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The discrete mean square of Dirichlet L-function

at integral arguments
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Abstract:

In this paper we shall make complete structural elucidation of the explicit

formula for the (discrete) mean square of Dirichlet L-function at integral arguments, save for the
case s = 1, this being completely settled in [1] recently. We shall treat the cases of negative and
positive integers arguments separately, the former case being a preliminary and inclusive in the
second. It will turn out that in respective cases the characteristic difference properties of
Bernoulli polynomials and of the Hurwitz zeta-function are essential and telescoping the resulting
difference equations, we obtain the results, revealing the underlying simple structure (known

before 1905 at least).
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The discrete mean value
of the special values of the Dirichlet L-function
L(s, x)—especially that of L(1,x) in view of its
relevance to the class number of the associated
number fields—has been the subject of many re-
searches. One can consult an excellent survey of
Matsumoto [2] for the reference to [1], where the
s =1 case has been completely to structurally
settled (also cf. [15]). The discrete mean values
square of at positive integers has been also consid-
ered extensively by several authors. Katsurada and
Matsumoto [3] were the first who obtained the
result by their beta-function integral method.
Louboutin [4-6] considered the same problem by
different methods. Liu and Zhang [7] considered the
cases of the product of two Dirichlet L-functions,
which include all the above cases. Their result has
been fully generalized by [8].

However in none of these papers (save for [1]),
attention is paid on the reason why the formula is to
hold, i.e. the underlying structure that forces the
formula to hold has never been studied and only ad-
hoc methods have been adopted.

1. Introduction.
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In this paper we shall concentrate on structural
side of the problem and make a methodological taking
over of all the previous results. We shall show that
the underlying principle (which should be known to
[14] at least before 1905) is exactly the same as in [9]
if we use another basis (Hurwitz zeta-function) for
relevant periodic functions, cf. (1.4), as elucidated by
[10]. Then secondly we shall show that the character-
istic difference properties of the Hurwitz zeta-func-
tion will show its essential effect and just telescoping
gives the result, as in infinitesimal calculus—differ-
entiation and integration! However, to show some
historically interesting feature of the problem, we
treat the case of negative integer case separately in
terms of Bernoulli polynomials (using a 1923 result of
Nielsen) although this case could be included in the
positive integer case in terms of the Hurwitz zeta-
function through (1.2). We get an interesting con-
volution identity as a bonus (Proposition 1).

Notation. Let
s 1
(1.1) ((s,2) =Y ——, Res=o>1.
; (n+x)

be the Hurwitz zeta-function, 0 < x <1, whose

special case with z = 1 is the Riemann zeta-function
=1

C(S) = )

S
n=1 n

o> 1.

These zeta-functions have meromorphic continua-
tions over the whole s-plane with a unique simple
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pole at s =1 with residue 1. For this and other
results on those functions which we use in this
paper, we refer e.g. to [11].

For a non-negative integer k, we introduce the
kth Bernoulli polynomial by

(1.2) (1~ k) =~ Byla).

Then it follows that
ko k
B, = E Bi._,x".
k(x) r=0 <T) bt

By, = By(1) is the kth Bernoulli number (k > 2)
with B; = — 1. By(x) is the period Bernoulli poly-
nomial defined by

By(x) = Bi(z — [2])

(1.3)

with [z] designating the integral part of .
(cf. [11, Chapter 4]).

For a Dirichlet character x to the modulus g,
let the Dirichlet L-function L(s,x) associated with

x be defined by

1) L= 3] x<a><(s, a)

a=1
for o > 1 in the first instance. It has the Dirichlet
series expansion

L(S,X) = i X(n) )

S
n=1 n

(1.5) oc=Res>1

where the series on the right-hand side is uniformly
convergent in s, (for x non-trivial) so that it is
analytic in o > 0.

In the remaining region, the functional equa-
tion for the Dirichlet L-function gives its analytic
continuation over the whole plane ([11,(8.17),
p. 171]), and we can speak of their special values
at integer points n < 1. We assume throughout that
q>3.

q

(1.6) Ji(q) = Zu(Q) d*
dlq

is the Jordan totient function, where the summation

is extended over all positive divisors of ¢ and p is

the Mobius function. Note that

Si(g) =d(g)=> 1

is the Euler function, where * on the summation
sign means that it is extended over those natural
numbers relatively prime to q.

