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Abstract: We classify the symmetric solutions for the two dimensional degenerate

Garnier system G(5) which is a generalization of the second Painlevé equation. We calculate the

linear monodromy of the symmetric solutions explicitly.
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1. Introduction. We have studied special

solutions with generic values of parameters for the

fourth, fifth, sixth and third Painlevé equations, for

which the monodromy data of the associated linear

equation (we call linear monodromy) can be calcu-

lated explicitly [3–6].

The Garnier system was derived by R. Garnier

(1912) as an extension of the sixth Painlevé

equation [1,2]. The original Garnier system has n-

variables and expressed in a system of nonlinear

partial differential equations, whose dimension of

the solution space is 2n. There are few research for

special solutions to the Garnier system compared

with the Painlevé equations. We study the Garnier

transcendents by applying the same method to the

two dimensional Garnier system first, which we

have used for the Painlevé equations above. Some

new discovery is expected by viewing Painlevé

equations from the Garnier system.

Two dimensional Garnier system has the

following degeneration diagram similar to the

Painlevé equations:

G(11111)!G(1112)!G(122)!G(23)

. . .
G(113)!G(14)!G(5)!G(9/2):

(The degeneration from G(113) to G(23) also

exists.)

Numbers in the bracket ( ) represents a parti-

tion of 5 and 1 represents the regular singular point

and rþ 1 represents an irregular singular point of

Poincaré rank r. The two dimensional Garnier

system G(11111), which is the extension of the

sixth Painlevé equation, degenerates step by step to

the two dimensional degenerate Garnier system

G(9/2) which is the extension of the first Painlevé

equation.

In this paper, we classify the symmetric solu-

tions (See section 3) to the system G(5) with generic

values of parameters, for which we calculate the

linear monodromy of the equation (2.1) fM1 ¼
S1S2 � � �S8e

2�iT1g explicitly. In order to find out the

symmetric solutions, we apply the same method to

the system G(5), by which A. V. Kitaev discovered

the symmetric solutions to the first and second

Painlevé equations [8]. For the classification of

the symmetric solutions, we use Prof. M. Suzuki’s

paper [10] and a single equation (2.10) for q2.

M. Suzuki constructed the space of the initial

conditions of the two dimensional Garnier and its

degenerate system. The space for the system G(5)

consists of five charts which are glued by the

symplectic transformation each other.

From the system G(5), we derive a single

equation (2.10) for q2, by solving which we have the

order of pole and number of special solutions. On

the other hand, we have special solutions on the

each chart which consists of the space of the initial

conditions. Both solutions coincide with each other

and we confirmed that any other symmetric solu-

tion does not exist. We have five symmetric(mer-

omorphic) solutions around the origin. We calcu-

lated the linear monodromy for the two solutions of

them explicitly.

2. The two dimensional degenerate

Garnier system G2ð5Þ and H2ð5Þ. The two

dimensional degenerate Garnier system G2fK1; K2;

doi: 10.3792/pjaa.87.114
#2011 The Japan Academy

2000 Mathematics Subject Classification. Primary 34M55;
Secondary 33C15.

114 Proc. Japan Acad., 87, Ser. A (2011) [Vol. 87(A),

http://dx.doi.org/10.3792/pjaa.87.114


�1; �2; �1; �2; t1; t2g(5) is derived as the extension of

the second Painlevé equation by the isomonodromic

deformation of the second kind, non Fuchsian

ordinary differential equation, which has one irreg-

ular singular point of Poincaré rank 4 at x ¼ 1 on

the Riemann sphere:

d2y

dx2
�
�
2x3 þ 2t1xþ t2 þ

1

x� �1
ð2:1Þ

þ
1

x� �2

�
dy

dx
�
�
2�x2 þ 2K2x

þ 2K1 �
�1

x� �1
�

�2

x� �2

�
y ¼ 0;

where K1 and K2 are Hamiltonians and �1, �2, �1

and �2 are the Garnier transcendents and t1 and t2
are deformation parameters. The Riemann scheme

of (2.1) is

P

x ¼ �1 x ¼ �2 x ¼ 1

0

2

0

2

0 0 0 0 �
1
2 0 t1 t2 1� �

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
;x

0
BB@

1
CCA:

G2 has movable algebraic branch points and

Hamiltonian structure expressed in rational

functions [7]:

