2tyg 1 b2

T _ e?ﬂ'itr(TZ) = qizgl g,

q
where ¢; =¢; and t;=1t; (i=1,2). Using this
notation, we can regard f € M(T'), as

f= Z ay(T)q" € Kla15', qio][ar, ¢o]-
0<TeA,

Let v, be the normalized additive valuation with
respect to p. We define a value v,(f) for any f =

Yo<ren, ar(T)q" € Klgiy', qia]la1, g2] by
vp(f) = min{vy(ar(T)) | T € Ax}.

It is easy to see that v,(fg) = v,(f) + v,(g) for any
I, 9€ Kla3, q1a)[q1, ¢2]. The assertion follows im-
mediately from this fact and v,(X19) = 0. O

3.1. Proofs for the case of level 1.

Proof of (1) for the case pt2-3. Combing
these two lemmas with the Sturm type bounds for
Jacobi forms obtained by [1], we can apply a similar
argument of [2]. O

Proof of (1) for the case p|2-3. We denote
by F the finite field defined by F = O/p. Let X
(k=4,---,48) and Y}, be the fourteen generators of
Dicoz Mi(T'2), given by Igusa [5]. It is clear that,
for p = 2 and 3, the graded algebra @, .,y Mk(r2)z(,,)
over Z,) is generated by these fourteen generators.
Hence, for a prime ideal p above p, @,coz Mk(FQ)OP
is also generated by them, because of Lemma 3.1. In
other words, for any f € My(I's)y (k: even), there
exists an isobaric polynomial P € Oz, -, z14]
such that f= P(Xy, --,X4s). Therefore, a simi-
lar argument as in the proof of Theorem 3 of
Nagaoka [6] implies that, for any f € Mk(I‘z)Op,
there exists a polynomial @ € F[x1, x2, 73] such that
[ = Q(X19, Y12, X16). Here, X1, Y12, X6 are alge-
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braically independent over F and hence the poly-
nomial @ is uniquely determined.
Recall that

Xi0= (g1 =2+ q2)ng2+ -,
Yo=q+q@+---,
Xi6=qq+ .

Hence, we can write f as

(31) f= Z’yachonleXfG (finite sum)

ab,c

= (avetis'gi " a5 ),

ab,c

(’Yabc S F) .

Now we consider a sufficient range of a, b, ¢ in the
summation of (3.1). Again by Nagaoka’s calculation
in [6], we have
Xy = XG =1 mod p, X9 = Xl(] mod p,
Xis = Xi6 mod p, Xo4 = X19X16 mod p,
Xog = X530 = X%G mod p, Xsz5= XIOX%6 mod p,
Xy = Xyo = X%ﬁ mod p,
Xug = Xig + X10Xis + X1 Y12 mod p,
when p | 2, and also
Xy=Xs=1mod p, X2 = X9 mod p,
X138 = Xi6 mod p, Xoy = X10X16 mod p,
Xog = X350 = X%G mod p,
X306 = X + 2X5, V1o + X190 X7 mod p,
Xy = X35 +2X3,Y15 mod p,
Xy = X}, Y12 + X35 mod p,
Xyg = X10X3 + 2X{,Y12 mod p,
when p|3. Assume that X = Qu(X10, Y12, Xi6)
(k=10,---,48) with Qi € Oy[x1, 3, x3]. These con-
gruences imply that degQy(x,x,x) < 5k/48 (total
degree) and degQi(x,1,2) < k/10 for all k with
k=4,---,48. Since any f € My(I's)p (k: even) can
be written as a polynomial of the fourteen gener-

ators Xi (k=10,---,48) and Yjy, for f with the
description

[= Z ’Yach?()x/leXfG:
ab,c
it suffices to move a, b, ¢ in a range a+b+c <
5k/48, a + ¢ < k/10. Namely we can write as

(3.2) f= 3

0<a,b,c
a-+b+c<5k/48
a+c<k/10

a b e
7{1,I><:X10}/12X16-
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Let ag, by, ¢y be the minimum numbers of a, b, ¢
appearing the summation of (3.2), respectively.
Then we have Y440, = af(ao + bo + co, —a0, ap + ¢o)
mod p, since

(a,b,c) # (a',b,¢)

—a a+b+c, a+b —a' d+b+d  ad+V
12 4 & F d 4 4 -

implies

Finally, we suppose that [ satisfies
ag(m,r,n) =0 mod p for all m, n <k/10 and r
with 4mn — 72 > 0. By the original Sturm bounds
for elliptic modular forms, we have ®(f) = 0 mod p,
where ® is the Siegel ®-operator. From this fact, it
is easy to see that f is a multiple of X7y or Xis.

On the other hand, by an inductive argument,
we have yue = af(a+ b+ ¢, —a,a + ¢) = 0 mod p for
all a, ¢ with a + ¢ < k/10. Then we get a description

f= 'Vach‘iLo}/ibQXfﬁ~
k/10<a+c<k/10

However, the summation above is empty. Therefore
we obtain f = 0. This completes the proof of (1).

[l

Proof of (2). Let k be odd and f € M(I'), .

Then fX35 € Mk+35(r)op is of even weight. If we
apply (1) to fX35, we obtain the assertion of (2).

d
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3.2. Proof for the case of level N. For the
case of level N, we can reduce it to the case of level
1, by taking a norm of modular forms as in [2].
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