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Abstract: We explain how one can naturally associate a Deitmar scheme (which is a

scheme defined over the field with one element, F1) to a so-called ‘‘loose graph’’ (which is a

generalization of a graph). Several properties of the Deitmar scheme can be proven easily from

the combinatorics of the (loose) graph, and it also appears that known realizations of objects over

F1 (such as combinatorial F1-projective and F1-affine spaces) exactly depict the loose graph

which corresponds to the associated Deitmar scheme. This idea is then conjecturally generalized

so as to describe all Deitmar schemes in a similar synthetic manner.
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1. Introduction. One of the earliest real-

izations of F1 was through the scheme theory

developed by Deitmar [1], which is based on the

observation that commutative rings over F1 could

be imagined as commutative multiplicative mono-

ids (with an absorbing element). For these ‘‘rings’’,

one can naturally define (prime) ideals, localization,

a Spec-construction, etc., and Deitmar has proven

that a natural base extension to Z of varieties in

this context leads to toric varieties [2]. Also, there is

a promising theory for zeta functions of Deitmar

schemes [2] which agrees with Kurokawa’s theory

for zeta functions of schemes ‘‘defined over F1’’ [6].

More general scheme theories over F1 have

seen the light of day since Deitmar’s (see for

instance [7,8] for an account), but in one way or

the other, Deitmar schemes always appear to be

the core of such schemes. So Deitmar schemes are

one of the very basic objects in F1-theory, and one

needs to understand them as well as possible. (We

refer to the monograph [12] for background on the

object F1.)

Besides the Algebraic Geometry side of

F1-theory, there is also the combinatorial-synthetic

side (cf. [10]): in an old paper [13], Tits already

described symmetric groups as Chevalley groups

over F1, seen as limit objects of projective general

linear groups over finite fields, and the correspond-

ing geometric modules (buildings), which are just

projective spaces over the same fields in this case,

become complete graphs with the full subgraph

structure. (Tits also describes several other spher-

ical buildings over F1 in loc. cit.; their automor-

phism groups are the Weyl groups of the thick

buildings of the same type; see also [10].)

In this note, we want to glue these two theories

together. We will start with a loose graph, which is

a more general object than a graph, and we will

construct a Deitmar scheme from it of which the

closed points correspond to the vertices of the

loose graph. Several fundamental properties of the

Deitmar scheme can then be obtained easily from

the combinatorics of the loose graph, such as

connectedness, the automorphism group, etc. And

very interestingly, it appears that a number of

combinatorial F1-objects (such as the combinatorial

F1-projective space of above) are just loose graphs,

and moreover, the associated Deitmar schemes will

precisely be the scheme versions in Deitmar’s

theory of these objects. As a model example, the

projective space scheme ProjðF1½X0; . . . ; Xn�Þ arises

from the complete graph Cnþ1 on nþ 1 vertices, and

the latter is precisely how a projective space of

dimension n over F1 should look like (Tits). For

further reference, we call a complete graph on nþ 1

vertices (n any cardinal number) with the full

complete subgraph structure a projective space of

dimension n over F1. An edge with its two vertices

is a combinatorial projective line over F1, and more

generally, any subset of vertices together with the

induced graph structure defines a linear subspace.
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Then if Autschð�Þ, respectively Autsynthð�Þ, denotes

the scheme theoretic automorphism group, respec-

tively the combinatorial (‘‘synthetic’’) automor-

phism group, and � is a loose graph while Sð�Þ is

the corresponding Deitmar scheme, we have

AutschðSð�ÞÞ ¼� Autsynthð�Þ:ð1Þ

As a corollary, we will obtain that any group

can occur as the full automorphism group of some

Deitmar scheme.

So we will bring combinatorial F1-objects and

Deitmar schemes together through loose graphs

(and a more general construction).

2. Deitmar schemes and examples. De-

fine an F1-ring to be a commutative monoid with an

absorbing element 0.

For the definition of Deitmar scheme, we refer

to [1] or [11]. Let us just mention that one defines an

affine Deitmar scheme SpecðAÞ similarly as an affine

Grothendieck scheme (by building a Zariski-type

topology and structure sheaf of F1-rings on the

set of monoidal prime ideals of the commutative

monoid with zero A). A general Deitmar scheme

then is a monoidal space (a topological space

endowed with a sheaf of F1-rings), locally isomor-

phic to affine Deitmar schemes. (Deitmar schemes

are sometimes also called D0-schemes or M0-

schemes in some papers.)

