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Derivatives of meromorphic functions and sine function
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Abstract:

In the paper, we take up a new method to prove the following result. Let f be a

meromorphic function in the complex plane, all of whose zeros have multiplicity at least k+ 1
(k>2) and all of whose poles are multiple. If T'(r,sinz) = o{T(r, f(2))} as n — oo, then

f¥)(2) — sin z has infinitely many zeros.

Key words:

1. Introduction. In his excellent paper [1],
W. K. Hayman proved the following result.

Theorem A. Let f be a transcendental mer-
omorphic function with finitely many zeros in C.
Then %) assumes every finite non-zero value in-
finitely often.

A natural problem arises: what can we say if
“finite non-zero value” in Theorem A is replaced by
a small function «(z) with respect to f(2)?

In 2008, Theorem A was generalized by the
following theorem of Pang, Nevo and Zalcman [2].

Theorem B. Let f be a transcendental mer-
omorphic function in C, all but finitely many of
whose zeros are multiple, and let «(£0) be a
rational function. Then f' — a has infinitely many
2€T08.

In 2008, Liu, Nevo and Pang proved the
following result [3].

Theorem C. Let f(z) be a transcendental
meromorphic function of finite order in C, and
a(z) = P(2) exp Q(z) £ 0, where P and Q are poly-
nomials. Let also k > 2 be an integer. Suppose that

(a) all zeros of f have multiplicity at least k+ 1,
except possibly finitely many, and
(b) I (75 + 7(74) = oo
Then the function f®(2) — a(2) has infinitely many
zeros. Moreover, in the case that p(f) ¢ N, then the
result holds with condition (b) only.

Clearly, a(z) has only finitely many zeros and

poles in Theorem B and Theorem C. Chen, Pang
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and Yang considered the case that a(z) has in-
finitely many zeros and poles. In fact, the following
result [4] was proved in 2015.

Theorem D. Let f be a nonconstant mer-
omorphic function in C, all of whose zeros have
multiplicity at least k+1 (k> 2), except possibly
finitely many. Let o be a nonconstant elliptic
function such that T(r,a) = o{T(r, )} as r — oo.
Then f%) = « has infinitely many solutions (includ-
ing the possibility of infinitely many common poles
of f and «).

Noting that «a(z) is a certain class of double-
periodic function in Theorem D, it is a very
interesting work to consider the case a(z) is a
certain class of single-periodic function. In this
direction, we prove the following results with some
new ideas.

Theorem 1.1. Let f be a meromorphic func-
tion of infinite order in C. Suppose that

(a) all zeros of f have multiplicity at least k+ 1
(k> 2), except possibly finite many, and
(b) all poles of f are multiple, except possibly finite
many.
Then f%)(z) — sin z has infinitely many zeros.

Theorem 1.2. Let f be a meromorphic func-

tion of finite order in C. Suppose that
(a) all zeros of f have multiplicity at least k+ 1
(k > 2), except possibly finite many, and
(b) T(r,sinz) = o{T(r, f(2))} asn — oo outside of
a possible exceptional set of finite linear
measure.
Then f®)(z) — sin z has infinitely many zeros.

Remark. Theorem 1.1 and Theorem 1.2 still
hold if sin z is replaced by cos z.

Notation. Let C be the complex plane and
D be a domain in C. For 2y € C and r >0, we
write A(zg,7) = {z]|z — 2| <7}, A:=A(0,1) and
A (zp,7) := {20 < |z — 2| <r}. Let V(z,8,A) :=
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{] larg(z — 20) — 6| < A}, V(20,00 A) ==
{z||arg(z — 20) — 6p| < A} and T'(zo,7):={2]]|z—
zo| =7r}. Let n(r, f) denote the number of poles
of f(z) in A(0,r) (counting multiplicity). We write
I E f in D to indicate that the sequence { f,}
converges to f in the spherical metric uniformly on
compact subsets of D and f, = f in D if the
convergence is in the Euclidean metric.
For f meromorphic in D, set

by @
T

— | e sy

The Ahlfors—Shimizu characteristic is defined by
To(r, f) = TS(ttf) dt. Let T(r, f) denote the usual
Nevanlinna characteristic function. Since T'(r, f) —
To(r, f) is bounded as a function of r, we can replace
To(r, f) with T(r, f) in the paper.

