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Abstract: We give Sturm bounds for Siegel modular forms of degree 2 with Fourier
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1. Introduction. Sturm [8] studied how

many Fourier coefficients we need, when we want

to prove that an elliptic modular form vanishes

modulo a prime ideal. We call such the numbers

Sturm bounds. Poor-Yuen [7] studied initially

Sturm bounds for Siegel modular forms of degree

2 having p-integral rational Fourier coefficients for

any rational prime p. After their study, in [2], the

author, Choi and Choie gave other type bounds

with simple descriptions for them. However, the

results in [2] are restricted to modular forms with

Fourier coefficients in Q and a rational prime p with

p 6¼ 2, 3. In this paper, we study the remaining

parts, namely, we give such bounds for modular

forms with Fourier coefficients in an arbitrary

algebraic number field K and for any prime ideal

p in K.

2. Statement of results. In order to state

our results, we fix notation. Let �2 ¼ Sp2ðZÞ be the

Siegel modular group of degree 2 and H2 the Siegel

upper-half space of degree 2. For a modular group �

in �2, we denote by Mkð�Þ the C-vector space of all

Siegel modular forms of weight k for �.

Any f in Mkð�Þ has a Fourier expansion of the

form

fðZÞ ¼
X

0�T2 1
N�n

afðT ÞqT ;

qT :¼ e2�i trðTZÞ; Z 2 H2;

where T runs over all positive semi-definite ele-

ments of 1
N �2, N is the level of � and

�2 :¼ fT ¼ ðtijÞ 2 Sym2ðQÞ j tii; 2tij 2 Zg:

For simplicity, we write T ¼ ðm; r; nÞ for T ¼
m r=2
r=2 n

� �
2 1

N �2 and also afðm; r; nÞ for afðT Þ.

Let R be a subring of C and Mkð�ÞR �Mkð�Þ
the R-module of all modular forms whose Fourier

coefficients lie in R.

Let f1, f2 be two formal power series of the

forms fi ¼
P

0�T2 1
N�n

afiðT ÞqT with afiðT Þ 2 R. For

an ideal I of R, we write

f1 � f2 mod I;

if and only if af1
ðT Þ � af2

ðT Þ mod I for all T 2 1
N �2

with T � 0.

Let K be an algebraic number field and O ¼
OK the ring of integers in K. For a prime ideal p in

O, we denote by Op the localization of O at p. Under

these notation, we have

Theorem 2.1. (1) Let k be even, p an any

prime ideal and f 2Mkð�ÞOp
(with level N). Assume

that afðm; r; nÞ � 0 mod p for all m, n 2 1
N Z with

0 � m;n � k

10
½�2 : ��

and r 2 1
N Z with 4mn� r2 � 0, then we have

f � 0 mod p.

(2) Let k be odd, p an any prime ideal and f 2
Mkð�ÞOp

(with level N). Assume that afðm; r; nÞ �
0 mod p for all m, n 2 1

N Z with

0 � m;n � kþ 35

10
½�2 : ��

and r 2 1
N Z with 4mn� r2 � 0, then we have

f � 0 mod p.

Remark 2.2. (1) For the case where k is

odd, other type bounds were given in [3].

(2) Our bounds for the case of level 1 and even
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weight are sharp, because a similar argument in [2]

works for the case p j 2 � 3.

3. Proof of the theorem. In order to prove

our theorem, we prepare two lemmas:

Lemma 3.1 (see [4] Lemma 3.7). Let p be a

prime. Assume that
L

k Mkð�nÞZðpÞ ¼ ZðpÞ½f1; � � � ; fs�
with fi 2Mkið�nÞZðpÞ . Then we have

L
k Mkð�nÞOp

¼
Op½f1; � � � ; fs� for any prime ideal p above p.

Lemma 3.2. Let p be a prime. Let W be the

Witt operator. If f 2Mkð�2ÞOp
satisfies W ðfÞ ¼ 0,

then f=X10 2Mk�10ð�2ÞOp
, where X10 2 S10ð�2ÞZ is

Igusa’s cusp form of weight 10 normalized as

aX10
ð1; 1; 1Þ ¼ 1.