2.1. Polynomial rings. Define

F1½X1; . . . ; Xn� :¼ f0g [ fXu1

1 . . .Xun
n juj 2 Ng;ð2Þ

that is, the union of f0g and the (abelian) monoid

generated by the Xj.

2.2. Affine space. Let A ¼ F1½X1; . . . ; Xn�.
Denote SpecðF1½X1; . . . ; Xn�Þ by An

F1
and call it the

n-dimensional affine space over F1. The 6¼ ð0Þ prime

ideals of A are of the form

pI ¼
[
i2I
ðXiÞ;ð3Þ

where I is a subset of f1; . . . ; ng and ðXiÞ ¼
XiA ¼ fXia j a 2 Ag. The stalk of the structure

sheaf at pI is the localization of A at the multi-

plicative set S that contains all products of

elements Xj where j =2 I.
2.3. Proj-schemes. In [9] we introduced the

Proj-scheme construction for Deitmar schemes (see

also [11]). We quickly repeat this procedure.

Monoid quotients. Let M be a commutative

unital monoid (with 0), and I an ideal of M. We

define the monoidal quotient M=I to be the set

f½m� 2Mjm 2Mg=ð½m� ¼ ½0� if m 2 IÞ.
The Proj-construction. Consider the F1-

ring F1½X0; X1; . . . ; Xm�, where m 2 N. Since any

polynomial is homogeneous in this ring, we have a

natural grading

F1½X0; . . . ; Xm� ¼
M
i�0

Ri ¼
a
i�0

Ri;ð4Þ

where Ri consists of the elements of

F1½X0; X1; . . . ; Xm� of total degree i, for i 2 N. The

irrelevant ideal is defined as

Irr ¼ f0g [
a
i�1

Ri:ð5Þ

(It is just the monoid minus the element 1.)

Now ProjðF1½X0; . . . ; Xm�Þ ¼: ProjðF1½X�Þ consists,

as a set, of the prime ideals of F1½X0; X1; . . . ; Xm�
which do not contain Irr (so only Irr is left out

of the complete set of prime ideals). The closed sets

of the (Zariski) topology on this set are defined as

usual: for any ideal I of F1½X0; X1; . . . ; Xm�, we

define

V ðIÞ :¼ fpjp 2 ProjðF1½X�Þ; I � pg;ð6Þ

where V ðIÞ ¼ ; if I ¼ Irr and V ðf0gÞ ¼
ProjðF1ðXÞÞ, the open sets then being of the form

DðIÞ :¼ fpjp 2 ProjðF1½X�Þ; I 6� pg:ð7Þ

It is obvious that ProjðF1½X�Þ is a Deitmar

scheme. (The structure sheaf is described below in a

more general setting.) Each ideal ðXiÞ defines an

open set DððXiÞÞ such that the restriction of the

scheme to this set is isomorphic to SpecðF1½XðiÞ�Þ,
where XðiÞ is X0; X1; . . . ; Xm with Xi left out.

Remark 2.1. Note that the closed points

and projective sublines of ProjðF1½X0; . . . ; Xm�Þ
form a complete graph on mþ 1 vertices, so we

can easily switch between combinatorial F1-projec-

tive spaces and ProjðF1½X�Þ-schemes.

In general, suppose M is a commutative unital

monoid (with 0) with a grading

M ¼
a
i�0

Mi;ð8Þ

where the Mi are the sets with elements of total

degree i (for i 2 N), and let, as above, the irrelevant

ideal be Irr ¼ f0g [
‘

i�1 Mi. Define the topology

ProjðMÞ as before (noting that homogeneous

(prime) ideals are the same as ordinary monoidal
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(prime) ideals here). For an open U, define OMðUÞ
as consisting of all functions

f : U �!
a
p2U

MðpÞ;ð9Þ

where MðpÞ is the subset of Mp of fractions of

elements with the same degree, for which fðpÞ 2
MðpÞ for each p 2 U , and such that there exists a

neighborhood V of p in U, and elements u; v 2M,

for which v =2 q for every q 2 V , and fðqÞ ¼ u
v in

MðqÞ.
In this way we obtain a sheaf of F1-rings on

ProjðMÞ making it a Deitmar scheme.

Now recall the following results.

Theorem 2.2 ([1]). Let A be an F1-ring.

(i) For each p 2 SpecðAÞ, the stalk Op of the

structure sheaf is isomorphic to the localization

of A at p.

(ii) For global sections, we have �ðSpecðAÞ;OÞ :¼
OðSpecðAÞÞ ¼� A.

Theorem 2.3 ([1]).

