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Abstract: We present a new upper bound of the life span of positive solutions of a

quasilinear parabolic equation for the initial data having positive limit inferior at space infinity.

The upper bound is expressed by the data in limit inferior, not in every direction, but around a

specific direction. It is also shown that the minimal time blow-up occurs when the initial data

attain its maximum at space infinity.
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1. Introduction. We consider the Cauchy

problem for a quasilinear parabolic equation

ut ¼ �um þ up; x 2 Rn; t > 0;

uðx; 0Þ ¼ u0ðxÞ � 0; x 2 Rn;

�
ð1Þ

where 1 < m < p, n � 1 and an initial datum u0ðxÞ
is a bounded continuous function on Rn.

It is well known that a unique bounded non-

negative weak solution of (1) exists locally in

time [1, 2, 8, 13]. Here, we state the definition of a

weak solution of (1).

Definition 1. By a weak solution of equa-

tion (1) in Rn � ð0; T Þ, we mean a function uðx; tÞ in

Rn � ½0; T Þ such that

(i) uðx; tÞ � 0 in Rn � ½0; T Þ and in BCðRn �
½0; � �Þ (bounded continuous) for each 0 < � <

T .

(ii) For any bounded domain � � Rn with smooth

boundary @�, 0 < � < T and non-negative

function ’ 2 C2;1ð���� ½0; T ÞÞ which vanishes

on the boundary @�,Z
�

uðx; �Þ’ðx; �Þdx�
Z

�

uðx; 0Þ’ðx; 0Þdxð2Þ

¼
Z �

0

Z
�

fu’t þ um�’þ up’gdxdt

�
Z �

0

Z
@�

um@�’dSdt;

where � denotes the outer unit normal to the

boundary.

A supersolution [or subsolution] is similarly defined

with the equality in (2) replaced by � [or �].

We define the life span T � as

T � ¼ supfT > 0; (1) possesses að3Þ
unique weak solution in Rn � ð0; T Þg:

If T � ¼ 1, the solution is global. On the other hand,

if T � <1, the solution is not global in time in the

sense that it blows up at t ¼ T � such as

lim sup
t!T �

kuð	; tÞkL1ðRnÞ ¼ 1:ð4Þ

The blow-up and the global existence of solu-

tions are studied by Galaktionov–Kurdyumov–

Mikhailov–Samarskii [4], Galaktionov [3],

Kawanago [7], Mochizuki–Suzuki [11], Mochizuki

[9] and Mukai–Mochizuki–Huang [12]. And the

following results are known to hold.

(i) Let p 2 ðm;mþ 2=n�. Then, T � <1 for every

nontrivial solution of (1).

(ii) Let p 2 ðmþ 2=n;1Þ. Then, T � ¼ 1 for some

initial data u0ðxÞ 6
 0.

Especially for the non-decaying initial data, it

was shown that the solution of (1) blows up in finite

time for any p > m.

In this paper, we present new upper bounds on

the life span of positive solutions of (1) for non-

decaying initial data.

Recently, several studies have been made on

the life span of solutions for (1). (See [10, 12, 16],

and references therein.)
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Mukai-Mochizuki-Huang [12] proved the fol-

lowing results when an initial datum takes the form

u0ðxÞ ¼ ��ðxÞ, where � > 0 and �ðxÞ is a bounded

continuous function on Rn.

(i) If k�kL1ðRnÞ ¼ �ð0Þ > 0, then

lim
�!1

�p�1T � ¼
1

p� 1
�ð0Þ�ðp�1Þ:

(ii) If k�kL1ðRnÞ ¼ lim
jxj!1

�ðxÞ ¼ �1 > 0, then

lim
�!0

�p�1T � ¼
1

p� 1
��ðp�1Þ
1 :

The purpose of this paper is to give a sharp

upper of the life span of solution for (1) with the

initial data having positive limit inferior at space

infinity.

The outline of the remainder of this paper is

as follows. In Section 2, we prepare several nota-

tions and state the main results: Theorems 1 and

2. In Sections 3 and 4, we prove Theorems 1 and

2 by improving the method in Yamauchi [19] and

Ozawa–Yamauchi [14], respectively.