Proof. Taking qij :¼ e2�izij with Z ¼ ðzijÞ 2 H2,

we can write

qT ¼ e2�i trðTZÞ ¼ q2t12

12 qt11 q
t2
2 ;

where qi ¼ qii and ti ¼ tii ði ¼ 1; 2Þ. Using this

notation, we can regard f 2Mkð�ÞK as

f ¼
X

0�T2�n

afðT ÞqT 2 K½q�1
12 ; q12�½½q1; q2��:

Let vp be the normalized additive valuation with

respect to p. We define a value vpðfÞ for any f ¼P
0�T2�n

afðT ÞqT 2 K½q�1
12 ; q12�½½q1; q2�� by

vpðfÞ :¼ minfvpðafðT ÞÞ j T 2 �2g:

It is easy to see that vpðfgÞ ¼ vpðfÞ þ vpðgÞ for any

f, g 2 K½q�1
12 ; q12�½½q1; q2��. The assertion follows im-

mediately from this fact and vpðX10Þ ¼ 0. �

3.1. Proofs for the case of level 1.

Proof of (1) for the case p - 2 � 3. Combing

these two lemmas with the Sturm type bounds for

Jacobi forms obtained by [1], we can apply a similar

argument of [2]. �

Proof of (1) for the case p j 2 � 3. We denote

by F the finite field defined by F ¼ O=p. Let Xk

(k ¼ 4; � � � ; 48) and Y12 be the fourteen generators ofL
k22Z Mkð�2ÞZ given by Igusa [5]. It is clear that,

for p ¼ 2 and 3, the graded algebra
L

k22Z Mkð�2ÞZðpÞ
over ZðpÞ is generated by these fourteen generators.

Hence, for a prime ideal p above p,
L

k22Z Mkð�2ÞOp

is also generated by them, because of Lemma 3.1. In

other words, for any f 2Mkð�2ÞOp
(k: even), there

exists an isobaric polynomial P 2 Op½x1; � � � ; x14�
such that f ¼ P ðX4; � � � ; X48Þ. Therefore, a simi-

lar argument as in the proof of Theorem 3 of

Nagaoka [6] implies that, for any f 2Mkð�2ÞOp
,

there exists a polynomial Q 2 F½x1; x2; x3� such thatef ¼ QðX10; Y12; X16Þ. Here, X10, Y12, X16 are alge-

braically independent over F and hence the poly-

nomial Q is uniquely determined.

Recall that

X10 ¼ ðq�1
12 � 2þ q12Þq1q2 þ � � � ;

Y12 ¼ q1 þ q2 þ � � � ;
X16 ¼ q1q2 þ � � � :

Hence, we can write f as

ef ¼X
a;b;c

�abcX
a
10Y

b
12X

c
16 ðfinite sumÞð3:1Þ

¼
X
a;b;c

ð�abcq�a12 q
aþbþc
1 qaþc2 � � �Þ; ð�abc 2 FÞ:

Now we consider a sufficient range of a, b, c in the

summation of (3.1). Again by Nagaoka’s calculation

in [6], we have

X4 � X6 � 1 mod p; X12 � X10 mod p;

X18 � X16 mod p; X24 � X10X16 mod p;

X28 � X30 � X2
16 mod p; X36 � X10X

2
16 mod p;

X40 � X42 � X3
16 mod p;

X48 � X4
16 þX10X

3
16 þX4

10Y12 mod p;

when p j 2, and also

X4 � X6 � 1 mod p; X12 � X10 mod p;

X18 � X16 mod p; X24 � X10X16 mod p;

X28 � X30 � X2
16 mod p;

X36 � X3
16 þ 2X3

10Y12 þX10X
2
16 mod p;

X40 � X3
16 þ 2X3

10Y12 mod p;

X42 � X3
10Y12 þX3

16 mod p;