(1.7)
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We are in a position to state our results.
Theorem 1. For a non-negative integer n,

we have
Boyio
(1.8) |L(—n,x)I’= 6(0)¢*" ——5 J-20-1(q)
szodq (TL —+ 1)2
20(@)¢" =~ (n+ 1\ Buori1 Buyrsa @
n+1l 4 r n+r+1 el
1 BQn+2
+ -1 n ;2 2n .
(=1)"¢"(9)q ey (WQ)
n+2

Substituting (1.2), we may express (1.8) as

(1L9) > [L(=n, )"

x mod ¢q

_ 2 () g*"¢(—2n — 1)J_2,-1(q) + ¢(q)

n+1
. n—1 n —n+r(=n—=7)J_,_,
0> <7‘>C( +7)¢( )T nr(q)
2(-1)"

C(_2n - 1)7

2 2n 1
i ?*(9)q <

2n+2)
n+1
which is  Theorem 6  of
Matsumoto [3].

We now turn to the positive integer case s =
k> 1 treated by Katsurada and Motsumoto [3],
Louboutin [5], Liu-Zhang [7] and Kanemitsu-Ma-
Zhang [8]. The following result amounts to the
Katsurada-Matsumoto Theorem in the spirit of [3].

Theorem 2. For integers N,k > 1 we have

S Lk )= ‘Z(T%k(qx(%)

Katsurada and

x mod g
2 N k+r—1
- ¢2(§) > ( o )C(k+r)4(k—r)Jkr(q)
q =0 r—1
r#k—1
2(=1)F! f2k—2
+T (k_ 1 )C(%— 1)o(q)’
x [ 1o +Zlogp—g(2k—1)+ —%il
o plg p= 1 C ! n==k n
+%RN(Q),

where 7y is the Euler constant and Ry (q) is defined by

(1.10)  Ry(q) = %u(%)
8 li: (HZ 1) <Nr—klj- 1) le,k
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ka+N/ BN ;H_l(dmz) r—N- 1dZ

m=

2. Proof of Theorem 1.

Lemma 1.
< >Zd
dlq a=

Fors#1,
D ILGs,
X
Proof easily follows from (1.4).
Lemma 2 (Nielsen [13, p. 76, (10
n>1,

(=)l

)]).  Foreach

(2.2)  B.(z)* = Bon(x) +

n—2
+ 2n E n— But
k=0 ( ) ' n+ k

Proof. We give a proof independent of Nielsen’s,
which helps to understand the characteristic differ-
ence property of the Bernoulli polynomials. We apply
the method of undetermined coefficients. First we
have the Bernoulli polynomial expansion

2n
)’ =Y aBi(x)
k=1

where a;’s are to be determined (a; = ar(n)). To
this end we compare the two expressions for the
difference

AB;(x)

(2.3) + ao,

= B,(z+1)* - B,(z).

On one hand, by the characteristic difference
equation

(2.4) Bu(z +1) — B,(x) = nz""!,
we obtain
(25)  AB(z) =na" ' (na" ' +2B,(z)).

Hence by (1.3)

AB?L( )_n2x2n 2+2n2( ) - n+r71'

r=0

(2.6)

On the other hand, by (2.4) again,

n—1

§ :kakxk 1_|_§ :n—l—raw, n+r1

(2.7) AB(z

Comparing the coefficients in (2.6) and (2.7), we
establish (2.2) up to the value of ay = ag(n). Inte-
grating (2.2) and using the orthogonality, we obtain
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ap = ap(n

= [ .

(cf. e.g. [12] or [13]), and the value of the last
integral is known to be
)n 1 BQ’VL

)

whence (2.2) follows. O
As a bonus (2.2) with = 1 deserves mention-
ing.
Proposition 1.

B BZn—znZ(> nr;—( 1)”1%.

(n:LQ’...)

Forn > 2, we have

Proof of Theorem 1.
i

By (1.2),
> <(”’9>

()

2

(n+1)

Substituting (2.2) and using the Kubert rela-
tion for the Bernoulli polynomial (cf. [11, p. 4 (1.8)])

d—1
2.8 de)=d* 'Y B,
(2.8) B,(dx) Z <x+ d)
we obtain
1
2.9 S(d) = ———— Bopod 27!
(2.9) (d) 1) e
+ d (7 n BQn+2
(’I’L + ]_)2 (271,+2)
n+1
2 n—1 <Tl+1)
+ B77,—r+1
n+1 ; T
B'rz,+’r'+1 —n—r
n+r+1

Now substituting (2.9) in the formula of
Lemma 1, we complete the proof of Theorem 1.