The order p(f) of the meromorphic function f
is defined as

= logT'(r, f)
p(f) := lim WOY

r—00

o log Ty(r, f)
p(f) := lim T logr

2. Auxiliary results for the proof of The-
orem 1.1.

Lemma 2.1. Let F be a family of functions
meromorphic in D, all of whose zeros have multi-
plicity at least k, and suppose that there exists A > 1
such that |f®)(2)] < A whenever f(z) = 0. Then if F
is not mormal at zy € D, there exist, for each
0<a<k,

(a) points z, € D, z, — z;

(b) functions f, € F; and

(¢) positive numbers p, — 0
such that p,® fu(2n + puC) = gn(C) :X> g(¢) in C,
where g is a nonconstant meromorphic function in
C such that g7 (¢) < g7 (0) = kA + 1. In particular, g
has order at most 2.

This is the local version of [5, Lemma 2] (cf. [6,
Lemma 1J; [7, pp. 216-217]). The proof consists of a
simple change of variable in the result cited from [5];
cf. [8, pp. 299-300].

Lemma 2.2 ([9, p. 12]). Let f(z) be a mer-
omorphic function of infinite order in C. Then there
exist points a, — oo and positive numbers 6, — 0
such that f*(a,) — oo and S(A(a,,s,), f) — oo.

Lemma 2.3 ([10, Theorem 1’ on p. 67]). Let
k>2 be an integer and let {f,} be a family of
meromorphic functions in D, all of whose poles are
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multiple and whose zeros all have multiplicity at
least k4 1. Let {h,} be a sequence of holomorphic
functions in D such that h, = h in D, where h # 0
in D. Suppose that for each n, h and h, have the
same zeros with the same multiplicity and f,(Lk)(z) #+
hyn(2) for z € D. Then { f,} is normal in D.
Lemma 2.4 ([11, Theorem 1]). Let f be a
meromorphic function in A, and let ay, as, az be
three distinct complex numbers. Assume that the
number of zeros of [Io_,(f(2) —a;) in A is <mn,
where multiple zeros are counted only once. Then

A
Strof) <n+ .

-7

0<r<li,

where A > 0 is a constant, which depends on a1, as,
as only.
Lemma 2.5. Let {f,} be a family of mero-
morphic functions in A(z,r). Suppose that
(a) fu 2 fin AN(zg,7), where f(£0) may be 0o
identically, and
(b) there exists My > 0 such that n(A(zg, )
My for sufficiently large n.
Then there exists M>0 such
S(A(zp,7/4), fn) < M for sufficiently large n.
Proof. Without loss of generality, we may
assume that r = 2 and z; = 0.
We consider the following two cases.
Case 1. f;é 1 and f#2in A'(0,2).
Obviously, + -1 :>ch 1 in A'(0,2) and %—
( u
(

7)<

that

1 # 0,00 in A(0,2). Thus there exists s € (1,2) suc
that 4 —1 has no poles and zeros on I'(0,s). For
sufficiently large n, we have

1 1
(o7=) —(07)
. 1 1 1
=n S’—%—l (s ﬁ_ )

1 (-1 1
= —/ ———dz— — . dz.
271 Jr(0.s) T 1 27 J1(0,5) 7 1

1

| !
Observing that ﬁ fr(o.s) </%7_1)

=

dz is an integer, we

have for sufficiently large n,

1 71 1 )
= P
0

27 ﬁ—1 27 Jr(o,5) ;—1

1
5 fp 0.5) f; 11 dz + My. We have for suffi-
7

1
’%ﬁn—ﬂ

Set M] :
ciently large n

1
1,— | <
(7=
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1 /
1 7—1 1
=—./ (f ) dz+n<s,—)<M1.
2mi T(0,s) ? 1 fn
Obviously, fi %:X> 7 — 1 in A’(0,2) and %
1#0, oo 1n A’(0,2). Thus there exists t € (1,2) such
that + —$ has no poles and zeros on I'(0,t). For
sufﬁmently large n, we have
(=) ()
n({t,—— | —nlt,—
fn -2 fn
(t 1 ) (t 1 1>
=nlbT 7)) Tnrlbhe T
] o 2
G R N it
i 12721 dz — — fl 21 dz.
2 T(0,t) ﬁ -3 2 T(0,t) ? -3
Similarly to the previous paragraph, there exists
M; >0 such that for sufficiently large mn,

n(l,ﬁ) < M. By Lemma 2.4, there exists A > 0
depending on 0,1,2 only such that for sufficiently

large n,
1
’ fn -1

e <nf1.2 1
<z’f”)—”( m)*”(
+n(1,ﬁ>+2A<Mg,

where M3 = MO + Ml + MQ + 2A.

