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Abstract: Middle convolution is an operation for Fuchsian systems of differential

equations which preserves Schlesinger’s deformation equations. In this paper we announce that

Bolibruch’s non-Schlesinger deformations of Fuchsian systems are, in general, not preserved by

middle convolution.
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1. Introduction. Various aspects of middle

convolution have recently attracted a lot of atten-

tion (see, for example, [7–9, 12–14]). Middle con-

volution is an operation for non-resonant Fuchsian

systems of differential equations which preserves

deformation equations [9]. In particular, the so-

called Hitchin systems [10] obtained from the

Schlesinger systems (see below) are invariant under

middle convolution. It is known that there exist

non-Schlesinger deformations for resonant Fuchsian

systems and it is natural to expect that they are

also preserved by middle convolution. In this paper

we announce that in general non-Schlesinger defor-

mations are not preserved by middle convolution.

Moreover, the algorithm of middle convolution

gives new explicit examples of non-Schlesinger

isomonodromic deformations of the resonant

Fuchsian systems of order higher than two and

which are different from Bolibruch’s example for a

Fuchsian system of order 2. This paper announces

the main results and the details (including explicit

examples) will be published separately [2].

2. Isomonodromic deformations. Let us

consider a system of p linear differential equations

on the Riemann sphere

dy

dz
¼

Xn
i¼1

A0
i

z� a0
i

 !
y;

Xn
i¼1

A0
i ¼ �A0

nþ1ð1Þ

with singularities a0
1; . . . ; a0

n 2 C, a0
nþ1 ¼ 1. Here

yðzÞ 2 Cp. System (1) is the Fuchsian system. One

can define its monodromy representation [11] by

�0 : �1ðT 0; z0Þ ! GLðp;CÞ; T 0 ¼ �Cn [nþ1
i¼1 fa0

i g:ð2Þ

System (1) can be included in the isomonodromic

family of Fuchsian systems

dy

dz
¼

Xn
i¼1

AiðaÞ
z� ai

 !
y;

Xn
i¼1

AiðaÞ ¼ �Anþ1ðaÞ;ð3Þ

with Aiða0Þ ¼ A0
i , a

0 ¼ ða0
1; . . . ; a0

nÞ. The parameters

a ¼ ða1; . . . ; anÞ of the family (3) are the locations of

singular points. Similarly we can define a mono-

dromy representation of system (3) for a 2
Dða0Þn [ni;j¼1;i 6¼j fai ¼ ajg by

�a : �1ðTa; z0Þ ! GLðp;CÞ; Ta ¼ �Cn [nþ1
i¼1 faig;ð4Þ

where Dða0Þ is a small open disk centered at a0.

Definition 2.1 ([3, 4, 5]). The family of

Fuchsian systems (3) is isomonodromic if the

monodromy representation �a coincides with the

representation �0 of system (1) for any a 2
Dða0Þn [ni;j¼1;i 6¼j fai ¼ ajg.

The isomonodromuc family (3) is also called

the isomonodromic deformation.

The following statement for Definition 2.1 was

proved by A. A. Bolibruch.

Theorem 2.1 ([3, 4, 5]). The family of

Fuchsian systems (3) is isomonodromic if and only

if there exists a matrix-valued differential 1-form !

on C�Dða0Þn [ni¼1 fz� ai ¼ 0g such that

i) ! ¼
Pn

i¼1
AiðaÞ
z�ai dz for any fixed a 2 Dða0Þ;

ii) d! ¼ ! ^ !.

Definition 2.1 is the general one. The

Schlesinger deformations are the most known in

the literature. They are given by the differential

form
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!Schl ¼
Xn
i¼1

AiðaÞ
z� ai

dðz� aiÞ:ð5Þ

The second condition of Theorem 2.1 is then

equivalent to

dAiðaÞ ¼ �
Xn

j¼1;j 6¼i

½AiðaÞ; AjðaÞ�
ai � aj

dðai � ajÞ;ð6Þ

which is also known as the Schlesinger equation [11].

The fundamental matrix YSchlðz; aÞ of (3) satisfies

YSchlð1; aÞ � C;ð7Þ

where C is a constant non-degenerated matrix.

Definition 2.2. Deformations of the Fuchsian

systems satisfying (7) are called normalized.

Note that Definition 2.1 does not require any

normalization.

An arbitrary isomonodromic deformation is not

necessarily the Schlesinger deformation (5). Let us

consider a family of Fuchsian systems with the

fundamental matrix Y ðz; aÞ ¼ �ðaÞYSchlðz; aÞ, where

�ðaÞ is a holomorphically invertible matrix. In this

case the differential form ! ¼ dY ðz; aÞY �1ðz; aÞ is

given by

! ¼
Xn
i¼1

A0iðaÞ
z� ai

dðz� aiÞ þ
Xn
k¼1

�kðaÞdak:ð8Þ

This isomonodromic deformation is not normalized.

It is clear that this deformation is reduced to the

Schlesinger deformation by

YSchlðz; aÞ ¼ ��1ðaÞY ðz; aÞ:ð9Þ

However, there exist isomonodromic deformations

given by differential 1-forms different from (5) and

(8). A. A. Bolibruch gave examples of such defor-

mations and obtained a general form of the iso-

monodromic deformation.

Definition 2.3 ([3, 4]). Let �i1; . . . ; �ip be the

eigenvalues of the matrix Ai of the Fuchsian system

(3). A singular point ai is called resonant if there

exist at least two non-equal eigenvalues of Ai such

that their difference is a natural number. A number

ri ¼ max
k 6¼j;j�i

k
��i

j
j2N
j�ik � �ijj

is called a maximal i-resonance of the system.

