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Abstract:

Let G be a group. An automorphism «a of G is called a commuting

automorphism if [a(x), z] = 1 for all z € G. Let A(G) be the set of all commuting automorphisms
of G. A group G is said to be an A(G)-group if A(G) forms a subgroup of Aut(G). We give some
sufficient conditions on a finite p-group G such that G is an A(G)-group. As an application we
prove that a finite p-group G of coclass 2 for an odd prime p is an A(G)-group. Also we classify

non-A(G) groups G of order p°.
Key words:

1. Introduction. For a group G, let A(G) =
{a € Aut(GQ) | za(x) = a(x)z ¥ = € G}.
phisms from the set A(G) are called commuting
automorphisms. These automorphisms were first
studied for various classes of rings [1,3,9]. The
following problem was proposed by I. N. Herstein to
the American Mathematical Monthly: If G is a
simple non-abelian group, then A(G) = 1 [6]. Giving
answer to Herstiens’s problem, Laffey proved that
A(G) =1 provided G has no non-trivial abelian
normal subgroups [8]. Also, Pettet gave a more
general statement proving that A(G) = 1if Z(G) =
1 and the commutator subgroup 72(G) =G (See
[8]). In 2002, Deaconescu, Silberberg and Walls
proved a number of interesting properties of com-
muting automorphisms [2], and raised the following
natural question about A(G): Is it true that the set
A(G) is always a subgroup of Aut(G), the auto-
morphism group of G7 They themselves answered
the question in negative by constructing an extra-
special group of order 2°.

Following  Vosooghpour and  Akhavan-
Malayeri we say that, a group G is an A(G)-group
if A(G) forms a subgroup of Aut(G). Vosooghpour
and Akhavan-Malayeri [10] showed that, for a given
prime p, minimum order of a non-A(G) p-group G is
p°. They also proved that there exists a non-A(G)
p-group G of order p” for all n > 5. Fouladi and Orfi
have shown that, if G is either a finite AC-group or
a p-group of maximal class or a metacyclic p-group,
then G is an A(G)-group [4].

Automor-
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Commuting automorphism; coclass 2 group.

We prove the following theorem for p-groups
of coclass 2. By the coclass of a p-group G of order
p" we mean the number n — ¢, where ¢ is the
nilpotency class of G.

Theorem A. Let G be a finite p-group of
coclass 2 for an odd prime p. Then G is an
A(G)-group.

Vosooghpour and Akhavan-Malayeri proved
that if G is a non-A(G) p-group of order p® and
nilpotency class 2 then d(G) = 4. Improving their
result we prove the following theorem.

Theorem B. LetG be a group of order p° for
a primep. Then G is a non-A(G) group if and only if
G is an extra-special p-group for an odd prime p or
G is an extra-special 2-group of plus type, i.e., the
central product of two dihedral groups of order 8.

Remark 1.1. We would like to remark here
that our claim, that the only non-A(G) group G of
order 32 is the extra-special group of plus type, does
not agree with the claim of Vosooghpour and
Akhavan-Malayeri in [10], where it is shown that,
both the extra-special groups G of order 32 are
non-A(G) groups. One can notice in their proof of
Theorem 1.2, that the definition of «, for the extra-
special group of order 2" with relation 3:% =z is
invalid because it maps x4 to x4x22° and therefore
does not preserve the relation 3 = 1.

We use the following notations. For a multi-
plicatively written group G, let z,y € G. Then [z, ]
denotes the commutator z 'y~ lzy. By Z(G) and
Z5(@) we denote the center and second center of G
respectively. The centralizer of H in G, where H is
a subgroup of G, is denoted by Cg(H). We write
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~v£(G) for the k’th term in the lower central series of
G. For a € Aut(G) and H < G, [H,a] denotes the
set {h~la(h) | h € H} and Cy(a) denotes the sub-
group {he€ H|a(h)=h}. Let H<G and T <
Aut(G), then [H,T] denotes the set {h~'a(h) | h €
H, a € T}. By d(G) we mean the minimum no. of
generators of G.

2. Prerequisites. An automorphism « of a
group G is called central automorphism if 2 la(x) €
Z(G) for all z € G. These automorphisms form a
normal subgroup of Aut(G), which we denote by
Autcent(G).

Now we collect some results on commuting
automorphisms which we will use in section 3.