(i) For an F1-ring A, we have that ðSpecðAÞ;OAÞ is

a monoidal space.

(ii) If � : A �! B is a morphism of monoids, then

� induces a morphism of monoidal spaces

ðf; f#Þ : SpecðBÞ �! SpecðAÞ;ð10Þ

yielding a functorial bijection

HomðA;BÞ ¼� HomlocðSpecðBÞ; SpecðAÞÞ;ð11Þ

where on the right hand side we only consider

local morphisms.

For the sake of convenience, we will make the

surjectivity part of Theorem 2.3(ii) explicit.

Theorem 2.4. Any local morphism of mon-

oidal spaces ðf; f#Þ: SpecðBÞ �! SpecðAÞ is induced

by a monoidal morphism � ¼ �ðf;f#Þ as in Theorem

2.3(ii).

Proof. Let ðf; f#Þ be as in the statement of the

theorem; then taking global sections, f# induces

a morphism � : �ðSpecðAÞ;OÞ �! �ðSpecðBÞ;OÞ,
which by Theorem 2.2 is a morphism � : A �! B.

For any p 2 SpecðBÞ, we have a local morphism

f#
p : AfðpÞ �! Bp such that the following diagram

commutes:

A �!� B

# #

AfðpÞ �!
f#

p

Bp:

ð12Þ

As f# is a local homomorphism, we have that

��1ðpÞ ¼ fðpÞ, so that f coincides with the map

SpecðBÞ �! SpecðAÞ induced by �. It follows read-

ily that the monoid homomorphism � ¼ �ðf;f#Þ
induces ðf; f#Þ. �

Since any automorphism is local, we have the

following implication.

Corollary 2.5. If ðf; f#Þ 2 AutðSpecðAÞÞ is

such that f ¼ 1 implies that �ðf;f#Þ ¼ 1, then f# also

is trivial. �

So if the topology of SpecðAÞ is sufficiently fine,

the only element in AutðSpecðAÞÞ with trivial

component f , is the trivial one.

3. Loose graphs. Define a loose graph (‘‘L-

graph’’) to be a triple ðV ;E; IÞ, where V is a set of

‘‘vertices’’, E is a set of ‘‘edges’’ (V \ E ¼ ;), and I

is a symmetric relation on ðV � EÞ [ ðE � V Þ
(which indicates when a vertex and an edge are

incident), with the additional property that each

edge is incident with at most two distinct vertices.

(In other words, it relaxes the definition of graphs,

in that an edge can now also have one, or even no,

endpoint(s). Also, since we introduce loose graphs

as incidence geometries, we do not allow loops, and

the geometry is undirected.)

3.1. Embedding theorem. Let � ¼ ðV ;E; IÞ
be a loose graph. We define a projective space Pð�Þ
over F1 as follows. Let E0 � E be the set of ‘‘loose

edges’’ — edges with only a single endpoint. On each

of these edges, we add a new endpoint, as such

creating a point set V 0 which is in bijective

correspondence with E0. Now Pð�Þ is the complete

graph on the vertex set V [ V 0. As such, we have an

embedding of geometries

 : � ,! Pð�Þ ¼ P;ð13Þ

where P is the combinatorial projective space over

F1 of dimension jV j þ jV 0j � 1. If � is a graph, then

E0 ¼ ; and the dimension of P is jV j � 1.

Theorem 3.1. The following properties

clearly hold.

DIM P has minimal dimenson jV j þ jV 0j � 1 with

respect to the embedding property (that is,

there is no combinatorial projective space

over F1 of smaller dimension in which �

embeds).

AUT Each automorphism of � is faithfully induced

by an automorphism of P. (So that in

particular, only the identity automorphism

of P can fix any element of E [ V .) �
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3.2. Example. Projective completion. Note

that if one starts with a combinatorial affine space

A over F1, considered as a loose graph, PðAÞ is

precisely the projective completion of A.

4. From loose graphs to Deitmar schemes.

4.1. Patching and the functor �. Now let

� ¼ ðV ;E; IÞ be a not necessarily finite graph. We

will give a ‘‘patching’’ argument as follows.