K1 ¼ �
X
k¼1;2

P ð�kÞ
�0ð�kÞ

�
�2
k �

�
2�3

k þ 2t1�k

þ t2 þ
1

P ð�kÞ

�
�k � 2��2

k

�
;

K2 ¼
X
k¼1;2

1

2�0ð�kÞ

�
�2
k � ð2�3

k þ 2t1�k

þ t2Þ�k � 2��2
k

�
;

P ðxÞ ¼ x� �1 � �2; �ðxÞ ¼
Y
k¼1;2

ðx� �kÞ:

We have the two dimensional degenerate Garnier

system H2fH1; H2; q1; q2; p1; p2; s1; s2g(5) by the can-

onical transformations:

s1 ¼
t1

2
; s2 ¼

t2

2
; q1 ¼ �1�2 �

t2

2
;

q2 ¼ �ð�1 þ �2Þ; �i ¼
X2

j¼1

qjpj

�i � tj
;

Hi ¼ �ðti � 1Þ2 Ki þ
X2

j¼1

pj
@qj

@ti

 !
ði ¼ 1; 2Þ;

X2

i¼1

ðdpi ^ dqi � dHi ^ dsiÞ

¼
X2

i¼1

ðd�i ^ d�i � dKi ^ dtiÞ;

where H1 and H2 are Hamiltonians and q1; q2; p1 and

p2 are Garnier transcendents and s1 and s2 are the

deformation parameters.

H2 has the Painlevé property and the poly-

nomial Hamiltonian structure [7,9]. Hamiltonians

H1 and H2 are given as follows:

H1 ¼ ðq2
2 � q1 � s1Þp2

1 þ 2q2p1p2 þ p2
2

þ 2ðq2
1 � s2

1 þ s2q2Þp1 þ 2ðq1q2

þ s1q2 þ s2Þp2 þ 2�q1;

H2 ¼ q2p
2
1 þ 2p1p2 þ 2ðq1q2 þ s1q2

þ s2Þp1 þ 2ðq2
2 � q1 þ s1Þp2

þ 2�q2; ð2� ¼ 2�þ 1Þ;
from which we have the polynomial Hamiltonian

system H2ð5Þ:
@q1

@s1
¼ 2 q2

2 � q1 � s1

� �
p1ð2:2Þ

þ 2q2p2 þ 2ðq2
1 � s2

1 þ s2q2Þ;
@q2

@s1
¼ 2q2p1 þ 2p2ð2:3Þ

þ 2ðq1q2 þ s1q2 þ s2Þ;

�
@p1

@s1
¼ �p2

1 þ 4q1p1 þ 2q2p2 þ 2�;ð2:4Þ

� @p2

@s1
¼ 2q2p

2
1 þ 2p1p2 þ 2s2p1ð2:5Þ

þ 2ðq1 þ s1Þp2;

@q1

@s2
¼ 2q2p1 þ 2p2ð2:6Þ

þ 2ðq1q2 þ s1q2 þ s2Þ;
@q2

@s2
¼ 2p1 þ 2ðq2

2 � q1 þ s1Þ;ð2:7Þ

� @p1

@s2
¼ 2q2p1 � 2p2;ð2:8Þ

� @p2

@s2
¼ p2

1 þ 2ðq1 þ s1Þp1 þ 4q2p2 þ 2�:ð2:9Þ

The Hamiltonian system H2ð5Þ has a holomorphic

solution around the origin for the given initial

condition by Cauchy’s theorem. We derive the

single equation for q2 of the Hamiltonian system

H2ð5Þ so that we investigate whether H2ð5Þ has a
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solution with a pole. Eliminating q1; p1 and p2 from