Theorem 2.1 ([2, Theorem 1.3]). Let G be
a group such that Z(G') contains no involutions.
Then A(G) is a subgroup of Aut(G) if and only if
commutators of elements in A(G) are central auto-
morphisms.

Theorem 2.2 ([2, Theorem 1.4]). If G is a
group and if a € A(G), then [G?,a] < Zy(G).

Lemma 2.3 ([8]). Ifa € A(G) and z,y € G,
then [a(x), y] = [z, a(y)].

Lemma 2.4 ([2, Lemma 2.4 (ii, vi, viii), Lem-
ma 2.6 (iii)]). Let G be a group and «,( € A(G),
then

(i) A(Q) is closed under powers.

(ii) af € A(G) if and only if [a(x), B(x)] = 1 for all
x 6 G.

a? € Autcent(G) if and only if v(G) < Co().
73(G) < Ce(a).

Lemma 2.5 ([10, Lemma 2.2]). Let G be a
group of nilpotency class 2. If d(G/Z(G)) = 2, then
G is an A(G)-group.

Theorem 2.6 ([10, Theorem 1.5]). For a
giwen prime p, the minimal number of generators
of a non-A(G) p-group of order p° and of nilpotency
class 2 1s equal to 4.

3. Proofs of the Theorems A and B. We
first prove the following theorem.

Theorem 3.1. Let G be a finite p-group for
an odd prime p. If [Z2(G), A(G)] < Z(G), then G is
an A(G)-group.

Proof. Since G is an odd order group, by
Theorem 2.2 we have, for all § € A(G) and for all
z € G,x718(x) € Zy(G). Let o, B € A(G), x € G and
a(x) = xz1, B(x) = x2 for some z1, 22 € Z3(G). Note
that o (z) = za 1(27!) and B7(z) = z671(21).
Now we have
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=a ' af(x)

=a '8 a(zz)

=a '8 (zz0(2))

=a (67 ()87 (21)8 (=)

=a (27 (5 )87 (21)8 a(=))

=za” (7)o" B (2 )aT BT (1)l

= 2o BT (B(2 )z ma(z)

= xa ' BBz 221, 22) 25 Ll 22)).

So that 27 'a,B)(z) = BBz )22,
22]22’101(,22)). Since [Z5(G), A(G)] < Z(G), we have
Bz 121,25 al2z2) € Z(G). Obviously, [Zl,ZQ] €
zZ(G ) It follows that o '87Y(B(2 )22,
2]z ta(z9)) € Z(G). We have proved that for all
a, ﬁ € A(G) and for all z € G, 2 [a, B](z) € Z(G).
This shows that [, 3] € Autcent(G) for all a,
B8 € A(G). Now from Theorem 2.1, it follows that
G is an A(G)-group. O

Lemma 3.2. Letp be an odd prime and G be
a finite p-group such that Z5(QG) is abelian. Then G is
an A(G)-group.

Proof. Let «o,0 € A(G) and z € G. By Theo-
rem 2.2, a(z) = xz1, B(x) = xzo for some z1, 22 €
Zy(G). Since Z5(QG) is abelian, and z1, 23 € Cg(z),
we have [a(z), B(x)] = [x21,222) = 1. By Lemma 2.4
(ii) we get that of € A(G). Since A(G) is closed
under powers and G is finite we also have a~' €
A(G). This proves that A(G) is a subgroup. O

Theorem 3.3. Letp be an odd prime and G
be a finite p-group such that | Z5(G)/Z(G)| = p* and
Z(G) =vw(G) for some k>2. Then G is an
A(G)-group.

Proof. For k=2, the result follows from
Lemma 2.5. So let us assume k> 3. Now in view
of Lemma 3.2, we can assume that Z5(G) is non-
abelian. It follows that Z»(G)/Z(G) is elementary
abelian, for if Z»(G)/Z(G) is cyclic, then Z5(G) is
abelian, which is a contradiction. Let Z3(G) =
(a,b, Z(GQ)). Clearly [a,b] # 1, because Z3(G) is
non-abelian. Also we have [a,b] € Z(G). Let a €
A(G). Note that any element of Z3(G) can be
written as a"b*z for some r, s € Z and z € Z(G). Now
since [a(a),a] =1, [a(b),b] =1 and [a,b] # 1 we get
that a(a) = a"z; and «a(b) = b* 2y for some rq,s1 €
Z and z, 2z € Z(G). Since Z3(G)/ Z(G) is elemen-
tary abelian we can assume that r; 0 (mod p)
and s; Z0 (mod p). Now since k > 3, by Lemma

_1ﬁ_10((22)
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2.4 (iv), we have that Z(G) < Cg(a). Therefore
a(la,b]) = [a,b] which gives the equality that
[a,b]""" = [a,b]. It follows that

(3.1) r1s1 —1=0 (mod p).