Consider P ¼ Pð�Þ, and note that since � is a

graph, P n � — when P is considered as a graph — is

just a set S of edges. Let � be arbitrary in S, and

let z be one of the two (closed) points on � in P ¼
ProjðF1½Xi�i2V Þ (recall Remark 2.1). Suppose that

in the projective space P, z is defined by the ideal

generated by the polynomials

Xi; i 2 V ; i 6¼ j ¼ jðzÞ:ð14Þ

Let PðzÞ be the complement in P of z; it is a

hyperplane defined by Xj ¼ 0 (and it forms a

complete graph on all the points but z). Denote

the corresponding closed subset of ProjðF1½Xi�i2V Þ
by CðzÞ. Let z0 6¼ z be the other point of the edge �

corresponding to the index j0 ¼ jðz0Þ 2 V . Define the

subset Pðz0Þ ¼ P n fz0g of V , and denote the corre-

sponding closed subset by Cðz0Þ. Finally, define

Cð�Þ ¼ CðzÞ [ Cðz0Þ:ð15Þ

It is also closed in ProjðF1½Xi�i2V Þ, and the

corresponding closed subscheme is the projective

space P ‘‘without the edge �’’; the coordinate ring is

F1½Xi�i2V =I� (where ðXjXlÞ ¼: I�) and its scheme is

the Proj-scheme defined by this ring. Now introduce

the closed subset

Cð�Þ ¼ \�2SCð�Þ:ð16Þ

Then Cð�Þ defines a closed subscheme Sð�Þ
which corresponds to the graph �. We have

Sð�Þ ¼ ProjðF1½Xi�i2V = [�2S I�Þ:ð17Þ

In this presentation, an edge corresponds to a

relation, and we construct a coordinate ring for

�ð�Þ ¼ Sð�Þ by deleting all relations of the ambient

space Pð�Þ which are defined by edges in the

complement of �. We call a Deitmar scheme Sð�Þ
constructed from a graph � a G-scheme.

A similar construction can be done for loose

graphs, cf. §§4.3.

4.2. Automorphism groups. The next

theorem shows that the automorphism group of

projective spaces from the incidence geometrical

point of view, which we denote by Autsynthð:Þ,
coincides with the automorphism group from the

point of view of F1-schemes, denoted Autschð:Þ.
Theorem 4.1. Let P be a projective space

over F1, and let ProjðF1½Xi�i2PÞ be the correspond-

ing projective scheme. Then we have

AutsynthðPÞ ¼� AutschðProjðF1½Xi�i2PÞÞ:ð18Þ

Proof. It is clear that any element of

AutincðPÞ ¼� SymðPÞ induces an automorphism of

ProjðF1½Xi�i2PÞ, by permuting the set fXiji 2 Pg.
(This is just the action of the symmetric group

on the closed points or hyperplanes.) So if

AutschðProjðF1½Xi�i2PÞÞ strictly contains

AutsynthðPÞ, there are elements in

AutschðProjðF1½Xi�i2PÞÞ fixing all closed points.

Now if some scheme automorphism of

ProjðF1½Xi�i2PÞ enjoys this feature, then it is easy

to see that all prime ideals are also fixed (since

prime ideals are of the form [JRXi, with R ¼
F1½Xi�i2P), and hence the topology is fixed element-

wise. By Corollary 2.5 this induces a trivial

sheaf isomorphism, which is what we wanted to

prove. �

In fact, this is only a special case of a more

general result which we will encounter later.

A similar proof (considering the action on the

ideals that correspond to the ‘‘directions’’ instead of

the closed points) leads to the same theorem for

affine spaces:

Theorem 4.2. Let A be an affine space over

F1, and let SpecðF1½Xi�i2AÞ be the corresponding

Deitmar scheme. Then we have

AutsynthðAÞ ¼� AutschðSpecðF1½Xi�i2AÞÞ:ð19Þ

�

At the level of F1 there are no translations, nor

exotic scheme automorphisms (each automorphism

of an affine Deitmar scheme is linear, i.e., linearly

extends to an automorphism of the projective

completion, as is the case for its combinatorial

version). (The corresponding F1-ring automor-

phisms are the ones given by permuting indices —

no proper polynomial automorphisms occur.)

The following theorem, using the notation of

the introductory paragraph of this section, is

easy to obtain. We will denote the category of

(undirected, loopless) graphs and natural mor-

phisms by G.
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Theorem 4.3. For any element � 2 G, we

have that

Autð�Þsynth ¼� AutðSð�ÞÞsch:ð20Þ

Proof. Obviously any graph automorphism of

� induces naturally a scheme automorphism of

Sð�Þ. Suppose � 2 AutðSð�ÞÞ n Autð�Þ. As any such

� induces a homeomorphism of the topology, an

automorphism is naturally induced on �, so we may

as well suppose that � 	 1 on �, so also on the

topology of Sð�Þ. Write Sð�Þ ¼ [iSpecðAiÞ, the

SpecðAiÞ being affine Deitmar schemes. Then each

such scheme is isomorphic to an affine space scheme

(by the simple form of the G-schemes), and the

theorem easily follows from Theorem 4.2. �

As a corollary, we can show easily that any

(finite or infinite) group can occur as the auto-

morphism group of some Deitmar scheme.

