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Defect zero characters and relative defect zero characters
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Abstract:

For a normal subgroup K of a finite group G and a G-invariant irreducible

character £ of K we show under a certain condition there is a bijection between the set of relative
defect zero irreducible characters of G lying over & and the set of defect zero irreducible

characters of G/K.
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1. Introduction. Let G be a finite group
and p a prime. Let (K, R, k) be a p-modular system
(INT, p.230]). We assume K contains a primitive
|G|*-th root of unity. After [Is,p.186] we say
(G,K,§) a character triple, if K is a normal
subgroup of G and ¢ is a G-invariant irreducible
character of K. Let (G, K,£) be a character triple.
As in [Na], let dz(G/K) be the set of irreducible
characters of G/K of p-defect 0 and let rdz(G|€) be
the set of irreducible characters x of G lying over ¢
such that (x(1)/£(1)), = |G/ K],

Let Ky be the algebraic closure of the prime
field Q in K. As in [NT,p.230], we regard Ky as
a subfield of the field of complex numbers. We
introduce the following

Definition. Let (G,K,{) be a character
triple. A Ky-valued class function € on G is said to
be a p-quasi extension of ¢ to G if £, is an extension
(as a character) of ¢ for any subgroup L of G such
that L > K and that L/K is a p’-group.

For the character triple (G, K,£), a cohomol-
ogy class of G/K (an element of H*(G/K,K"),
where K is the algebraic closure of K) associated to
¢ is defined by [Is, Theorem 11.7], which we denote
by wg/k(€). The purpose of this note is to prove the
following

Theorem. Let (G, K, &) be a character triple.
Then it holds the following.

(1) € has a p-quasi extension to G if and only if
wa/k (&) has p-power order.
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(2) Assume that one of the conditions in (1)
holds. Then for any p-quasi extension € of € to G, the
map sending 0 to €0 is a bijection from dz(G/K)
onto rdz(G|E).

(3) Such a map in (2) is determined uniquely by
a linear character of G/ K.

2. Proof of Theorem. Let v be as in
INT, p.230].

Proposition 1. Let (G, K,§) be a character
triple. If € is a p-quasi extension of & to G, then the
map sending 6 to €0 is a bijection of dz(G/K) onto
rdz(G|§). In particular, |dz(G/K)| = |rdz(G|¢)].

Proof. We first show that €0 is a generalized
character by using Brauer’s theorem ([Fe, Theorem
IV 1.1], [NT, Theorem 3.4.2]). Let E be an elemen-
tary subgroup of G. It suffices to show (EO)EK is a
generalized character. Let ) be an irreducible char-
acter of FK. Since FK /K is nilpotent there exist a
subgroup M with EK > M > K and a character ¢
of M such that ¢ is irreducible and that ¢FX =
by [Is, Theorem 6.22]. Put G = G/K and use the
bar convention. Put L/K = O’(M/K). We have

(59, n)EK = (597 ¢)M
_ ﬁ S E@)0(@)0x)

xeLl

_ |_A14| S0 Y &)y

Zel yexK

The inner sum equals 0 if ¢x#E by
[Is, Lemma 8.14]. So we may assume ¢x = £. Then
both ¢; and EL are extensions of £ to L. Hence
there is a linear character ¥ of L/K such that
¢L®¢:§~L~ Thus the above sum equals by
[Is, Lemma 8.14]
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for some integer n. On the other hand, let Q be the
Sylow p-subgroup of M. Then, since  has p-defect
0, we have v(0(z)) > v(|Cz(@)|) > v(|Q|) for T€ L
by [NT, Exercise 6.26, p.245]. Hence

|
7= Ly @)
;9 R PPN

is a local integer. Thus (&6,
required.

Next we want to show (£0,€0), = dep
(Kronecker delta) for 6,0 € dz(G/K). Let Gy
be the set of p'-elements of G. We have, by

(Is, Lemma 8. 14]
Z EW)I*0w)0 ()

(£0,€0)¢
yeG
€] Z PR

7eGy yerK

N) gy is an integer, as

*0(@)0 ()

Since (€6)(1) >0, € is an irreducible character.
Clearly 59 € rdz(G|€). Thus the map sending 0 €
dz(G) to €0 € rdz(G¢) is a well-defined injection.
We will prove below that |[rdz(G|€)| = |dz(G/K)].
Then the map is a bijection. The proof is complete.
O
Example. Let (G, K,¢&) be a character triple
such that K is a p-group. For any subgroup L of G
such that L > K and that L/K is a p/-group, there
is a canonical extension &(L) of & to L by
[Is, Corollary 8.16]. Namely, £(L) is a unique
extension of & to L such that det(£(L)) has p-power
order. Define fby £(x) = &((z, K))(z) if 2K is a p/-
element of G/ K, 5 (z) = 0 otherwise. Then for any L
as above & = {(L) by uniqueness of canonical
extension. Thus § is a p-quasi extension of £ to G.
Hence Proposition 1 gives (most of) Theorem 2.1
of [Na].
Proposition 2. Let (G, K,&) be a character
triple. The following are equivalent.
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(i) € has a p-quasi extension to G.

(ii) & is extendible to any subgroup L of G such
that L > K and that L/K is a p'-group.

(iii) The cohomology class weg K (§) has p-power
order.

Proof. (i)=>(ii): Trivial by definition.

(il)<=(iii): By cohomology theory, cf.
[NT, Problem 10, p.164].

(iii)==(i): Let p" be the order of wg/x(§).
There is a central extension of G

1—>Z—>CAJL>G—>1

with the following properties: for some K < G’
fHK) = K; x Z, £ extends to a character £ of an
irreducible KG-module (we identify K1 with K via
f), and Z is a cyclic group of order p".