(2.6), (2.7), (2.8) and (2.9), we have the following

partial differential equation of the fourth order

2q2
2

@4q2

@s4
2

� 4q2
@q2

@s2

@3q2

@s3
2

þ 4
@q2

@s2

� �2@2q2

@s2
2

ð2:10Þ

� 40q4
2

@2q2

@s2
2

� 16s2q2
@2q2

@s2
2

� 3q2
@2q2

@s2
2

� �2

� 16q2
@q2

@s2
� 20q3

2

@q2

@s2

� �2

þ 16s2
@q2

@s2

� �2

þ 80q7
2 þ 192s1q

5
2 þ 64s2q

4
2 þ ð64s2

1

� 96� þ 48Þq3
2 � 16s2

2q2 ¼ 0:

Equation (2.10) has the formal solutions in the

following form:

q2 ¼
X1
j¼�1

bjðs1Þsj2; b�1 ¼ 0;�
1

2
;�1;ð2:11Þ

and the solutions with a pole of order 1 around the

origin. It is necessary that b�1 ¼ 0 or � 1
2 for the

solution (2.11) when q2ðs1; s2Þ has a pole along

s2 ¼ 0. If b�1 ¼ �1, q2 has a pole divisor which

passes through the origin.

3. Symmetric solutions around the

origin. In this section, we recall the symmetric

solution to the second Painlevé equation which was

given by A. V. Kitaev [8]. He showed that the

second Painlevé equation

PII :
d2y

dt2
¼ 2y3 þ tyþ �

is invariant by the transformation (we call the

symmetric transformation):

y! !y; t! !2t ð!3 ¼ 1Þ

and PII has the solution:

y ¼ �

2
t2 þ

�

40
t5 þ

10�3 þ �
2280

t8 þ � � � ;

which is invariant by the symmetric transformation

(we call the symmetric solution).

By applying this method to the system H2ð5Þ,
we obtain the following theorem.

Theorem 1. (1) The Hamiltonian system

H2ð5Þ is invariant by the symmetric transformation:

q1 ! �2q1; p1 ! �2p1; q2 ! �q2;ð3:1Þ
p2 ! �3p2 s1 ! �2s1; s2 ! �3s2;

ð�4 ¼ 1Þ:

(2) The Hamiltonian system H2ð5Þ has the

following holomorphic and symmetric solution (5-a)

around the origin:

(5-a) q1 ¼
X

2iþ3j�2ðmod 4Þ
ai;js

i
1s
j
2

¼ ð1� 2�Þs2
2 �

2

3
ð1� 2�Þs3

1

þ 2ð2�2 � 2� þ 1Þs2
1s

2
2 þ � � � ;

p1 ¼
X

2iþ3j�2ðmod 4Þ
~aai;js

i
1s
j
2

¼ �2�s1 � 2�s2
2 þ

4

3
�2s3

1 þ � � � ;

q2 ¼
X

2iþ3j�1ðmod 4Þ
bi;js

i
1s
j
2

¼ 2ð1� 2�Þs1s2 �
2

3
s3

2

þ
4

3
ð2�2 � 2� þ 1Þs3

1s2 þ � � � ;

p2 ¼
X

2iþ3j�3ðmod 4Þ

~bbi;js
i
1s
j
2

¼ �2�s2 þ 4�ð1� �Þs2
1s2

þ 8�ð1� 2�Þs1s
3
2 þ � � � :

Remark 2. Higher order expansion of this

solution are determined recursively by the

Hamiltonian system H2ð5Þ.
M. Suzuki showed that the space of the initial

conditions of the degenerate Garnier system G(5)

consists of five charts which are glued each other by

the following symplectic transformations [10]:

ðbÞ q1 ¼
~qq1

~qq2
; q2 ¼

1

~qq2
; p1 ¼ ~qq2~pp1;

p2 ¼ �~qq2ð� þ ~qq1~pp1 þ ~qq2~pp2Þ;
ðcÞ ~qq1 ¼ q̂q1; ~qq2 ¼ q̂q2;

~pp1 ¼
�2

~qq3
2

þ 2~qq1

~qq2
2

� 2s1

~qq2
þ p̂p1;

~pp2 ¼
�2

~qq5
2

þ
6~qq1

~qq4
2

�
2~qq2

1

~qq3
2

þ
2ðs1~qq1 þ s2Þ

~qq2
2

�
2�

~qq2
þ p̂p2;