3. Proof of Theorem 2. The main ingre-
dient in the proof is the following Lemma 4 in the
proof of which we need the integral representation
and estimate for sums of powers L,(N,z)=
SN (x4 n)". We recall the following from [11].

Lemma 3. For any l € N with [ > Reu+1
and for any x > 0, we have the integral representa-
tion
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Lu(N, ) — (¢(k, @+ N +1)* = ((k, 2)°)
! ro N
Cu+1) (=1)'By(N) B—
- N = == Afi(z+n)
;F(u+2—r) 7! (N +2) ;
N
(-1) T(+1) [ ,,l
Bi(t) (¢ At =—->» gilr+n):= Sy,
T Tayion ), B0+ ;k( ) == S
1 (N+z)" ™ 4 ¢(~u,z), u#-—1 say. To compute the sum Sy we substitute (3.4) in
+tqutl (3.3), substitute 2 +n,0 <n < N for z and sum
log(N + ) — (=), u=—1, over n,0 < n < N. We then obtain

where ¥(x) is the Euler digamma function.
We can now prove a lemma corresponding to
Lemma 2.

Lemma 4. For any integer k > 2, we have

(3.1) C(k,z)® = C(2k, z) +2Z<k+r )

X ((=1)" + (=1)")¢(k + )¢ (k = 7, z)

- e <k+r—1)
r=0

Proof. We consider the difference equation for

fr(z) = C(k,z)* corresponding to (2.5):
32)  Afi=filz +1) - fi(z) = gr(),
where

(33 g0 =- a1 - .

This follows from the difference equation

7<(k7$) :7i

C(k,x+1) o

corresponding to (2.4).

In the following we shall show that we do can
telescope (3.2).

We recall the following 1905 result from
[14,p. 48, (9)]

(34) 1 C(k x+1)
o pil (e r—1\ & 1
k+r— - 1
+ Z; ( ) —1) (k7)==

First we telescope first N terms in (3.2) to get:

k—1 _ 0
(35) Sy =2(-1)F > (k *: 1) 3 mi”
r=0 m=1
X (Lr k(N—i— m,z) — L,_p(m —1,x))
2 Z (k e ) 1Y ¢k + 1)Ly (N, )

+ L—Qk(Nv :L')

Those terms in Sy with r = k — 1 contribute:

(3.6) 2(—1)’“<2kk__12> Z m;,c 1

X (L—l(N+max) _L—l(Nax))
2k — 2

2_1k—1

-0 (7))

- 1

Xz_lmlz_lm—:l,x).

By Lemma 3 we see that the first term in (3.6) — 0
as N — o0, so that (3.6) tends to

2(2k—2\ X 1
2(—1)k 1<k—1> Z;WL_l(m_Lm)’

which is the term with r=k—1 (without the
term L,_;(N +m,z)) in the first sum in (3.5). By
Lemma 3, other terms L,_(N, z) tend to {(k — r) as
N — oo, whence taking the limits

—ZAka—i—n ngx—l—n)—hm Sy,
n=0 n=0
we conclude (3.1), completing the proof. O

We further need the following combinational
identities which are interesting in their own right.
Lemma 5.

(k—1+r\ 1/(2k

2\ k)
Hlrvrv—1\ 1
= v k—v

k'

(3.7)
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("D wen - v,

k=1
(k:—f—r— 1) ( . k)(—l)j
r=0 J
2k+j5-1
(7))
Proof follows by generating functionology and
is omitted.

(3.9)

Now we may turn to
Completion of Proof of Theorem 2. We
use Lemma 1 with s =k,

S0t (5 Se(-)-

Notlng that the sum over 1 < a < d of the third
term on the right of (3.1) with z = 4, S, say, is

i 12 <k:+1" )alkri#er(dm)7

m=1

we substltute Lemma 3 to deduce that

GO VLRSS
Se-n ()
X{_ﬁqw{:_1)d+C(/€+T)C(k;_T)dkr}

. 2k —2
k-1

(dlog d¢(2k — 1) — d¢’ (2k — 1) + dyC(2k — 1))

+Z <k+ r— 1) Z(l).j—l <; - llf)

j=1

xC(1 = §)C(2k+ j — 1)

+<71),’§ (m:— 1) <r ; k)d,”

r—0

- 1 * 5 r—k—1
X Zl — /dm By(t)t*at,

on separating the case r = k — 1. Substituting this
in (3.1) completes the proof. O
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