2. Main results. In order to state the main

results, we prepare several notations. For � 2 Sn�1,

and � 2 ð0;
ffiffiffi
2
p
Þ, we set the conic neighborhood

��ð�Þ:

��ð�Þ ¼ � 2 Rnnf0g; � �
�

j�j

����
���� < �

� �
;ð5Þ

and set S�ð�Þ ¼ ��ð�Þ \ Sn�1. Define

u0;1ð	Þ ¼ lim inf
r!þ1

u0ðr	Þ

for 	 2 Sn�1. We note that u0;1 2 L1ðSn�1Þ.
Now, we state a main result.

Theorem 1. Let n � 2. Assume that there

exist � 2 Sn�1 and � > 0 such that

ess:inf
	2S�ð�Þ

u0;1ð	Þ > 0:

Then the weak solution for (1) blows up in finite

time, and the blow-up time is estimated as

T � �
1

p� 1
ess:inf
	2S�ð�Þ

u0;1ð	Þ
� �1�p

:ð6Þ

Once we prove Theorem 1, we can show the

following corollaries immediately.

Corollary 1. Suppose that ku0;1kL1ðSn�1Þ >
0. Assume that for arbitrary small " > 0, there exist

� 2 Sn�1 and � > 0 such that

ess:inf
	2S�ð�Þ

u0;1ð	Þ � ku0;1kL1ðSn�1Þ � ":ð7Þ

Then the weak solution for (1) blows up in finite

time, and the blow-up time is estimate as

T � �
1

p� 1
ku0;1k1�p

L1ðSn�1Þ:ð8Þ

Proof of Corollary 1. For arbitrary small " >

0, we obtain

T � �
1

p� 1
ku0;1kL1ðSn�1Þ � "
� 	1�p

ð9Þ

from Theorem 1. Taking "! 0, we obtain the

desired result. �

In particular, the following result holds if u0;1
is continuous on whole Sn�1.

Corollary 2. Suppose that ku0;1kL1ðSn�1Þ >
0. Assume that u0;1 2 CðSn�1Þ. Then the weak

solution for (1) blows up in finite time, and the

blow-up time is estimated as

T � �
1

p� 1
ku0;1k1�p

L1ðSn�1Þ:ð10Þ

Proof of Corollary 2. For u0;1 2 CðSn�1Þ, in-

equality (7) in Corollary 1 holds. �

Remark 1. From the comparison principle,

we easily obtain the lower bound of the life span:

T � �
1

p� 1
ku0k1�p

L1ðRnÞ:ð11Þ

In addition to the same hypothesis as in Corol-

lary 1, assume that 0 � u0 � ku0;1kL1ðSn�1Þ. Then

we have

T � ¼
1

p� 1
ku0;1k1�p

L1ðSn�1Þ;ð12Þ

that is, the so-called minimal time blow-up occurs.

Related researchers are provided in [5, 6, 10, 15–18].

Theorem 2. Let n ¼ 1. Assume that

max lim inf
x!þ1

u0ðxÞ; lim inf
x!�1

u0ðxÞ
� �

> 0:

Then the weak solution of (1) blows up in finite time

T �, and the blow-up time is estimated as

T � �
1

p� 1
ð13Þ

� max lim inf
x!þ1

u0ðxÞ; lim inf
x!�1

u0ðxÞ
� �� �1�p

:

3. Proof of Theorem 1. For � 2 Sn�1 and

� > 0 as in the theorem, we first determine the

sequences fajg � Rn and fRjg � ð0;
ffiffiffi
2
p
Þ. Let
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fajg � Rn be a sequence satisfying that jajj ! 1 as

j!1, and that aj=jajj ¼ � for any j 2 N. Put

Rj ¼ ð�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4� �2
p

=2Þjajj.
For Rj > 0, let 
Rj

be the first eigenfunction of

�� on BRj
ð0Þ ¼ fx 2 Rn; jxj < Rjg with zero Di-

richlet boundary condition under the normalizationR
BRj ð0Þ


Rj
ðxÞdx ¼ 1. Moreover, let �Rj

be the corre-

sponding first eigenvalue of the eigenfunction. For

the solutions for (1), we define

wjðtÞ ¼
Z
BRj ð0Þ

uðxþ aj; tÞ
Rj
ðxÞdx:ð14Þ

Here, we shall focus on the upper bound of the life

span of wj.

