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Abstract: In this paper we consider a system of equations describing the one-dimensional

motion of a self-gravitating, radiative and chemically reactive gas having the free-boundary. For

arbitrary large, smooth initial data we prove the unique existence, global in time, of a classical

solution of the corresponding problem with fixed domain, obtained by the Lagrangian mass

transformation.
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1. Introduction. We consider the free-

boundary problem describing the motion of a

compressible, viscous and heat-conductive gas. We

take into account a more phenomenal situation:

The gas is self-gravitating, radiative and chemically

reactive. In [12], such a problem was formulated in

spacially one-dimensional case and solved globally

in time for arbitrary large, smooth initial data

under some (physically correct) hypotheses on the

thermal conductivity and so on. In this paper

we improve the result in [12] in respect to the

restriction guaranteeing the global in time solv-

ability of the problem.

The gaseous motion mentioned above, espe-

cially in the processes of the unimolecular reactions

whose kinetic order is one, is described by the

following four equations in the Lagragian mass

coordinate:
vt ¼ ux;

ut ¼ �pþ �
ux

v

� �
x

�G x�
1

2

� �
;

et ¼ �pþ �
ux

v

� �
ux þ �

�x

v

� �
x

þ ��z;

zt ¼ d
zx

v2

� �
x

� �z

8>>>>>>>>><
>>>>>>>>>:

ð1:1Þ

in �� ð0;1Þ with � :¼ ð0; 1Þ. Here the specific

volume v ¼ vðx; tÞ, the velocity u ¼ uðx; tÞ, the

absolute temperature � ¼ �ðx; tÞ and the mass

fraction of the reactant z ¼ zðx; tÞ are the unknown

quantities, and positive constants �, G, d and � are

the bulk viscosity, the Newtonian gravitational

constant, the species diffusion coefficient and the

difference in heat between the reactant and the

product, respectively. The pressure p and the

internal energy per unit mass e are defined by

p ¼ pðv; �Þ ¼ R
�

v
þ

a

3
�4;

e ¼ eðv; �Þ ¼ cv�þ av�4;

8<
:ð1:2Þ

where positive constants R, cv and a are the perfect

gas constant, the specific heat capacity at constant

volume and the radiation-density constant, respec-

tively. Second terms in the right-hand sides of both

relations in (1.2) represent the effect of radiation

phenomena, whose forms are given by the famous

Stefan-Boltzmann law. In the radiating regime, it is

natural to take into account the heat flux from

the radiative contribution, not only from the

heat-conductive contribution. As such a simple one

(see [13]), we assume that the thermal conductivity

� ¼ �ðv; �Þ has the form

�ðv; �Þ ¼ �1 þ �2v�
qð1:3Þ

with positive constants �1, �2 and q. Furthermore

we assume that the reaction rate function � ¼ �ð�Þ
is defined, from the Arrhenius law, by

�ð�Þ ¼ K��e�A=�;ð1:4Þ

where positive constants K and A are the coefficient

of rate of the reactant and the activation energy,
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respectively, and � is a non-negative real number.

Imposed boundary condition is for t > 0

�R
�

v
þ �

ux

v
; �x; zx

� �����
x¼0;1

¼ ð�pe; 0; 0Þð1:5Þ

with the external pressure pe (a positive constant),

and the initial condition is for x 2 �

ðv; u; �; zÞjt¼0 ¼ ðv0ðxÞ; u0ðxÞ; �0ðxÞ; z0ðxÞÞ:ð1:6Þ

We give some more remarks on our problem.

The external force appeared in the last term of the

right-hand side of (1.1)2 is given as follow: First we

assume that the external force per unit mass f ¼
fðx; tÞ in the Lagragian mass coordinate is given

by f ¼ �Ux=v, where U ¼ Uðx; tÞ is the solution of

the boundary value problem for each t > 0

Ux

v

� �
x

¼ G in �,

U jx¼0 ¼ Ujx¼1 ¼ 0:

8<
:ð1:7Þ

One can regard that f defined above is the one-

dimensional ‘‘self-gravitation’’ (U is the correspond-

ing ‘‘self-gravitational potential’’), similar to the

general three-dimensional one. From (1.7) we can

derive the explicit formula of fðx; tÞ,

fðx; tÞ ¼ �G x�
R 1
0 �vð�; tÞ d�R 1
0 vð�; tÞ d�

 !
:ð1:8Þ

Here, if ðv̂v; ûu; �̂�; ẑzÞ satisfies

ut ¼ �pþ �
ux

v

� �
x

þ f

instead of (1.1)2, and (1.1)1, (1.1)3, (1.1)4, (1.5),

then ðv; u; �; zÞ ¼ ðv̂v; ûu�
R 1
0 ûu dx; �̂�; ẑzÞ satisfies (1.1)