Again consider [a,b] = a([a, b]) = [a(a), a(b)], which
by Lemma 2.3 equals [a, a?(b)] which, after putting
the value of o?(b), turns out to be [a, b]"'. Tt follows
that

(3.2) s2—1=0 (mod p).

Subtracting equation (3.2) from equation (3.1)
we get that s1(r; —s1) =0 (mod p). But s; #
0 (mod p). Therefore r; =s; (mod p). Since
Z5(G)/Z(G) is elementary abelian, without loss of
generality we can assume that a(b) = b™ z3 for some
z3 € Z(G). As " —1=0 (mod p), we get that
either 11 —1=0 (mod p) or r1 +1=0 (mod p).
If r1 =1 (mod p), then clearly a la(a),b ta(b) €
Z(G). Tt easily follows that for all ye Zy(QG),
yla(y) € Z(G). Since a was chosen arbitrarily,
by Theorem 3.1 G is an A(G)-group. Suppose
r1—1#0 (mod p), then r; = —1 (mod p). There-
fore we have a(a) =a 'u; and «(b) = b luy for
some uj,us € Z(G). It easily follows that for all
y € Zo(G), aly) =y 'u for some u € Z(G). Let
x € G. By Theorem 2.2 «(x) =xy for some y€
Z5(@). But then o?(z) = a(x)aly) = zyy tu = zu
for some v € Z(G). Since x was chosen arbitrarily,
this shows that o’ € Autcent(G). By Lemma 2.4
(iii), we get that 1(G) < Cg(w). Hence Z3(G)N
72(G) < Ci(a). Now observe that v;_1(G) < Z»(G)
because  Z(G) = v,(G).  Therefore, |Z2(G)N
(G)| > 1Z(G)|. Tt follows that « fixes some
y € Zy(Q) — Z(G). Let a'bz € Cgla) — Z(G) for
some r,s€Z and zé€ Z(G). Therefore a'b® €
Ce(o) — Z(G). But then a'b* = a "b*ujuj. It fol-
lows that a®b% = (a'0*)*[a,b]”” € Z(G). Hence
a'b® € Z(G) which is a contradiction. This com-
pletes the proof. O

Proof of Theorem A. In view of Lemma 3.2
we can assume that Z5(G) is non-abelian. Since G
is a p-group of coclass 2, we have |Z(G)| = p?,
|Z(G)| = p. Clearly Z(G) = 4.(G), where c is the
nilpotency class of G. Now the Theorem A follows
from Theorem 3.3. g

Now we are ready to prove Theorem B. We will
use the classification of groups of order p° by
James [7] in the proof. We note that James has
classified these groups in 10 isoclinism families.
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These families are denoted by ®;, for k=1,...,10.
Proof of Theorem B. For p =2, it can be
checked using small group library and programming
in GAP [5] that the only non-A(G) group G of order
32 is the extra-special group with the GAP id
SmallGroup(32, 49), which is the extra-special 2-
group of plus type. So now we assume that p is an
odd prime. We proceed by cases according to the
nilpotency class of G. If G is a group of nilpotency
class 4 then it is a group of maximal class and
therefore Z»(@G) is abelian. So by Lemma 3.2, G is
an A(G)-group. Next suppose that G is a group of
nilpotency class 3. Then it is a group of coclass 2
and so by Theorem A it is an A(G)-group. Now
suppose that G is a group of nilpotency class 2.
There are 3 isoclinic families, ®5, ®; and ®5, of
groups of order p® and of nilpotency class 2. Let
G € ®4. It can be observed from James list of these
groups that G is a 3 generated group. Therefore by
Theorem 2.6, G is an A(G)-group. Next suppose
that G € ®,. Then from the James list we note that
either d(G/Z(G)) =2 or d(G) < 3. Hence by Lem-
ma 2.5 and Theorem 2.6, G is an A(G)-group. The
family ®5 consists of two extra-special p-groups. It
has been proved in [10, Theorem 1.2] that extra-
special p-groups of order p° are non A(G)-groups.
Clearly the abelian groups G are A(G)-groups. This
completes the proof of the Theorem B. ([
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