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Abstract:

In this paper, we discuss the linearity of a sequence space A,(f), and the

conditions such that ¢; = A;(f) holds are characterized in term of the essential bounded variation
of fe Li(R), i.e. ¢ = A (f) if and only if f € BV(R).

Key words:

1. Introduction. Let f(#0) be an L,-func-
tion defined on the real line R and assume 1 < p <

+oo. For a sequence of real numbers a = (a,) €
R™, define

1/p
U, (a; f) = (Z /R |f(a — ar) —f<x>|”dx)
k,

and
A(f) ={a e R* : ¥,(a; f) < +o0}.

The following results are known (cf. [1]):

e For every a = (a,) € R®,

Uy (lal; f) = ¥p(a; f), where |a] = (|an|);

o U,(a—b;f) <¥,(a;f)+T,(b;f) for every
a,be R, ie, the sets A,(f) are additive
subgroups of R™.

Let W!?(R) be a Sobolev space, i.e, f€&
Whr(R) if and only if f € L,(R) and the derivative
Df of f in the sense of distribution belongs to
L,(R). In particular, if f€ L'(R) and Df is a
Radon measure of bounded variation on R, f called
a function of bounded variation. The class of all
such functions will be denoted by BV(R). Thus,
f € BV(R) if and only if there is a Radon measure p
defined in R such that |u|(R) < +oo and

/R fodn = — / iy, o € CX(R),

where, |Df|(R) = |u|(R) means the total variation
of p.
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It is obvious that a function f on R is
absolutely continuous and the derivative [’ is in
Li(R), then fis of bounded variation. In particular,
WLL(R) C BV(R) (see [3]).

In [1], A. Honda, Y. Okazaki and H. Sato
provided the following results:

(i) ([1, Theorem 1, Theorem 2]) If 1 < p < +o0
and f(# 0) € L,(R), then A,(f) C £,. In particular,
f € WH(R) implies ¢, = A, (f).

(ii) ([1,Corollary 4]) If1 < p < 400 and f(# 0) €
L,(R), then £, = A,(f) if and only if f € WI*(R).

In (ii), we should note that the case of p =1 is
excluded. In this paper, we discuss the linearity of
the space A,(f), and the conditions such that ¢, =
A1(f) holds are characterized in term of the
essential bounded variation of f € L;(R), i.e. {1 =
A (f) if and only if f € BV(R) (Theorem 3.5).

2. The linearity of A,(f). We first give
necessary and sufficient conditions for the linearity
of A,(f).

Theorem 2.1. Letl <p < +oo and f(#0) €
L,(R). Then the following are equivalent:

(1) A,(f) is a linear subspace of R™;
(ii) For any 0< k<1, there exists a constant

C(k) > 0 such that

(k)
[ 18 ka) - f)da

R

<) [ 1f@ =)~ f@)lds, Ya >0
R
(iii) There exits a constant C' > 0 such that
[ 156 ka) - f@)da
R

§C/ |f(z —a) — f(z)[Pdz, 0 <Vk<1,Va>0.
R
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Proof. Since A,(f) is additive as mentioned in
the introduction, it suffices to show that o € R and
a € A,(f) implies aa € Ay(f). Condition (ii) means
that @ € Ay(f) implies aa € Ap(f) forall0 < o < 1.
Since A,(f) is an additive group, we see that « € R
and a € A,(f) implies aa € A, (f). Thus we see that
A,(f) is linear.

Conversely, suppose that (ii) does not hold.
Then there exists 0 < ky <1 such that for any
natural number n, we can take a, > 0 such that

/ \f(z — koan) — f()'dz
R

3 [ V=) -

On the other hand, we have
. x — koay) — f(x)|Pdx
22) [ 16 - k) - 1)
< [ (156~ k)| + (@) de
R

<o [ 1o toanpas+ [ I0pac)

=27\ flI7,-
Since f(# 0) € L,, we have
[£(=an) = f() L, # 0.
We have from (2.1) and (2.2) that

(2.1)

f@)Pde.

0< [ Ife~a) = f@Pde < 1L, <261,

Also, for each n, let N(n) be the maximum of a
natural number N such that the following inequal-
ity holds

(23) N /R (= an) = f@)Pdw < 27| £
Form the maximality of N(

n)+1) /|f —ay) — f(z)|Pdx

fa)"dz,

(n) we have

21, <

< 2N(n) /R o —a)

and hence form this equality and (2.1), we have

/ |f(x —a,) — f(x)|Pdx

— koay,
3,L/|f$ 0an)

27| fIlg, /N (n

— f(x)|Pdx.