Corollary 4.4. Each group H is the full

automorphism group of some Deitmar scheme.

Proof. By combined work of Frucht [4] (for the

finite case), de Groot [3] and Izbicki [5] (for the

infinite case), any group H is the full automorphism

group of some graph. Now apply the previous

theorem. �

4.3. Extension to loose graphs. Let � ¼
ðV ;EÞ be a connected loose graph. We distinguish

three types:

type I graphs;

type II complements of graphs � � C (where C

is some complete graph in which � is

embedded);

type III loose graphs not of type I nor II.

If � is of type I, we have seen how to associate

a closed D0-subscheme Sð�Þ of Pð�Þ to �. If � is of

type II, then we define the Deitmar scheme Sð�Þ
naturally on the open set of Pð�Þ which is the

complement of the (closed) point set of the graph

�c (the complement of � in Pð�Þ). If � is of type III,

Sð�Þ is the Deitmar scheme defined by the inter-

section of the closed subscheme defined on its

graph theoretical completion � 6¼ �, and the open

set which is the complement of the complete

graph defined on the vertices of � n �. As such

we have:

Proposition 4.5. Each loose graph � defines

a Deitmar scheme Sð�Þ. �

We call such a scheme a loose scheme.

Denote the category of loose (undirected, loop-

less) graphs and natural morphisms by LG. The

following theorem is obtained in a similar way as

Theorem 4.3.

Theorem 4.6. For any element � 2 LG, we

have that

Autð�Þsynth ¼� AutðSð�ÞÞsch:ð21Þ

�

4.4. Connectedness. Elements of the cate-

gory of loose schemes have many important proper-

ties which can easily be read from the corresponding

loose graph — recall for instance Theorem 4.3. An-

other one is:

Theorem 4.7. A loose scheme Sð�Þ is con-

nected if and only if the loose graph � is connected.

Proof. Suppose � ¼ ðV ;EÞ is not connected. It

is clearly sufficient to consider the case where we

have two connected components, say �1 and �2. As

Pð�Þ ¼ PðPð�1Þ
‘

Pð�2ÞÞ, the fact that there are

no relations between generators in different compo-

nents readily implies that Sð�Þ is also not connected

as a Deitmar scheme.

The converse is similar. �

5. Weighted incidence geometries and

Deitmar schemes. It is clear that the functor

L : LG �! D : � �! Sð�Þð22Þ

from the category of loose graphs to the category

of Deitmar schemes is not surjective at all. Still, it

is possible to adapt the ideas of above to make

the functor surjective. We propose to associate a

Deitmar scheme to a weighted incidence geometry

(that is, an incidence geometry coming with a

weight function on the point set) in a related way as

one does for loose graphs. As such, all Deitmar

schemes could be constructed from a combinatorial

geometry, and they could be studied through these

geometries.

Let � ¼ ðP;B; IÞ be a rank 2 incidence geom-

etry, that is, P is a set of which the elements are

‘‘points’’, B consists of ‘‘lines’’ (P \ B ¼ ;), and I is

a symmetric relation on ðP � BÞ [ ðB� PÞ called

‘‘incidence’’. Let ! : P �! N� be a weight function

which assigns a strictly positive integer to each

point. Assume now that

(#)1 any line has only a finite number of points;

(#)2 this number is at least two.

Define a Deitmar scheme as follows. For a line

L, let PL be the points incident with L. Now define

the Deitmar scheme Sð�Þ as
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Sð�Þ :¼ SpecðF1½Xu�u2P=I�Þ;ð23Þ
where I� is the ideal

I� :¼
[
L2B

Y
‘2PL

X
!ð‘Þ
‘

 !
;ð24Þ

and define dSð�Þ asdSð�Þ :¼ ProjðF1½Xu�u2P=I�Þ:ð25Þ
So each line of � defines an ideal in F1½Xu�u2P.

(It is now clear to the reader why we need (#)1 and

(#)2.)

Remark 5.1. Note that the constructions of

§4 and §5 can be adapted to Z-schemes.

In a future paper, we will study the functors

Sð�Þ and dSð�Þ in this setting, and explain the

connection with the loose graph functor. If every-

thing works out well, we will then be able to

describe and study (e.g.) toric varieties through

rank 2 incidence geometries.
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