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Expansions on special solutions of the first g-Painlevé equation
around the infinity
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Abstract: The first ¢-Painlevé equation has a unique formal solution around the infinity.
This series converges only for |¢| = 1. If ¢ is a root of unity, this series expresses an algebraic
function. In cases that all coefficients are integers, it can be represented by generalized
hypergeometric series.
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1. Introduction. In this short note, we

show a strange phenomenon on an asymptotic
series which satisfy the first ¢-Painlevé equation.

It is known that the continuous first Painlevé
equation 3" = 6y> + ¢ has an asymptotic solution of
the form y ~ +4/—t/6 (t — —o0), which is called
Boutroux’s tritronquée solution [1-3], But we do
not know asymptotic behavior on generic or special
solutions for ¢-Painlevé equations.

Sakai gives a g-analogue of the first ¢-Painlevé
equation (¢-P):

(1) fFrRf=t1-f).

in [5]. Here f=[f(t),f=f(tq),f=[f(t/q) for
qge C*. Tt is known that ¢-P; reduces to the
continuous first Painlevé equation when ¢ — 1.

Recently Nishioka showed that ¢-P has not
any solution which is reduced to the first order
g-difference equation [4]. The author does not
know any examples of solutions of ¢-P and we
might show the first example of special solutions
of q—P[.

2. Asymptotic expansions.
¢-P; has a formal solution of the form

=3 aqrt
n=l

for a suitable integer . It is easy to show that [ =0

and ag(q) = 1.
Theorem 2.1.

solution of the form

Assume that

There exists a unique formal
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F=3a@t" (ale) £0).

n=0
aO(q) - 17 Cll(q) = _15
1

G’Q(q) :;+2+q7

1 2 5
az(q) = — 5 — 5 — - —6-5¢—2¢ - ¢,

q q q

_ 1 2 5 10 16 23

a4(q)—$+$+¥ g ? — + 26+

+23¢ + 16¢° 4+ 10¢* + 5¢" + 2¢° + ¢°.

Set f(n) = n(n —1)/2. Then we have
B(n)

an(q) = (—=1)" Z CTLqu~
J==B(n)
Here ¢, j € Z+, ¢, = cp—j. Moreover f is a diver-
gent series in case 0 < |g| <1 or 1 <|ql.
Proof. It is evident that a,(q) satisfies a
recurrence relation

Cln(Q) = _El(al(q)a a?(q)7 e ,an—l(q)7 q, 1/q)
The coefficients of the polynomial F,, with (n + 1)-
variables are positive and

Fn(al(q)a T 7%71((]% q, 1/(])
= Fn(al(Q)y T an—l(‘])v 1/(], Q)'

Since the leading term on ¢ of F), is
Fn — (2 + qn,—l + ql_")anfl(Q) + .. .,

the order of a,(q) on ¢ is B(n). Therefore f diverges
for 0 <|gl<1lorl<]q| O

We consider the case |q| = 1. Since ¢, ; = ¢p.—j,
a,(q) is real for |q| = 1. If we set ¢ = €',
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ai(q) = -1

as(q) = 2(1 + cos )

as(q) = 2(3 + 5cos 6 + 2 cos 20 + cos 36)
0

as(q) = 4cos2§ (54 16 cos + 4 cos 20

+ 8cos 36 + 2 cos 50)
and
lan(q)| = (=1)"an(1).

We show that {a,(1)} is nothing but a gener-
alized hypergeometric series. We set

G (L 23423 4 25
1 — 4173 4a474a413a3737 27t )
2345345 25
Ga(t) := 4 F FEVEVEEr R Tk
2(1) 43(4444333 27t)
3456456 256
G3(t)::4F3 FEVEVE R T e
4°4°4°4°3°'3°3 27t

Theorem 2.2. When |q| =1, f converges at
least for |t| > 256/27. In case ¢V = 1, f is algebraic.
Iff g = /3 (k=0,1,2,3,4,5) or q = +i, a,(q) are
integers for anyn =1,2,3,4,....

Incase q=1, f* =t(1 — f) and f = G1(t).

In case q=-—1, f*2- f)2 =t(l—f) and
f=1-Gy(#)/t.

In case q=¢e>™3, f*=t(1 - f)(1 —3f +3f?)
and

f = Gl(ts) - %Gg(ts) +tl2G3(t3)

In case q = 1, f satisfies a complicated algebraic
relation and

2 /1 2 2 2
f=1- s <;+t—2> Gy (th) — 1t—ﬁng(#) +t—4G3(t4).

We can prove the theorem by direct calcula-
tion. It is open to represent {a,(e™/?)} as a hyper-
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geometric series, since it may satisfy a higher order
equation.

3. Conclusion. We can consider the similar
series for other ¢-Painlevé equations. For the
continuous Painlevé equations except the sixth,
generic asymptotic series around the infinity are
always divergent. When the series are convergent,
the solutions should be rational or confluent hyper-
geometric.

For ¢-Painlevé equations, asymptotic series
might be also divergent for |q| # 1 except rational
solutions and hypergeometric-type solutions. But
the case |q| =1 is interesting in the study of ¢
Painlevé equations.
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