ðdÞ q1 ¼
1

�qq1
; q2 ¼

�qq2

�qq1
; p2 ¼ �qq1�pp2;

p1 ¼ ��qq1ð� þ �qq1�pp1 þ �qq2�pp2Þ;
ðeÞ �qq1 ¼ �q1q1; �qq2 ¼ �qq2;
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�pp1 ¼ �
2�qq4

2

�qq5
1

þ
6�qq2

2

�qq4
1

�
2

�qq3
1

þ 2ðs2�qq2 þ s1Þ
�qq2

1

� 2�

�qq1
þ �pp1;

�pp2 ¼
2�qq3

2

�qq4
1

�
4�qq2

�qq3
1

�
2s2

�qq1
þ �pp2;

ðeÞ  ðdÞ  ðaÞ ! ðbÞ ! ðcÞ;

where (a) represents the base chart on which the

solution (5-a) exists.

Remark 3. (1) By these symplectic trans-

formations, the symmetric transformation (3.1) is

kept with a different weight.

(2) On each chart, there is one holomorphic

and symmetric solution exists.

By the symplectic transformation ðbÞ, we have

the new polynomial Hamiltonians and Hamiltonian

system, where we have the following holomorphic

solution:

~qq1 ¼
X

2iþ3j�1ðmod 4Þ
ai;js

i
1s
j
2

¼ 2s1s2 �
4

3
s3

2 þ
8

3
ð2þ 3�Þs2

1s
3
2 þ � � � ;

~pp1 ¼
X

2iþ3j�3ðmod 4Þ
ai;js

i
1s
j
2

¼ �2�s2 þ
32

3
�s1s

3
2 þ � � � ;

~qq2 ¼
X

2iþ3j�3ðmod 4Þ
ai;js

i
1s
j
2

¼ �2s2 �
16

3
s1s

3
2 þ

16

15
ð1� 6�Þs5

2 þ � � � ;

~pp2 ¼
X

2iþ3j�1ðmod 4Þ
ai;js

i
1s
j
2

¼ 2�s1s2 þ
4

3
�ð1þ 3�Þs3

2

�
16

3
�ð2þ 5�Þs2

1s
3
2 þ � � � :

By making inverse transformation of ðbÞ, we have

the following solution (5-b):

(5-b) q1 ¼ �s1 þ
2

3
s2

2 � 4�s2
1s

2
2 þ � � � ;

p1 ¼ 4�s2
2 �

32

3
�s1s

4
2 þ � � � ;

q2 ¼ �
1

2s2
þ

4

3
s1s2 �

4

5

1

3
� 2�

� �
s3

2 þ � � � ;

p2 ¼ 2�s2 �
32

3
�s1s

3
2 þ � � � :

By the similar way, we have the following solutions

(5-c), (5-d) and (5-e):

ð5-cÞ q1 ¼ �s1 �
2

3
s2

2 þ � � � ;

p1 ¼ �
1

2s2
2

�
4

3
s1 �

4

5
�s2

2 þ � � � ;

q2 ¼
1

2s2
�

4

3
s1s2 þ

4

3
�

8

5
�

� �
s3

2 þ � � � ;

p2 ¼
1

4s3
2

� 2
1

3
þ
�

5

� �
s2 þ � � � :

(5-d)

q1 ¼
1

�2s1 þ 2s2
2 � 8

3
�s3

1 � 4s2
1s

2
2 þ � � �

;

p1 ¼ 2�s1 � 2�s2
2 �

4

3
�2s3

1 þ � � � ;

q2 ¼
�s2 � 2ð1þ 2�Þs2

1s2 � 2s1s
3
2 þ � � �

�s1 þ s2
2 � 4

3
�s3

1 � 2s2
1s

2
2 þ � � �

;

p2 ¼ �4�ð� þ 1Þs2
1s2 � 4� � þ

2

3

� �
s1s

3
2 þ � � � :