Since p" divides |G/K| and K contains a
primitive |G[>-th root of unity, K contains a
primitive |G|-th root of unity. Hence £ is a character
of irreducible KXG-module. Let A be an irreducible
constituent of éz. Define a linear character A\* of
K x Z by \* = 1x x . Define a function € on G by:

£x) = E@)\(2,) " ifa,e K
=0 ifz,¢ K

where z € G, Ty s the p-part of x and z is
an element of G such that f(&)==x. If z, € K,
then £, € K x Z. Thus the definition makes sense.
We show that & is well-defined. It suffices to
consider the case where xp € K. Let & =32z
for z€ Z. Then g(”)x*(”) = E(B2) N\ (8,2) ' =
E(@)N)N (&) 1)\*( )y —f( )N (&,)"", as required.
We show that € is a p-quasi extension of £ to G. It is
easy to see that € is a Ky-valued class function on G.
Let L be any subgroup of G such that L > K and
that L/K is a p/-group. By cohomology theory there
is an extension &* of £ to L. We show there is a linear
character ¢ of L/K such that §*®w:§~,;. Put
L= f"YL). Then Inf, ;& —£L®,u for a linear
character p of L/K, where Inf ;& is the inflation
of & to L. Then Ay = 1. Define a function ) on L
by P(z) = (u(z ))\*(avp))*1 for & € L. Then 4 is a
linear character of L. Indeed, let 2, ¢ € L. L/K has a
central Sylow p-subgroup KZ/K, so that &,9, =
(29), mod K. Further A" is trivial on K. Hence
X (@)\(g) = A ((29),).  Therefore  $(@)(3) =
Y(£Y), as required. It is easy to see % is trivial on
KZ. Hence 1& is regarded as a linear character
¢ of L/K~L/KZ. Then for z €L, we have
(& @) (x) = £(z). Thus (i) follows.
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It remains to prove that if £ has a p-quasi
extension to G, then |dz(G/K)| = |rdz(G|§)|. To
prove this we use the p-quasi extension §~ con-
structed above. In the proof of Proposition 1 we
have already proved the map sending 6 to €6 is an
injection from dz(G/K) to rdz(G|). Therefore, to
prove |dz(G/K)| = [rdz(G|€)], it suffices to prove
this map is a surjection. Let x € rdz(G|¢) and put
G=G/K and Z = ZK/K. Then Inf,_ax = fox
for some irreducible character x of G. Then
v(x(1)) = v(|G/K|) = v(|G/Z|). Let B be the p-
block of G containing ¥. Then Z is a defect group of
B by [La] (see also [Mu]). Via the natural iso-
morphism Z ~ Z, XA may be regarded as a linear
character of Z. Since A~! is an irreducible constit-
uent of Xz, we obtain the value of x:

X(z) = A7 (2,)0(2)

=0 ifz,¢Z

where 6 is the canonical character of B by
[NT, Theorem 5.8.14]. Since # is an irreducible
character of G/Z of p-defect 0 and G/Z ~ G/K, 6
may be regarded as an irreducible character 6 of
G/K of p-defect 0. Then 6(z) = 6(z) for all z € G,
where f(2) =z, £€G and =K € G. Then
x(z) = (Inf,_4X) (&) = &(#)%(%). Further &, € Z
iff ¢, e KxZ iff z,€ K. Hence if z,¢ K,
then x(z) =0= (59)( ). If z, € K, then x(z)=
E@N(3,)0(2) = E@)A(3,)0(x) = (€0)(x). Thus
x = &6. The proof is complete. O

We say a p-quasi extension f normalized if
£(z) =0 for all z € G such that zK is not a p'-
element of G/K.

Put

.(x) = E(x) if 2K is a p-element of G/K,
=0 otherwise.

if 7, € Z,

Then §~,, is a normalized p-quasi extension of £. Since
€0 = &,0 for any 6 € dz(G/K), when we consider the
map in Theorem, it suffices to consider normalized
p-quasi extensions.

Proposition 3. Let 5 and 5' be two normal-
ized p-quasi extensions of & to G. Then there is a
linear character n of G/K such that & =é&n.
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Proof. For any p/-subgroup L = L/K of G =
G/K, there is a unique linear character A\(L L) of L
such that &, =&, ® A(L). For any p’-element 7 of
G, define u(x) = A\({z, K))(z). Then if L is a p'-
subgroup and 7 € L, then \(L)(Z) = pu(z). p is a
class function of G defined on G,. Indeed, for y €
(z,K) =L and g € G, we have §’( )= f(y))\(L)(y)
and &9(y9) = &9(y)NL)?(y?). Since & and € are
class functions, we obtain E9(y9) = €'(y?) and
§g(y9) £(y9). Thus &, =& @ ANL)?. Further,
€1, = €& @ MLY). Hence (L) = A(L)? by unique-
ness. Therefore pu(Z7) = \(L)(29) = M(L)!(29) =
(L) (@) = (@),

Put H = (. Define n(h) = p(hy) for he H.
Then n is a Ky-valued class function on H and
(m,m)y=1. Let E=E,x E, be an elementary
subgroup of H, where E, and E, are respectively
the Sylow p-subgroup and the p-complement of E.
Let « be a linear character of E. Then (n, o)y =
(1g,,@)p (MEy),a)p, is an integer. Then 7 is
a linear character of H by Brauer’s theorem
[NT, Theorem 3.4.2]. We have &(z) = (€n)(z) if Z
is a p/-element. Since 5' and E are normalized the
result follows. O

Proof of Theorem. The first and second asser-
tions of Theorem follow from Propositions 1 and 2.
For the last assertion, as remarked above it suffices
to consider normalized one. So Proposition 3 yields

the result. The proof is complete. (Il
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