Case 2. f=1lor f=2in A'(0,2).

Clearly, f#3 and f# 4 in A’'(0,2). Then as
shown in Case 1, there exists My > 0 such that
S(% , fn) < My for sufficiently large n.

Set M := max{Ms, M;}. Clearly, S(3,f,) < M
for sufficiently large n. O

3. Proof of Theorem 1.1. We argue by
contradiction. Suppose that f*)(z) —sinz has at
most finitely many Z€eros.

Set g(z) =& sz Clearly, f(z) and sinz have
finitely many common zeros (otherwise, by the
assumptions, f®(z) —sinz has infinitely many
zeros), and thus all zeros of g(z) have multiplicity
at least k + 1, except possibly finite many. Since the
order of f is infinite, the order of ¢ is also infinite.
By Lemma 2.2, there exist points a, — oo and
positive numbers £, — 0 such that

(3.1)

We write a, = x, + iy,. Taking a subsequence and
renumbering, we may assume that y, — y*.
We consider the following two cases.
Case 1. y* # too.
Set b, :=x, +iy*

g#(an) — o0 and S(A(ap,€,),9) — 0.

and 7, := |b, — an| + en.
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Clearly, A(ay,e,) C A(by, T), by — 00 and 7, — 0.

By (3.1), we have
(3.2) S(A(bp, 7n),9) — 00 as n — 0.

There exist integers j, and points Z,, € (—m, 7| such

that 7, = x, — 27j,. Taking a subsequence and
renumbering, we may assume that z,, — z*. Clear-
ly, * € [-m,n]. Set
(3.3) fu(2) = f(z+ b, — T,,) and

gn(z) = g(z + bn - 5577,)

for z € E, where

E :={z|Rez € (—2m,27) and Imz € (—2m,2n)}.
By (3.2) and (3.3
(3.4)

), we have
S(A(fnﬂ—n)vgn) — 00 as n — Q.

Set 7-:; =T, + |i‘\n - ZE*| Clea‘rly’ A(i‘\"’ T”) C

A(z*,7¥) and 77 — 0. By (3.4),
(3.5) S(A(z*

), gn) — 00 as n — oo.

777

Now, we have for sufficiently large n,

(al) all zeros of f, have multiplicity at least k + 1
and all poles of f,, are multiple in E,

(a2) f,(Lk)(z) # sin(z + iy*) in E.

In fact, by (a), (b) and (3.3), (al) holds for

sufficiently large n. Since f*)(z) — sin z has at most

finitely many zeros, (a2) holds for sufficiently large

n by (3.3).

By Lemma 2.3, { f,,} is normal in E. Taking a
subsequence and renumbering, we may assume that
fn 2 ffin E.

Subcase 1.1. f*#0.

Clearly, there exists
n(A(z*,2),1/f*) < My. By Hurwitz’ Theorem,
n(A(z*,1),1/f,) < My for sufficiently large n.
Thus, n(A(z*,1),1/g,) < My for sufficiently large
n. Let 6€(0,1) such that sin(z +iy*) #0 in
A'(z*,6). Thus, g, = 2 W in A'(z*,6). By
Lemma 2.5, there exists M >0 such that
S(A(Z*,6/4),9,) < M for sufficiently large n. This
contradicts (3.5).

Subcase 1.2. f*=0.

We see that for sufficiently large n,

0# fi(2)
By Hurwitz’ Theorem, sin(z + iy*) # 0 in E. Thus,

n sin(z+4y*)  sin(z + iy*)

My >0 such that

—sin(z +iy") = —sin(z +iy*) in E.

=0in FE.
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Clearly, g7 (2) = 0 in FE, and hence

// g7 (2))*dxdy — 0.
Az7,1)
This contradicts (3.5)

Case 2. y* = too.
We claim that there exists points t,, such that

(k) M)

sint, sint,

S(A( gn -

— 0 and

(3.6) Imt, — oo,

Set

(3.7) gn(2) :==g(z+ a,) for z € A.

Since all zeros of g(z) have multiplicity at least
k+1 (except possibly finite many), we have for
sufficiently large n, all zeros of g, have multiplicity
at least k+ 1 in A. By (3.1), we have

(3.8) g (0) — 00 as n — oco.

Thus, no subsequence of {g,} is normal at 0. Using
Lemma 2.1 for a=k—(1/2), there exist points
zn, — 0, positive numbers p, — 0, and a subse-
quence of {g,} (still denoted by {g,}) such that

gn(zn + pnC)

Gn(Q) = 7 2 G(¢) in C,

where G is a nonconstant meromorphic function in
C, all of whose zeros have multiplicity at least
k+1.