Thus we have
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<N [ If@

Let N(0) =0, and define a sequence b = (b,) in the
following way

— koay) — f(x)|Pdu.

k—1
bj=ar, 1+ N(i) <

k
=0

where j,k=1,2,3,---. Then, from (2 3) we have

ff/ F— b))

/ f(z — an) — f(@)da.

\ /\

f(@)"da

:l

<71, 32 < oo

n=1

Hence b€ A,(f).
On the other hand, using (2.4) we have

/|f$—kob
/|f17—/foan

2 N
Z( ) 21 £}, = +oo.

This means kob ¢ A,(f). Hence we have (i) < (ii).

Next, we show that (ii) < (iii). Since it is
obvious that (iii) = (ii), it is sufficient to prove that
(i) = (iii). Put

J(@)Pde

rLl

J@)Pde

k) = SO,
M) =S =@ = 70,

for k€ R. Then for ki, ks € R,
following inequality

we have the

M(kl + kg)
. 1f(- = (k1 + k2)a) = fO)lL,
S S T e T
1f( = ka) = fO)llp, + 11— kea) =
< sup
IFC=a) = FOl,,

< M(k1) + M(ks).

Now, suppose that (iii) does not hold, and thus

sup M (k) = co. Let (k,) be a sequence in [0, 1] such
0<k<1

that M(k,) — oo and k,, — ko for some kg € [0,1].
For every a € [0,1], put a, =k, —ko+a (n=
1,2,3,--+), then
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M(kn) = M(ko — a+ ay)

< M(ko —a) + M(ay)

= M(|ko — a|) + M(a,).

Since |kg — a| € [0,1] by (ii), M(]ko — a|) < oo. Thus
M(a,) — oo and a, — a as n — oo. Consequently,
for every n € N, put

L,={z€[0,1] : M(x) < n},

then it is easily verified that each L, is nowhere
dense and

D L,=[0,1
n=1

which contradicts the Baire category theorem.
Thus, (ii) = (iii) holds. O
The following theorem have already been
proved by [2], but we give an alternative proof in
this paper.
Theorem 2.2. Let feI?(R), 1<p< 0.
If there exists a countable partition (a;)>,, on R
satisfying the following conditions:
(1) a; < aj41 and 'lirin a; = Foo;
(2) inf(ai41 —a;) > 0;
(3) f is monotone on (a;,a;11).
Then A, (f) is linear.

Proof. In what follows, let
€= (gﬂ“m —a])/3 > 0.

Then, for every 0 < b < a < e, x € R, we have

(2.5)  [f(x—=b) = fx)l
<27 (|f(x = b) = fle —a—b)
+f(@—a) = f@)"
+f@=b) = flz+a-0b)
+f(@+a) = f(@)).
To show this, put
=rt—a—-bzr-b, Lh=[r,x+a], =[r—a—bz+al

Then it is obvious that I, Iy C I3 and I, NI, = 0.
Moreover, since the length of the interval I3 is 2a +

b and less than 3e(< in% |a;+1 — a;]), the number of
1€

elements of {i:a; € I3} is at most single. Hence
either of the following holds

(a) {i:a, €L} =10

(b) {i:a;€h}=0
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CASE (a): By hypothesis, sinse f is monotone on
L=[zx—a-bz—1], we see that f(x —a—10) <
flx=a)< fl(x—=0b) or flx—a—>b)> flr—a)>

f(z =), and so

e —b) — f()]
<|fl@=0) = flz—a)[+[f(x —a) - f(z)|
< |f(@—b) - fz—a—b)| +|f(z— a) - f(z)].
Hence
|f(z—b) = f(x)”
<2 f(x —b) — flx —a—b)|P+
|f(x —a) = f()[).
CASE (b): By hypothesis, since f is monotone on

I, =[x,z + a], we have that either f(z) < f(z+
a—b) < f(z+a)or f(z) 2 flz+a—-b) = flx+a)
holds, and so

[f(z = b) = f(z)]
<|flx=0b) = flz+a—b)+[f(x+a—0b)— f(z)]
<|f@—=b) = flz+a-b)|+[f(z+a)— flz)]
Consequently, we have
|f(z—b) = f(@)"
<27 Y(|f(x —b) = flz+a—b)'+
[f(z+a) = f(2)]).

Thus we see that (2.5) holds. Finally, to show
that the statement (iii) of Theorem 2.1 holds, let
0<k<1,a>0,and so 0 < ka < a.

Now we consider the two case of a<e or
a>e.