X48 � X10X
3
16 þ 2X4

10Y12 mod p;

when p j 3. Assume that Xk ¼ QkðX10; Y12; X16Þ
(k ¼ 10; � � � ; 48) with Qk 2 Op½x1; x2; x3�. These con-

gruences imply that degQkðx; x; xÞ � 5k=48 (total

degree) and degQkðx; 1; xÞ � k=10 for all k with

k ¼ 4; � � � ; 48. Since any f 2Mkð�2ÞOp
(k: even) can

be written as a polynomial of the fourteen gener-

ators Xk (k ¼ 10; � � � ; 48) and Y12, for f with the

description

ef ¼X
a;b;c

�abcX
a
10Y

b
12X

c
16;

it suffices to move a, b, c in a range aþ bþ c �
5k=48, aþ c � k=10. Namely we can write as

ef ¼ X
0�a;b;c

aþbþc�5k=48
aþc�k=10

�abcX
a
10Y

b
12X

c
16:ð3:2Þ
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Let a0, b0, c0 be the minimum numbers of a, b, c

appearing the summation of (3.2), respectively.

Then we have �a0b0c0
� afða0 þ b0 þ c0;�a0; a0 þ c0Þ

mod p, since

ða; b; cÞ 6¼ ða0; b0; c0Þ implies

q�a12 q
aþbþc
1 qaþb2 6¼ q�a012 q

a0þb0þc0
1 qa

0þb0
2 :

Finally, we suppose that f satisfies

afðm; r; nÞ � 0 mod p for all m, n � k=10 and r

with 4mn� r2 � 0. By the original Sturm bounds

for elliptic modular forms, we have �ðfÞ � 0 mod p,

where � is the Siegel �-operator. From this fact, it

is easy to see that ef is a multiple of X10 or X16.

On the other hand, by an inductive argument,

we have �abc � afðaþ bþ c;�a; aþ cÞ � 0 mod p for

all a, c with aþ c � k=10. Then we get a description

ef ¼ X
k=10<aþc�k=10

�abcX
a
10Y

b
12X

c
16:

However, the summation above is empty. Therefore

we obtain ef ¼ 0. This completes the proof of (1).

�

Proof of (2). Let k be odd and f 2Mkð�ÞOp
.

Then fX35 2Mkþ35ð�ÞOp
is of even weight. If we

apply (1) to fX35, we obtain the assertion of (2).

�

3.2. Proof for the case of level N. For the

case of level N, we can reduce it to the case of level

1, by taking a norm of modular forms as in [2].

Acknowledgment. The author is supported

by JSPS Grant-in-Aid for Young Scientists (B)

26800026.

References

[ 1 ] D. Choi and Y. Choie, On the congruences of
Jacobi forms, Math. Z. 256 (2007), no. 2, 287–
294.

[ 2 ] D. Choi, Y. Choie and T. Kikuta, Sturm type
theorem for Siegel modular forms of genus 2
modulo p, Acta Arith. 158 (2013), no. 2, 129–
139.

[ 3 ] T. Kikuta, H. Kodama and S. Nagaoka, Note on
Igusa’s cusp form of weight 35, Rocky Moun-
tain. J. Math. (to appear).

[ 4 ] T. Kikuta and S. Takemori, Ramanujan type
congruences for the Klingen-Eisenstein series,
Abh. Math. Semin. Univ. Hambg. 84 (2014),
no. 2, 257–266.

[ 5 ] J. Igusa, On the ring of modular forms of degree
two over Z, Amer. J. Math. 101 (1979), no. 1,
149–183.

[ 6 ] S. Nagaoka, Note on mod p Siegel modular forms.
II, Math. Z. 251 (2005), no. 4, 821–826.

[ 7 ] C. Poor and D. S. Yuen, Paramodular cusp forms,
Math. Comp. 84 (2015), no. 293, 1401–1438.

[ 8 ] J. Sturm, On the congruence of modular forms, in
Number theory (New York, 1984–1985), 275–
280, Lecture Notes in Math., 1240, Springer,
Berlin, 1987.

84 T. KIKUTA [Vol. 91(A),


	c_rf1
	c_rf2
	c_rf3
	c_rf4
	c_rf5
	c_rf6
	c_rf7
	c_rf8