We claim that G (¢) # 0. Otherwise, G(¢) =
c1CF 1 +epaCP 2+ -+ g, where e, e, 0t
are constants. Thus, either G = 0, or all zeros of G
have multiplicity at most £ — 1. A contradiction.

Let ¢ be not a zero or pole of G¥((), and set
t, := a, + 2z, + pnCo. Noting that Gﬁf)(cg) — GW(¢)
as n — 0o, we see that

g(i)(tn) = gﬁf)(zn + pnCo) = Piiii(lﬁ)ij)@O)

{0 for i = 0,1,k — 1.

-

oo fori==k.

Clearly, sflgf;), =g(t,) — 0. Since vy, — oo and

|t,, — an| — 0, we have Im¢,, — oo, and hence 1/2 <

\ “mim; )| < 2 for sufficiently large n. Thus we have
FB () _ (9(2)sinz)"
sint, N sint, —t,
Z Cig(z) sin*=)(z)
_ i=0
sint, t,

L1U and X. PANG
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i (i) si (kil) tn
= Z C’kg — 0.
sin tn

Without loss of generality, we may assume that
Imt, — 4o00. Set F,(z) := fifitt”) for z € A. Now, we
have for sufficiently large n,
(b1) all zeros of F,, have multiplicity at least k + 1

and all poles of F,, are multiple in A,
(b2) F, nk>(z) # % = cosz—isinz in A.
In fact, (b1) holds by (a) and (b). Since f®(z) —
sin z has at most finitely many zeros, (b2) holds for
sufficiently large n.
By Lemma 2.3, {F,} is normal in A. However

by (3.6), we have
f(tn)

sint,

f(k) (tn)

— 0 and FM(0) = —
) sint,

F,(0) =

— OQ.

Hence, no subsequence of {F,} is normal at z = 0.
This is a contradiction.

4. Auxiliary results for the proof of The-
orem 1.2.

Lemma 4.1 ([12, Theorem 1.2]). Let k> 2
be an integer and f be a meromorphic function of
finite order in C. If f has infinitely many poles, then
%) has infinitely many zeros.

Lemma 4.2. Let f be a meromorphic func-
tion in C, let R(Z£ 0) be a rational function, and let
Q(2) = —2"+cp 12"+ 4o, where m > 2 is
an integer and cy,cy,- -, Cp_1 are constants. Sup-
pose that f(2) = R(z)exp(Q(2)), where k> 2 be

an integer. Then for any given constant 6 € (0, 5’7’;)

(h=1)(,) — (s R(z) exp(Q(2))
PN = (o) TGP
_ R(z) exp(Q
FED () = (14 5(2) W Y diz+ds
in V(0,0,3% — 6), where (z) and s(z) are meromor-
phic in V(O 0,% —6) and converge uniformly to 0

as z — 00, dy, di and dy are constants.

Remark. Lemma 4.2 is stated explicitly in
[3, pp. 523-528], so we omit the proof.

5. Proof of Theorem 1.2. We consider the
following two cases.

Case 1. f has infinitely many poles.

Clearly, f(z) —sin(z — kn/2) has infinitely
many poles. Thus by Lemma 4.1, f#)(z) —sinz =
(f(z) —sin(z — kw/?))(k) has infinitely many zeros.

Case 2. f has finitely many poles.

Suppose that, to the contrary, f*)(z) —sinz
has only finitely many zeros. Clearly, f*)(z) — sin 2
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has finitely many poles, so we have
(5.1)  (f(2) —sin(z — kn/2))* = f¥(2) —sinz
= T(2)e"™,

where T'(z)(# 0) is a rational function and P(%) is a
polynomial. By the condition (b) of Theorem 1.2,
P(z) is a polynomial of degree > 2.

We claim that f has infinitely many zeros.
Otherwise, suppose that f has finitely many
zeros. Then f(z) = Ty(2)e"®) and hence f¥)(z) =
Ti(2)e"®) where Ty(2)(Z0) and Ti(2)(#0) are
rational functions, Pj(z) is a polynomial. By (5.1),

(5.2) T(2)e’? 4 sin z = Ty (2)e?,

Since P(z) is a polynomial of degree > 2, by (5.2),
Pi(z) must have the same degree and the leading
coefficient as P(z). We write (5.2) in the form

(5.3)  T(2)+sinze P® = Ty(2)eA-FH),

By standard results in Nevanlinna theory and (5.3),
we have

p(T(2) +sinze TP = p(e ")) = deg P(2)

> deg(Py(2) — P(2)) = p(T1(2)e& =P,
This is a contradiction.