First, suppose that a < e. Put b = ka in (2.5),
then by 0 < ka < a < € we see

|f(z = ka) = f(z)”

< 2" (| f(z —ka) — f(z — a — ka)|"
+1f(z—a) = f(@)
+|f(w = ka) — f(w+a— ka)P
+1f(@+a) = f(@)"),

and so

(- = ka) = fO)II,

< 27| f(- = ka) = f(- —a—ka) |}
+1£C—a) = fO;
+ I = ka) — f(- + a— ka)|[,
+1£C+a) = FOI)

= 2" f(- —a) = FO)l;-

Next suppose that a > ¢, put
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e = nf /(- = 0) = SOl

then ¢ >0 holds. In deed, a function |f(- —a) —
fO)l, is positive and continuous with respect to
a>0and

lim |1/ =) -

Thus we see that ¢ > 0.
We now observe that

IFC = ka) = FOll, _ NfC = ka)ll, + 1AL, _ 2011,
1fC=a) = O, — c c

Then we have

IIf(-—/m)—f(-)IIZ§<|f”>||f( a) — FOI

Put C = max{2!, (%)p} > 0, we conclude that

(- = ka) = FOI,
<COf(-=a) = fO)lIp for0<k<1,a>0.

Thus we see that Theorem 2.1(iii) holds, and that
Ap(f) is a linear subspace in R*. O
Here, we give examples without the proof such
that each A,(f) is not a linear space.
Example 3. fy € Cy(R)(#0), supp fo C
[0,7]. For m and n € N, we define f,, € C(R)
by

Ol = 201f1, > 0.

fm,n(m) =1+ lSiIl(’rll‘).
m

Then there exist subsequences {m;} and {n;}
satisfying the following conditions (i) and (ii):

(i) f(z)= ]lggo fo(z )H fm;n; (z) (uniformly on R).

i=1

(i) Tim I \f( fnl>f < Wde

i—00 f & |"dz

We can show that (i) implies f e Cy(R) C
L,(R) and (ii) implies that f does not satisty
Theorem 2.1(ii). Thus we see that A,(f) is not a
linear subspace in R*.

Next we give an example of a more smooth
function f such that A,(f) is not linear.

Example 4. Let 1 <p < oo. Then there ex-
ists an function f € L,(R) such that:
(i) feC*R)NL,(R) and f(z) >0 (z € R);
(ii)  the number of z satisfying f'(z) = 0 on every
subinterval I of R is at most countable;
(iii) A,(f) is not a linear subspace of R*.

[Vol. 87(A),

In fact, we can construct f as follows: Let
(-l<zx<l)

1
e
plx) =3 °
0 |x| > 1.

Then p € C3°(R) and supp p = [—1.1]. Moreover, for
all n €N, let p,(z) = p(6(x —n+1/2)), then we
have suppp, =[n—2/3,n—1/3] and 0 < p,(x) <
1/e. For every subsequence (ny),—, of the natural
number, let

flx) =

e z <0)
™ (1+ py(x) sin ) —1<x<k).

(
(k
Then, the above conditions (i) and (ii) hold. On the
other hand, choose a sequence (ny) so that ny is a
multiple of nj_; for each kK € N and
lim " T
k—00

=00
Nk—-1

holds (for example, n; = (k!)!). Then we have

= 1) = FO,
SR NFC=2/m) = 1O,

Let a/2 = 1/n;, then we can not take a constant C
such that

1= a/2) = FOI, < CIFC—a) = FOl;

for all @ > 0. Hence, we see from Theorem 2.1 that
A, (f) is not a linear subspace of R®.

Remark. We should note that example 2
means that condition (2) of Theorem 2.2 is essen-
tial.

3. £1 = A1(f). Let feLi(R). We define a
subset D; of R by

Df{xeR lim / )|dt0}

It is well known that the Lebesgue measure of
R\ Dy is zero.

Let f : R — R. The essential variation ess V(f)
is defined as

essV(f) =

k
sup{z |[f(z:) = flai))xo < -+ < ap,y x; € Df}.

i=1

Theorem 3.1. Let fe Li(R). Then we
have
R —
}ILI%/RM dx = essV(f)
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Proof. Let (xp),_; be a finite sequence of
elements of D; such that a; < ay <--- < a,. Then
for h # 0,

fz—h) - f(z)
/R Y dz
1 n—1 Ayt
zzgé.mw%mw

n—1

Hence

d 1 /ak+l f( )d
Xr — — xTr)axr|.
h ap1—h

(IAh

lim inf /
h—0 R

n—1
> Z | f(ar) —

k=1
Since (xy) is arbitrary, we have

B -
lim inf/ —) /()
h—0 R

flz
h
To show the converse inequality, It suffices to
show that the statement holds for A > 0.