Translating both sides of the equation (1) by

aj, by the definition of a weak solution, we have

wjð�Þ � wjð0Þ �
Z �

0

Z
BRj ð0Þ

f��Rj
umðxþ aj; tÞð15Þ

þ upðxþ aj; tÞg
Rj
ðxÞdxdt:

Let T �wj be the life span of wj. Then we have the

following proposition.

Proposition 1. If

wjð0Þ > �
1=ðp�mÞ
Rj

;ð16Þ

then uðxþ aj; tÞ is never global in t, and we have

T �wj �
Z 1
wjð0Þ

1

��Rj
�m þ �p

d�:

Proof. See [11, Proposition 2.3]. �

Here, we introduce the properties of the initial

value fwjð0Þg.
Proposition 2. We have

lim inf
j!þ1

wjð0Þ � ess:inf
	2S�ð�Þ

u0;1ð	Þ:ð17Þ

Proof. Changing the variable and using the

relation 
�=2ðxÞ ¼ ð2Rj=�Þn
Rj
ð2Rjx=�Þ, we have

wjð0Þ ¼
Z
BRj ð0Þ

u0ðxþ ajÞ
Rj
ðxÞdxð18Þ

¼
2Rj

�

� �nZ
B�=2ð0Þ

u0
2Rj

�
xþ aj

� �

� 
Rj

2Rj

�
x

� �
dx

¼
Z
B�=2ð0Þ

u0
2Rj

�
xþ aj

� �

�=2 xð Þdx:

�

Here, we prepare the following lemma to prove

Proposition 2.

Lemma 1. For x 2 B�=2ð0Þ, the following

properties hold.

(i)
ð2Rj=�Þxþ aj
jð2Rj=�Þxþ ajj

¼ ð2Rk=�Þxþ ak
jð2Rk=�Þxþ akj

for any

j; k 2 N.

(ii) ð2Rj=�Þxþ aj 2 BRj
ðajÞ � ��ð�Þ.

(iii) jð2Rj=�Þxþ ajj ! 1 as j!1.

Proof. See [19, Lemma 1]. �

Proof of Proposition 2. For fixed x 2 B�=2ð0Þ,

put 	 ¼ ð2Rj=�Þxþ aj
jð2Rj=�Þxþ ajj

. We note that 	 is in-

dependent of j 2 N from Lemma 1 (i). Moreover,

	 2 S�ð�Þ from Lemma 1 (ii). Then, by Lemma 1

(iii), we have

lim inf
j!1

u0
2Rj

�
xþ aj

� �
ð19Þ

¼ lim inf
j!1

u0
2Rj

�
xþ aj

����
����	

� �

� lim inf
r!1

u0ðr	Þ ¼ u0;1ð	Þ:

By Fatou’s lemma, we obtain

lim inf
j!1

wjð0Þð20Þ

�
Z
B�=2ð0Þ

lim inf
j!1

u0
2Rj

�
xþ aj

� �

�=2ðxÞdx

� ess:inf
	2S�ð�Þ

u0;1ð	Þ:

Hence, we obtain (17). �

Now let us prove Theorem 1.