(5-e)

q1 ¼
1

2s1 þ 2s2
2 � 8

3
ð1� �Þs3

1 þ � � �
;

p1 ¼
�½s1 � s2

2 � 4
3 ð1� �Þs3

1 þ � � ��
½s1 þ s2

2 � 4
3
ð1� �Þs3

1 þ � � ��
2

� 2ð2� �Þs1 � 2ð1� �Þs2
2 þ � � � ;

q2 ¼
s2 � 2ð3� 2�Þs2

1s2 þ 2s1s
3
2 þ � � �

s1 þ s2
2 � 4

3 ð1� �Þs3
1 þ � � �

;

p2 ¼
2½s2 � 2ð3� 2�Þs2

1s2 þ � � ��
½s1 þ s2

2 � 4
3
ð1� �Þs3

1 þ � � ��
3

� �s1 þ
4

3
ð1� �Þs3

1 þ � � �
� �
� 2s2 � 4ð1� �Þð3� �Þs2

1s2 þ � � � :

Remark 4. (1) Putting s1 ¼ 0, q2 has the

coefficient �1 of s�1
2 in the solutions (5-d) and (5-e).

(2) The Hamiltonian system H2ð5Þ has three

solutions in the form of (2.11) with b�1 ¼ 0;�1=2

and two solutions in the form of the solutions (5-d)

and (5-e) with b�1 ¼ �1.

(3) The number of the residue at the pole of the

solution of the single equation (2.10) gives the

number of charts which consists of the space of

the initial conditions.

We have the following theorem:

Theorem 5. The Hamiltonian system H2ð5Þ
has five symmetric solutions (5-a),(5-b),(5-c),(5-d)
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and (5-e) and any other symmetric solution does not

exist around the origin.

4. The linear monodromy. In this section,

we calculate the linear monodromy for the solution

(5-a) and (5-d).

For the solution (5-a), the linear equation becomes

d2 1

dx2
�

2

x
þ 2x3

� �
d 1

dx
� 2�x2 1 ¼ 0;

whose Poincaré rank at x ¼ 1 is 4. This is reduced

to Kummer’s equation:

d2 1

d�2
þ

1

4�
� 1

� �
d 1

d�
�
�

4�
 1 ¼ 0; ðx4 ¼ 2�Þ:

For the solution (5-d), the linear equation becomes

d2 1

dx2
� 2x3 d 1

dx
� 2�x2 1 ¼ 0;

whose Poincaré rank at x ¼ 1 is 4. This is also

reduced to Kummer’s equation:

d2 1

d�2
þ

3

4�
� 1

� �
d 1

d�
�
�

4�
 1 ¼ 0; ðx4 ¼ 2�Þ:

We have the next theorem.

Theorem 6. The two dimensional degener-

ate Garnier system G(5) has the following linear

monodromy.

(1) For the solution (5-a):

e2�iT1 ¼ e2�i� 0

0 e�2�i�

 !
;

S2k ¼
1
�2�ie�

�
2ikð1�2�Þ

�ð1� �
4
Þ�ð1

4
� �

4
Þ

0 1

0
B@

1
CA;

S2k�1 ¼
1 0

�2�ie
�
4ið2k�1Þð1�2�Þ

�ð�
4
Þ�ð3

4
þ �

4
Þ

1

0
B@

1
CA;

(2) For the solution (5-d):

e2�iT1 ¼ e2�i� 0

0 e�2�i�

 !
;

S2k ¼
1
�2�ie�

�
2ikð3�2�Þ

�ð1� �
4
Þ�ð3

4
� �

4
Þ

0 1

0
B@

1
CA;

S2k�1 ¼
1 0

�2�ie
�
4ið2k�1Þð3�2�Þ

�ð�
4
Þ�ð1

4
þ �

4
Þ

1

0
B@

1
CA;

ðk ¼ 1; 2; 3; 4Þ;
Y8

j¼1

Sje
2�iT1 ¼ I2;

where e2�iT1 is the formal monodromy and Sj ðj ¼
1; 2; � � � ; 8Þ is the Stokes matrices at x ¼ 1.

Remark 7. For the solution (5-b), (5-c)

and (5-e), the linear monodromy cannot be calcu-

lated explicitly since the coefficient of the linear

equation (2.1) becomes 1.
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