/ flx —h) - f(z)
R

fa—h) - @)
h

flars1)].

dz > essV(f).

dx
h

/ flz+ (k4 1)h) — f(z+ kh)| da
k*oo

/ Z |f(z+ (k+1)h) — f(z + kh)| dz.

k=—00

We should note that the Lebesgue measure

of
U {(R\Dy) — kh}
k=—00
is zero. Let x & Ej {(R\ Dy) — kh}, then we have
k=—o0

x + kh € Dy for every k € Z.
S 1f@+ (k+1)h) = fz+kh)| < essV(f).
k=—

Thus we have

/ Ja=h) = /) dz <essV(f), h>0.
R h

O
Corollary 3.2. f =g a.e. impliesessV(f)=
essV(g).
Lemma 3.3. Let fe Li(R) and essV(f) <
0o. Then
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(1) Foreveryx € R, l}g{)l f(x + h) converges.

z+heDy

(2) By (1), we can define

1’1{51 f(x +h) for x € R.
Z+;’L€Df

g(z) =

Then g(x) is right continuous on R and g(z) = f(x)
forxz € Dy.
(3) Let g be the function defined on R in (2). Then
V(g) = essV(f), where V(g) is a total variation on
R of g.

Proof. (1) Let € R. From the density of Dy
in R, we can take a sequence such that ¢; >
to >--- | x and t, € Dy. Then,

o0

Z |f(tn+1) -

n=1

f(tn)] <essV(f) < +o0.

Hence lim f(t,) converges. Since the choice of {¢,}

n—oo

is arbitrary, ol lim  f(xz + h) converges.

z+heDy
(2) Tt is clear from (1) that g is right continuous.
Let x € Dy,

_1
f(w) =lim

/ fle+o)di= T St h) = go)
x+hED/
(3) We see from (2) and g, = f that essV(f) <
V(g). To show the converse inequality, take any
sequence of R with a; < ag < --- < a,. Since g is
right continuous and Dy is dense in R, for every
€ > 0, there exists (b;) such that by € [a, ar1) N Dy
(1 <k<mn)and |glar) — g(br)| < €/2(n — 1). Then

ﬁimmﬂn—m%n

< Z{\y agt1) = 9(brs1)|
+ |g(bk+1) = g(bi)| + [g(br) — glar)[}
< Z |9(bi+1) — g(be)| + €
<essV(f) +
Thus we have V(g) < ess V(f). 0

Theorem 3.4. For every f € L1(R), the fol-
lowing statements are equivalent:
(i) essV(f) < o0.
(i) {IfC+h) = FOIlL /IRl - b #0,h € R} is bound-
ed.
(iii) f € BV(R).
Moreover, |Df|(R) = essV(f).
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Proof. The equivalence of statements (i)
and (ii) is clear from Theorem 3.1. The equiva-
lence of statements (i) and (iii) follows from
[3, Theorem 7.8]. O

Theorem 3.5. For every feILi(R), f€
BV (R) if and only if Ai(f) = 4;.

Proof. Let f € BV(R). We see from the pre-
vious theorem that ¢; C A;(f).

The converse inclusion ¢; 2 A{(f) follows from
(i) ([1, Theorem 1]) appeared in the introduction.
Thus El = Al(f)

To show the converse, suppose that f ¢
BV(R). Then we see from Theorem 3.4 that

{IFC+h) = Ol /1Bl : R #0, h € R}

is unbounded. Hence, for each n € N there exists
h, # 0 such that

/ flx—hy) —
R
Hence

he,
1 ,
Il < 5 [ 1@ =ho) = f@)ldo < 27 ],

f(=)

dx > 2".

Now, let N(n) be the maximum of natural numbers
satisfying Nlh,| < 2'7"(|f||;. We have from the
maximality of N(n) that

271 £l < (N(n) + 1)l < 2N (n)| b

and so
171 < N(m)2"|ha| < N(n) /R (& — hy) — f(z)] da.

Using (hy,) and (N(n)), we can construct a sequence
(an) as follows:
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k1

k
aj=hp, 1+ N@) <j< ) N(),
=0 =0

where N(0) =0 and j,k=1,2,3,--.
Consequently, we have

Jan] = D N@)lha| <2 flly < +oc,
1 1

n= n= n=1

o0

and so a € /.
On the other hand,

¥ (af) = 3 Nn) [ 176 =) )

> Z 1f1ly = oc.
n=1
Hence a ¢ A1(f), which contradicts ¢; = Ay(f). O
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