Proof of Theorem 1. By Propositions 1 and 2,

we see that

lim sup
j!1

T �wj � lim sup
j!1

Z 1
wjð0Þ

1

��Rj
�m þ �p

d�ð21Þ

�
1

p� 1
ess:inf
	2S�ð�Þ

u0;1ð	Þ
� �1�p

:

On the other hand, we have

lim sup
j!1

T �wj � lim sup
j!1

T � ¼ T �:ð22Þ

Indeed, for fixed j 2 N and t 2 ð0; T �Þ, if u re-

mains bounded then wj is finite. This completes the

proof. �

4. Proof of Theorem 2. Let aj ¼ j or �j.
Put Rj ¼ j=2. For Rj > 0, let 
Rj

be the first

eigenfunction of � @2

@x2 on ð�Rj;RjÞ with zero

Dirichlet boundary condition under the normaliza-

tion
RRj

�Rj

Rj
ðxÞdx ¼ 1. Moreover, let �Rj

be the

corresponding first eigenvalue. For the solutions for

(1), we define
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wjðtÞ ¼
Z Rj

�Rj

uðxþ aj; tÞ
Rj
ðxÞdx:ð23Þ

Here, we shall focus on the upper bound of the life

span of wj.

Translating both sides of the equation (1) by

aj, by the definition of a weak solution, we have

wjð�Þ � wjð0Þ �
Z �

0

Z Rj

�Rj

f��Rj
umðxþ aj; tÞð24Þ

þ upðxþ aj; tÞg
Rj
ðxÞdxdt:

The rest of the proof is the same as in that of

Theorem 1. We show the corresponding proposition

used in the rest of the proof.

Proposition 3. We have

lim inf
j!þ1

wjð0Þð25Þ

� max lim inf
x!þ1

u0ðxÞ; lim inf
x!�1

u0ðxÞ
� �

:

Proof. Since xþ aj ! þ1 or �1 ðj!1Þ for

x 2 ð�Rj;RjÞ, by Fatou’s lemma we obtain

lim inf
j!1

wjð0Þð26Þ

�
Z �=2

��=2

lim inf
j!1

u0
2Rj

�
xþ aj

� �

�=2ðxÞdx

� lim inf
x!þ1 or �1

u0ðxÞ
Z �=2

��=2


�=2ðxÞdx

¼ lim inf
x!þ1 or �1

u0ðxÞ:
�

Finally, let us prove Theorem 2.

Proof of Theorem 2. Let T �wj be the life span of

wj. By Propositions 1 and 3, we see that

ð27Þ
lim sup
j!1

T �wj

� lim sup
j!1

Z 1
wjð0Þ

1

��Rj
�m þ �p

d�

� 1

p� 1
max lim inf

x!þ1
u0ðxÞ; lim inf

x!�1
u0ðxÞ

� �� �1�p
:

On the other hand, we have

lim sup
j!1

T �wj � lim sup
j!1

T � ¼ T �:ð28Þ

Indeed, for fixed j 2 N and t 2 ð0; T �Þ, if u re-

mains bounded the wj is finite. This completes the

proof. �

References

[ 1 ] M. Bertsch, R. Kersner and L. A. Peletier,
Positivity versus localization in degenerate
diffusion equations, Nonlinear Anal. 9 (1985),
no. 9, 987–1008.

[ 2 ] E. DiBenedetto, Continuity of weak solutions to a
general porous medium equation, Indiana Univ.
Math. J. 32 (1983), no. 1, 83–118.

[ 3 ] V. A. Galaktionov, Blow-up for quasilinear heat
equations with critical Fujita’s exponents,
Proc. Roy. Soc. Edinburgh Sect. A 124
(1994), no. 3, 517–525.

[ 4 ] V. A. Galaktionov, S. P. Kurdyumov, A. P.
Mikhailov and A. A. Samarskii, Unbounded
solutions of the Cauchy problem for the para-
bolic equation ut ¼ rðu
ruÞ þ u�, Soviet Phys.
Dokl. 25 (1980), 458–459.

[ 5 ] Y. Giga and N. Umeda, On blow-up at space
infinity for semilinear heat equations, J. Math.
Anal. Appl. 316 (2006), no. 2, 538–555.

[ 6 ] Y. Giga and N. Umeda, Blow-up directions at
space infinity for solutions of semilinear heat
equations, Bol. Soc. Parana. Mat. (3) 23 (2005),
no. 1–2, 9–28.

[ 7 ] T. Kawanago, Existence and behaviour of solu-
tions for ut ¼ �ðumÞ þ ul, Adv. Math. Sci.
Appl. 7 (1997), no. 1, 367–400.
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