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Abstract:

We shall present partial solutions to the conjecture such that (¢? —1)/(¢ — 1)

does not divide (p? —1)/(p — 1) for distinct primes p < gq.
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In this paper we shall give partial solutions to
the Feit-Thompson conjecture (see [2]) and obser-
vations on the Stephans conjecture (see [5]). For
distinct primes p and ¢, we set

A=(¢"-1)/(g—1)and B=(p" - 1)/(p - 1).

The Feit-Thompson conjecture.
A does not divide B for A < B.

In the paper [1,p.1] and the book [4, p.125], it
was mentioned that if it could be proved, it would
greatly simplify the very long proof of the Feit-
Thompson theorem that every group of odd order is
solvable (see [3]).

The next is almost trivial but we cite it here for

convenience of readers to know B > A for g > p > 2.

m" —1 nm —
Remark.

n>m> 2.
Proof. 1t is easy for m = 2 from 2" > n + 2 for
n > 3. Noting ; e

for integers

m—1 n—1

is strict increasing for x > 3, we

ogx
have > and hence m"™ >n™ for n >
logn = logm
m" —1 m" —1 nm—1
m > 3. Thus we have
m—1 n—1 n—1
for n >m > 3. O

(1) and (2) in the next are not useful to the
computer but may be useful to consider the
conjecture. Here ®,,(x) is the cyclotomic polynomial
and the notation |c¢|; means the order of ¢ mod d
for natural numbers ¢ and d with (¢, d) = 1.

Lemma. Letp, q are distinct primes. We set
pj+qk=1,0=pi®+qk? a= (pq)l, and 1 <d is a
common divisor of A and B. Then the next hold.

(1) p=laly and q = |pl,.
(2) a? =p, a?’ = q mod d, and pq = |al,.
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(3) 2pq | ¢(d).
(4) Ifp=3 orq=3 mod 4, then d=1 mod 4.

Proof. We may prove one side statement
about p or ¢ as conditions on p and g are sym-
metric.

(1): Tt is easy to see ¢? =1 mod d. If ¢=
1 mod d, then 0=A4=®,(q) = ?,(1) =p mod d.
Hence d=p and we have a contradiction 0=
B=9%,(p) = 9,0) =1 mod d. Thus p = |¢|,;. Sim-
ilarly we have ¢ = |p|,.

(2): From setting of ¢, we have pj =1 mod ¢
and £=j mod ¢. Thus it follows from a = (pq)z,
pl =pj=1 mod ¢ and (1) that

a” = (pg)"' =p"=p#1 mod d

and similarly a?=q# 1 mod d. Thus we have
a’ =p?=1 mod d from (1), and so pq = |al,.
(3): We shall prove that p and ¢ are odd. If

p=2 then 0=®3(¢9) =¢+1mod d and 0=
®,(2)=2-1mod d and so g¢g+1>d and
22=1 mod d. Thus d is odd and d-—1>

o(d) > [2|;,=q>d—1. Hence d—1=gq yields a
contradiction g = 2 = p. Similarly, ¢ is odd. It is
easy to see pq | p(d) from (2) and Euler’s theorem.
On the other hand ¢(d) is even for d > 2. If d = 2,
then we have a contradiction 0 = ®,(q) = ?,(1) =
p=1 mod 2.

(4): We may assume that d is prime. We have
d=1 mod p from (3), and p? =1 mod d. Thus we

d 1
obtain <—> = <—> =1 for Legendre symbol and
p p

0-6'-()-0)-

Hence we have
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Similarly, we have same result for ¢ = 3 mod 4. O

The next is the partial solution for the con-
jecture. As a special case of (1) or the proof of
Lemma (3), we may assume 2 <p < g for the
conjecture.

In case p =3, it seems to be very important
from [2]. In this case, we may consider ¢ = —1 mod
6 noting (1) and ¢ is odd. Moreover we may assume
A is prime from (2) in case p = 3.

Proposition. In either case of the next con-
ditions, A does not divide B.

(1) ¢=1 mod p.
(2) p=3<qand A is composite.
(3) p=3 and ¢=1 mod 4.

Proof. Assume A¢ = B for some integer /.

(1) In case ¢ =1 mod p, we have a contra-
diction

0=pl=2,(1)¢ = D,(q)¢ = AL
— B=®,(p) = 0,(0) = 1

(2) If ®3(q) = A is composite and r is the
smallest prime divisor of ®3(q), then we have
6q | (r — 1) by Lemma (3). Thus we have a contra-
diction ¢+1>r>6g+1 by (¢+1)7*>¢F+q+
1= ®3(q).

(3) Since A is a common divisor of A and B,
then a congruence A= ¢’ ' +..-+1=p=3 mod
4 contradicts to Lemma (4). O

The Stephens conjecture.

A and B are relatively prime.

If a prime number r divides both A and B then

r=2pgl + 1 for some integer ¢ (see Lemma (3)).

mod p.
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Using computer, Stephens found a counterexample
p=17, ¢=3313 and r=112643 =2pg+1 and
confirmed that r is the greatest common divisor of
A and B by computer, so this example leaves the
Feit-Thompson conjecture unresolved (see [5]).

At the present, it is known by computer that no
other such pairs exist for p < ¢ < 10" and p =3 <
q < 10" (see [4]).

We don’t know that conjectures have some
relations with (2) and (3) in the next.

Observation. If p =17 and q = 3313, then
we have
(1) (Stephenb) (®,(q), 4(p)) = 2pg+ 1 =3 mod 4.

(2) b, 2 =1 mod q buz‘pq?1 # 1 mod ¢*.
(3) q 5 =1 mod P>

In general, there are few prime numbers p
satisfying congruence a" = =1 mod p? for a fixed
natural number a > 1 with (a,p) = 1. For example,

a | 2 | 3] 17 | 3313
3<p<10° | 3511 | 11| 46021,48047 | 7, 17
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