Notes to the Feit-Thompson conjecture

By Kaoru Motose*)
Emeritus Professor, Hirosaki University
(Communicated by Heisuke Hironaka, m.J.A., Jan. 13, 2009)

Abstract

We shall present partial solutions to the conjecture such that $\left(q^{p}-1\right) /(q-1)$ does not divide $\left(p^{q}-1\right) /(p-1)$ for distinct primes $p<q$.

Key words: Odd paper; cyclotomic polynomials; Legendre symbol.

In this paper we shall give partial solutions to the Feit-Thompson conjecture (see [2]) and observations on the Stephans conjecture (see [5]). For distinct primes p and q, we set
$A=\left(q^{p}-1\right) /(q-1)$ and $B=\left(p^{q}-1\right) /(p-1)$.

The Feit-Thompson conjecture.

A does not divide B for $A<B$.
In the paper [1, p.1] and the book [4, p.125], it was mentioned that if it could be proved, it would greatly simplify the very long proof of the FeitThompson theorem that every group of odd order is solvable (see [3]).

The next is almost trivial but we cite it here for convenience of readers to know $B>A$ for $q>p \geq 2$.

Remark. $\frac{m^{n}-1}{m-1}>\frac{n^{m}-1}{n-1}$ for integers
$n>m \geq 2$.
Proof. It is easy for $m=2$ from $2^{n}>n+2$ for $n \geq 3$. Noting $\frac{x}{\log x}$ is strict increasing for $x \geq 3$, we have $\frac{n}{\log n}>\frac{m}{\log m}$ and hence $m^{n}>n^{m}$ for $n>$ $m \geq 3$. Thus we have $\frac{m^{n}-1}{m-1}>\frac{m^{n}-1}{n-1}>\frac{n^{m}-1}{n-1}$ for $n>m \geq 3$.
(1) and (2) in the next are not useful to the computer but may be useful to consider the conjecture. Here $\Phi_{n}(x)$ is the cyclotomic polynomial and the notation $|c|_{d}$ means the order of $c \bmod d$ for natural numbers c and d with $(c, d)=1$.

Lemma. Let p, q are distinct primes. We set $p j+q k=1, \ell=p j^{2}+q k^{2}, a=(p q)^{\ell}$, and $1<d$ is a common divisor of A and B. Then the next hold.
(1) $p=|q|_{d}$ and $q=|p|_{d}$.
(2) $a^{p} \equiv p, a^{q} \equiv q \bmod d$, and $p q=|a|_{d}$.

[^0](3) $2 p q \mid \varphi(d)$.
(4) If $p \equiv 3$ or $q \equiv 3 \bmod 4$, then $d \equiv 1 \bmod 4$.

Proof. We may prove one side statement about p or q as conditions on p and q are symmetric.
(1): It is easy to see $q^{p} \equiv 1 \bmod d$. If $q \equiv$ $1 \bmod d$, then $0 \equiv A=\Phi_{p}(q) \equiv \Phi_{p}(1)=p \bmod d$. Hence $d=p$ and we have a contradiction $0 \equiv$ $B=\Phi_{q}(p) \equiv \Phi_{q}(0)=1 \bmod d$. Thus $p=|q|_{d}$. Similarly we have $q=|p|_{d}$.
(2): From setting of ℓ, we have $p j \equiv 1 \bmod q$ and $\ell \equiv j \bmod q$. Thus it follows from $a=(p q)^{\ell}$, $p \ell \equiv p j \equiv 1 \bmod q$ and (1) that

$$
a^{p}=(p q)^{p l} \equiv p^{p l} \equiv p \not \equiv 1 \bmod d
$$

and similarly $a^{q} \equiv q \not \equiv 1 \bmod d$. Thus we have $a^{p q} \equiv p^{q} \equiv 1 \bmod d$ from (1), and so $p q=|a|_{d}$.
(3): We shall prove that p and q are odd. If $p=2$ then $0 \equiv \Phi_{2}(q)=q+1 \bmod d \quad$ and $0 \equiv$ $\Phi_{q}(2)=2^{q}-1 \bmod d \quad$ and \quad so $\quad q+1 \geq d \quad$ and $2^{q} \equiv 1 \bmod d$. Thus d is odd and $d-1 \geq$ $\varphi(d) \geq|2|_{d}=q \geq d-1$. Hence $d-1=q$ yields a contradiction $q=2=p$. Similarly, q is odd. It is easy to see $p q \mid \varphi(d)$ from (2) and Euler's theorem. On the other hand $\varphi(d)$ is even for $d>2$. If $d=2$, then we have a contradiction $0 \equiv \Phi_{p}(q) \equiv \Phi_{p}(1)=$ $p \equiv 1 \bmod 2$.
(4): We may assume that d is prime. We have $d \equiv 1 \bmod p$ from (3), and $p^{q} \equiv 1 \bmod d$. Thus we obtain $\left(\frac{d}{p}\right)=\left(\frac{1}{p}\right)=1$ for Legendre symbol and

$$
\left(\frac{p}{d}\right)=\left(\frac{p}{d}\right)^{q}=\left(\frac{p^{q}}{d}\right)=\left(\frac{1}{d}\right)=1 .
$$

