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Abstract: We shall present partial solutions to the conjecture such that ðqp � 1Þ=ðq � 1Þ
does not divide ðpq � 1Þ=ðp� 1Þ for distinct primes p < q.
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In this paper we shall give partial solutions to

the Feit-Thompson conjecture (see [2]) and obser-

vations on the Stephans conjecture (see [5]). For

distinct primes p and q; we set

A ¼ ðqp � 1Þ=ðq � 1Þ and B ¼ ðpq � 1Þ=ðp� 1Þ:

The Feit-Thompson conjecture.

A does not divide B for A < B.

In the paper [1, p.1] and the book [4, p.125], it

was mentioned that if it could be proved, it would

greatly simplify the very long proof of the Feit-

Thompson theorem that every group of odd order is

solvable (see [3]).

The next is almost trivial but we cite it here for

convenience of readers to know B > A for q > p � 2.

Remark.
mn � 1

m� 1
>

nm � 1

n� 1
for integers

n > m � 2.

Proof. It is easy for m ¼ 2 from 2n > nþ 2 for

n � 3. Noting
x

logx
is strict increasing for x � 3, we

have
n

logn
>

m

logm
and hence mn > nm for n >

m � 3. Thus we have
mn � 1

m� 1
>

mn � 1

n� 1
>

nm � 1

n� 1

for n > m � 3. �

(1) and (2) in the next are not useful to the

computer but may be useful to consider the

conjecture. Here �nðxÞ is the cyclotomic polynomial

and the notation jcjd means the order of c mod d

for natural numbers c and d with ðc; dÞ ¼ 1.

Lemma. Let p, q are distinct primes. We set

pjþ qk ¼ 1, ‘ ¼ pj2 þ qk2, a ¼ ðpqÞ‘, and 1 < d is a

common divisor of A and B. Then the next hold.

(1) p ¼ jqjd and q ¼ jpjd.
(2) ap � p, aq � q mod d, and pq ¼ jajd.

(3) 2pq j ’ðdÞ.
(4) If p � 3 or q � 3 mod 4, then d � 1 mod 4.

Proof. We may prove one side statement

about p or q as conditions on p and q are sym-

metric.

(1): It is easy to see qp � 1 mod d. If q �
1 mod d, then 0 � A ¼ �pðqÞ � �pð1Þ ¼ p mod d.

Hence d ¼ p and we have a contradiction 0 �
B ¼ �qðpÞ � �qð0Þ ¼ 1 mod d. Thus p ¼ jqjd. Sim-

ilarly we have q ¼ jpjd.
(2): From setting of ‘, we have pj � 1 mod q

and ‘ � j mod q. Thus it follows from a ¼ ðpqÞ‘,
p‘ � pj � 1 mod q and (1) that

ap ¼ ðpqÞp‘ � pp‘ � p 6� 1 mod d

and similarly aq � q 6� 1 mod d. Thus we have

apq � pq � 1 mod d from (1), and so pq ¼ jajd.
(3): We shall prove that p and q are odd. If

p ¼ 2 then 0 � �2ðqÞ ¼ q þ 1 mod d and 0 �
�qð2Þ ¼ 2q � 1 mod d and so q þ 1 � d and

2q � 1 mod d. Thus d is odd and d� 1 �
’ðdÞ � j2jd ¼ q � d� 1. Hence d� 1 ¼ q yields a

contradiction q ¼ 2 ¼ p. Similarly, q is odd. It is

easy to see pq j ’ðdÞ from (2) and Euler’s theorem.

On the other hand ’ðdÞ is even for d > 2. If d ¼ 2,
then we have a contradiction 0 � �pðqÞ � �pð1Þ ¼
p � 1 mod 2.

(4): We may assume that d is prime. We have

d � 1 mod p from (3), and pq � 1 mod d. Thus we

obtain
d

p

� �
¼ 1

p

� �
¼ 1 for Legendre symbol and

p

d

� �
¼

p

d

� �q

¼
pq

d

� �
¼

1

d

� �
¼ 1:

Hence we have
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1 ¼
p

d

� �
d

p

� �
¼ ð�1Þ

d�1
2

p�1
2 ¼ ð�1Þ

d�1
2 :

Similarly, we have same result for q � 3 mod 4. �

The next is the partial solution for the con-

jecture. As a special case of (1) or the proof of

Lemma (3), we may assume 2 < p < q for the

conjecture.

In case p ¼ 3, it seems to be very important

from [2]. In this case, we may consider q � �1 mod

6 noting (1) and q is odd. Moreover we may assume

A is prime from (2) in case p ¼ 3.
Proposition. In either case of the next con-

ditions, A does not divide B.

(1) q � 1 mod p:

(2) p ¼ 3 < q and A is composite.

(3) p � 3 and q � 1 mod 4:

Proof. Assume A‘ ¼ B for some integer ‘.

(1) In case q � 1 mod p, we have a contra-

diction

0 � p‘ ¼ �pð1Þ‘ � �pðqÞ‘ ¼ A‘

¼ B ¼ �qðpÞ � �qð0Þ ¼ 1 mod p:

(2) If �3ðqÞ ¼ A is composite and r is the

smallest prime divisor of �3ðqÞ, then we have

6q j ðr� 1Þ by Lemma (3). Thus we have a contra-

diction q þ 1 � r � 6q þ 1 by ðq þ 1Þ2 � q2 þ q þ
1 ¼ �3ðqÞ.

(3) Since A is a common divisor of A and B;

then a congruence A ¼ qp�1 þ � � � þ 1 � p � 3 mod

4 contradicts to Lemma (4). �

The Stephens conjecture.

A and B are relatively prime.

If a prime number r divides both A and B then

r ¼ 2pq‘þ 1 for some integer ‘ (see Lemma (3)).

Using computer, Stephens found a counterexample

p ¼ 17, q ¼ 3313 and r ¼ 112643 ¼ 2pq þ 1 and

confirmed that r is the greatest common divisor of

A and B by computer, so this example leaves the

Feit-Thompson conjecture unresolved (see [5]).

At the present, it is known by computer that no

other such pairs exist for p < q < 107 and p ¼ 3 <

q < 1014 (see [4]).

We don’t know that conjectures have some

relations with (2) and (3) in the next.

Observation. If p ¼ 17 and q ¼ 3313; then

we have

(1) (Stephens) ð�pðqÞ, �qðpÞÞ ¼ 2pq þ 1 � 3 mod 4.

(2) p
q�1
2 � 1 mod q but p

q�1
2 6� 1 mod q2.

(3) q
p�1
2 � 1 mod p2.

In general, there are few prime numbers p

satisfying congruence a
p�1
2 � 1 mod p2 for a fixed

natural number a > 1 with ða; pÞ ¼ 1. For example,

a 2 3 17 3313

3 < p < 105 3511 11 46021; 48947 7, 17
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