Set A:= ¢ ;—1, where a,, is the leading coeffi-
cient of P(z). Substituting z= A{ into (5.1), we
obtain that
(54)  (g(€) —sin(A¢ — krr/2)"

= g™ (&) — Nsin A\ = R(£)e?Y,
where g(§) = f(A), Q(§) =P(A) and R(§) =
MT(XE). Thus Q(€) has the following form

Q&) = —E"+cpaf" M+ + e,

where m > 2 is an integer and c¢g,cq,- -
constants.

Since f has infinitely many zeros, we can
assume that g has infinitely many zeros {¢,}, and
all of them are of multiplicity at least k£ + 1. Thus
we get

(5.5)

©,Cp—1 are

Let S be a subsequence of {¢,} (denote it also by
{&.}) such that arg(€,) converges to «. By (5.4) and
(5.5), we have for all n

(5.6)  g"(&) = R(&) exp(Q(&)) + AFsin A&, = 0.
If ag U:;ﬁz)nfl[m — & 24 7] then R(&,)e?¢) +

m 2m’ m 2m

Msin A, — oo, which contradicts (5.6). Without
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loss of generality, we may assume that a €

[_ﬁvﬁ]

By (5.4) and Lemma 4.2,

(57) WHMm:u+M&DM&BE?®m
+di — M leos A, =0,
(5.8) g(k*2> (&) = (14 s(£0) R(&) exp(Q(&n))

Q™(&n)
+ dolp, +ds — N 2sin N, = 0,

where 7(§) and s(§) are meromorphic in V(0,0, )
and converge uniformly to 0 as £ — oo, dy, ds and d3
are constants. Eliminating sin Az, from (5.6) and

(5.8), we have for all n

- )\2 (d2€n + d3)Ql2 (gn)
Q2(&) + N +1(&)
where (&) = A2s(€). Clearly, t(£) are meromorphic
in V(0,0, I) and converge uniformly to 0 as §{ — oo.
Noting sin® A&, + cos? A, = 1, we have by (5.6) and

(5.7),

(5.9) R(gn) exp(Q(&n)) =

(&) exp(Q&)) 17
Q/(Zn) + dl
+ [R(&n) eXp(Q(fn))]Z =\

for all n. Eliminating R(&,) exp(Q(&,)) from (5.9)
and (5.10), we have for all n

(5.11)  [A(da&n + d3)Q (&)
+ V(1 + 7€) (o + d3)Q' (€n)
— A (Q%(&) + X + (&)
— NF2QP (&) + N + (&) = 0.

The coefficient of the highest power of &, in (5.11) is
Nd2m?, so we have dy = 0. Thus (5.11) has been
reduced into the following form

[/\dSle(fn)]z + P‘Qd?’(l + 7'(571,))62,(571,)
— di(Q%(&) + N + (&)
_ AQk*Z[QIQ(En) + AZ + t(§7L)]2 _ O

The coefficient of the highest power of &, in (5.12) is
(2 + N2d2 — A\*=2)m*, so we have

(5.13) d2 4+ N3 — 22 = 0.

(5.10) N2 (1+r(§n))R

(5.12)

Thus we have for all n

(5.14)  —2X2dids(1 +r(£,))Q" (&)
+ ML+ 7r(&)" + 2dT (N + (&)
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— 22202 4 (€)1 Q% (&)
— 20 2dyd3(1 4 7(£,)) (N2 + £(£))Q' (&)
+(df = NN+ £(6)) = 0.

The coefficient of the highest power of &, in (5.14) is
—2X2dyd3(1 + r(&,)), so we have

(5.15) dyd3(1 4 r(&,)) = 0 for all n.

Noting that dy =0 and R(&,)exp(Q(&,)) # 0 for
sufficiently large n, we have d3 # 0 by (5.9). Since
1+7(&,)—1as n—0, we get d, =0 by (5.15).
Thus (5.14) has been reduced into the following
form

(5.16) IN'd3(1+ (&))" — 202 (N + 1(6,)]Q%(6)
- )‘%72()‘2 + t(fn))Q =0.
Clearly, we must have
(5.17) X314 r(6)" = 20N + 1)
— M2 — 22 = 0.

Thus d3 = 2024 and then d?+ N3 — PRl
A#=2 o£ 0, which contradicts (5.13).
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