Theorem 2.2 ([3, 4]). Any matrix-valued

differential 1-form ! on �C�Dða0Þn [ni¼1 fz� ai ¼
0g which defines isomonodromic deformation of the

Fuchsian system (3) is given by

! ¼
Xn
i¼1

AiðaÞ
z� ai

dðz� aiÞ þ
Xn
k¼1

�kðaÞdakð10Þ

þ
Xn
l¼1

Xn
k¼1

Xrl
m¼1

�m;k;lðaÞ
ðz� alÞm

dak;

where �m;k;lðaÞ; �kðaÞ are holomorphic in Dða0Þ and

rl is a maxmal l-resonance of system (3) for a ¼ a0.

We remark that the last terms may be non-zero

only if system (3) has some resonant singularities.

The famous example [6, 3, 4] of Bolibruch of the

non-Schlesinger normalized isomonodromic defor-

mation is given as follows. The family of Fuchsian

systems

dy

dz
¼

1 0

� 2a

a2 � 1
0

0
@

1
A 1

zþ a þ
0 �6a

0 �1

� �
1

z

0
@

þ
2 3þ 3a
1

1þ a �1

0
@

1
A 1

z� 1

þ
�3 �3þ 3a
1

a� 1
2

0
@

1
A 1

zþ 1

1
Ay

is isomonodromic with the differential 1-form !

given by

! ¼
1 0

� 2a

a2 � 1
0

0
@

1
A dðzþ aÞ

zþ a þ
0 �6a

0 �1

� �
dz

z

þ
0 0
2a

a2 � 1
0

0
@

1
A da

zþ a

þ
2 3þ 3a
1

1þ a �1

0
@

1
A dðz� 1Þ

z� 1

þ
�3 �3þ 3a
1

a� 1
2

0
@

1
A dðzþ 1Þ

zþ 1
:

Here z ¼ �a and z ¼ 0 are resonant singular points.

The deformation is normalized (there is no term of

the form �ðaÞda) and it cannot be reduced to

the Schlesinger deformation (there is a term

�ðaÞda=ðzþ aÞ). In general it is difficult to find

explicit examples of the non-Schlesinger deforma-

tions (see, for instance, [1, 2] for more examples and

a discussion).

3. Middle convolution. Middle convolu-

tion is an operation on tuples of residue matrices

of a Fuchsian system introduced by S. Reiter and

M. Dettweiler [7, 8]. For a given parameter � 2 C
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one defines residue matrices of dimension pn� pn
which are partitioned into blocks and have only

one non-zero block consisting of the initial residue

matrices and the parameter �. By finding invariant

subspaces and reducing the size of the matrices one

gets a new Fuchsian system with the same singu-

larities but with new residue matrices. This oper-

ation can be realized as an analytic operation for

solutions (Euler transformation). Note that the size

of matrices in the final system depends on the choice

of the parameter �. See [7, 9] for more details and

explicit expressions.

The properties of middle convolution for

Fuchsian systems, its generalization to systems

with irregular singularities and q-difference systems

are studied by many Japanese authors (e.g., Y.

Haraoka, K. Hiroe, H. Kawakami, T. Oshima, K.

Takemura, H. Sakai, M. Yamaguchi, D. Yamakawa

and many others). Since middle convolution pre-

serves Schlesinger deformation equations [9], it is

natural to ask what happens to Bolibruch’s non-

Schlesinger isomonodromic deformations under

middle convolution.

4. Outline of the main results. In [2] we

construct explicit examples that middle convolu-

tion does not in general preserve non-Schlesinger

deformation. Our examples are based on the

modifications of the Bolibruch example. Note that

it is very important and of interest to specialists

in deformation theory to find new explicit examples

of non-Schlesinger isomonodromic deformations

because of the difficulty to write down the corre-

sponding differential 1-form ! [1]. Our explicit

examples show that under middle convoution the

resonance condition may appear or disappear.

Moreover, the maximal i-resonance of a system

may change.

It is easy to show that if we apply middle

convolution with � ¼ 0 to Bolibruch’s example and

get a new isomonodromic ð2� 2Þ-family, which is

non-Schlesinger again and non-normalized. It is an

expected result because of the properties of middle

convolution and isomonodromic deformations.

Therefore, we modify the Bolibruch example.

We found an explicit example which shows

that applying middle convolution with some �,

� 6¼ 0, to a certain non-Schlesinger isomonodromic

ð2� 2Þ-family with five singular points, the result-

ing family cannot be included in any Bolibruch’s

non-Schlesinger isomonodromic deformation be-

cause of Theorem 2.2. The resulting family does

not also satisfy the Schlesinger equations and it

cannot be transformed to a Schlesinger isomono-

dromic deformation by a transformation y ¼ �ðaÞ~y
for any holomorphic matrix-value function �ðaÞ.
The initial system has two resonant Fuchsian points

with the maximal resonances both equal to 1. The

parameter � of middle convolution was chosen to

break old resonances without producing new ones,

i.e., the resulting system is non-resonant.

Finally, we were able to demonstrate explicitly

the opposite case. We can start again with the non-

Schlesinger isomonodromic ð2� 2Þ-family with four

singularities. This family has two resonant singu-

larities with the maximal resonances 1 and 4

respectively. After applying middle convolution

with � =2 1
2 Z, � 6¼ 0 we get a new ð5� 5Þ-family

with one resonant point with the maximal res-

onances equal to 1. This family is the non-Schle-

singer isomonodromic deformation and it cannot be

reduced to any Schlesinger isomonodromic defor-

mation. To prove this we presented a differential

1-form ! for which conditions in Theorem 2.1 are

fulfilled. This form contains terms which cannot be

elliminated by a holomorphic gauge transformation.

Due to space limitations, the details are

published separately [2].
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