Hence we have

$$
1=\left(\frac{p}{d}\right)\left(\frac{d}{p}\right)=(-1)^{\frac{d-1 p-1}{2} \frac{p}{2}}=(-1)^{\frac{d-1}{2}}
$$

Similarly, we have same result for $q \equiv 3 \bmod 4$.
The next is the partial solution for the conjecture. As a special case of (1) or the proof of Lemma (3), we may assume $2<p<q$ for the conjecture.

In case $p=3$, it seems to be very important from [2]. In this case, we may consider $q \equiv-1 \bmod$ 6 noting (1) and q is odd. Moreover we may assume A is prime from (2) in case $p=3$.

Proposition. In either case of the next conditions, A does not divide B.
(1) $q \equiv 1 \bmod p$.
(2) $p=3<q$ and A is composite.
(3) $p \equiv 3$ and $q \equiv 1 \bmod 4$.

Proof. Assume $A \ell=B$ for some integer ℓ.
(1) In case $q \equiv 1 \bmod p$, we have a contradiction

$$
\begin{aligned}
0 & \equiv p \ell=\Phi_{p}(1) \ell \equiv \Phi_{p}(q) \ell=A \ell \\
& =B=\Phi_{q}(p) \equiv \Phi_{q}(0)=1 \quad \bmod p
\end{aligned}
$$

(2) If $\Phi_{3}(q)=A$ is composite and r is the smallest prime divisor of $\Phi_{3}(q)$, then we have $6 q \mid(r-1)$ by Lemma (3). Thus we have a contradiction $q+1 \geq r \geq 6 q+1$ by $(q+1)^{2} \geq q^{2}+q+$ $1=\Phi_{3}(q)$.
(3) Since A is a common divisor of A and B, then a congruence $A=q^{p-1}+\cdots+1 \equiv p \equiv 3 \bmod$ 4 contradicts to Lemma (4).

The Stephens conjecture.

A and B are relatively prime.

If a prime number r divides both A and B then $r=2 p q \ell+1$ for some integer ℓ (see Lemma (3)).

Using computer, Stephens found a counterexample $p=17, q=3313$ and $r=112643=2 p q+1$ and confirmed that r is the greatest common divisor of A and B by computer, so this example leaves the Feit-Thompson conjecture unresolved (see [5]).

At the present, it is known by computer that no other such pairs exist for $p<q<10^{7}$ and $p=3<$ $q<10^{14}$ (see [4]).

We don't know that conjectures have some relations with (2) and (3) in the next.

Observation. If $p=17$ and $q=3313$, then we have
(1) $\left(\right.$ Stephens) $\left(\Phi_{p}(q), \Phi_{q}(p)\right)=2 p q+1 \equiv 3 \bmod 4$.
(2) $p^{\frac{q-1}{2}} \equiv 1 \bmod q$ but $p^{\frac{q-1}{2}} \not \equiv 1 \bmod q^{2}$.
(3) $q^{\frac{p-1}{2}} \equiv 1 \bmod p^{2}$.

In general, there are few prime numbers p satisfying congruence $a^{\frac{p-1}{2}} \equiv 1 \bmod p^{2}$ for a fixed natural number $a>1$ with $(a, p)=1$. For example,

a	2	3	17	3313
$3<p<10^{5}$	3511	11	46021,48947	7,17

References

[1] T. M. Apostol, The resultant of the cyclotomic polynomials $F_{m}(a x)$ and $F_{n}(b x)$, Math. Comp. 29 (1975), 1-6.
[2] W. Feit and J. G. Thompson, A solvability criterion for finite groups and some consequences, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 968-970.
[3] W. Feit and J. G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 7751029.
[4] R. K. Guy, Unsolved problems in number theory, Third edition, Springer, New York, 2004.
[5] N. M. Stephens, On the Feit-Thompson conjecture, Math. Comp. 25 (1971), 625.

[^0]: 2000 Mathematics Subject Classification. 11A07, 20 D 05.
 ${ }^{*}$) Present address: 5-13-5 Toriage, Hirosaki 036-8171, Japan.