and (1.5). In addition, integrating (1.1)2 over ��
½0; t� under (1.5) givesZ 1

0

uðx; tÞ dx ¼
Z 1

0

uðx; 0Þ dx;

whose left-hand side is identically equal to zero

when u ¼ ûu�
R 1
0 ûu dx. Hence, it is natural for us to

consider the system (1.1)–(1.6) under the conditionZ 1

0

u0ðxÞ dx ¼ 0:ð1:9Þ

We shall introduce some function spaces used

in this paper (see, for detail, [6]). Let m be a

non-negative integer and 0 < �; �0 < 1. By Cmþ�ð�Þ
we denote the spaces of functions u ¼ uðxÞ which

has bounded derivatives up to order m and

dmu=dxm is uniformly Hölder continuous with

exponent �. Let T be a positive constant and

QT :¼ �� ð0; T Þ. For a function u defined on QT

we say that u 2 C�; �0

x; t ðQT Þ if

jujð0Þ :¼ sup
ðx;tÞ2QT

juðx; tÞj < 1

and u is uniformly Hölder continuous in x and t with

exponent � and �0, respectively. Its norm is denoted

by j � j�;�0 . We also say that u 2 C
2þ�; 1þ�=2
x; t ðQT Þ if u is

bounded, has bounded derivative ux, and ðuxx; utÞ 2
ðC�; �=2

x; t ðQT ÞÞ2. Its norm is denoted by j � j2þ�; 1þ�=2.

Our main result is

Theorem 1 (Global Solution). Let 	 2 ð0; 1Þ,
q � 3 and 0 � � < q þ 9. Assume that

v0; u0; �0; z0ð Þ 2 C1þ	ð�Þ � ðC2þ	ð�ÞÞ3

satisfies corresponding compatibility conditions,

(1.9) and v0ðxÞ > 0, �0ðxÞ > 0, 0 � z0ðxÞ � 1 for

any x 2 �. Then there exists a unique solution

ðv; u; �; zÞ of the initial-boundary value problem

(1.1)–(1.6) such that for any positive number T

ðv; vx; vtÞ 2 ðC	;	=2
x; t ðQT ÞÞ3;

ðu; �; zÞ 2 ðC2þ	; 1þ	=2
x; t ðQT ÞÞ3:

Moreover for any ðx; tÞ 2 QT

vðx; tÞ > 0; �ðx; tÞ > 0; 0 � zðx; tÞ � 1:

The global in time solvability of this problem

in the same function spaces as in Theorem 1 was

already established in [12] for 4 � q � 16 and

0 � � � 13=2. Theorem 1 is its improved version.

We note that an analogous result was also reported

in [13] for a three-dimensional spherically symmet-

ric gaseous model having a central rigid core.

We mention some related results concerning

our problem, briefly. For compressible, viscous and

heat-conductive model in one space dimension,

many studies have been done including the case

for large, smooth initial data e.g., Kazhikhov-

Shelukhin [5], Kazhikhov [4] and Nagasawa [7].

Ducomet [1] and Ducomet-Zlotnik [2,3] studied

one-dimensional gaseous models rather similar to

ours, i.e., radiative and reactive one with the free-

boundary in the external force field. In [1] the

temporally global existence of the solution was

shown for q ¼ 4 in (1.3) and � ¼ 0 in (1.4).

However, in a series of papers [1–3] they adopted

as a self-gravitation, a special form independent of

time variable explicitly in the Lagrangian mass
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coordinate system, not the exact form (1.8). That is

called the ‘‘pancakes model’’ relevant to some large-

scale structure of the universe (see [9]). In addition,

although the temporally global existence of the

solution for any q � 2 was established recently

in [2,3], they were discussed not for the pure free-

boundary case (1.5) but for the one with partially

Dirichlet boundary condition, i.e., �jx¼0 (or �jx¼1) =

�� with positive constant ��.

In order to prove Theorem 1, after historical

results about local existence theorem for general

compressible, viscous and heat-conductive fluids

[8,10,11], it is sufficient to establish the following

a priori boundedness.

Proposition 1 (A priori Estimates). Let T

be an arbitrary positive number. Assume that 	, q, �

and the initial data satisfy the hypotheses of

Theorem 1, and that the problem (1.1)–(1.6) has a

solution ðv; u; �; zÞ such that

ðv; vx; vtÞ 2 ðC	;	=2
x; t ðQT ÞÞ3;

ðu; �; zÞ 2 ðC2þ	; 1þ	=2
x; t ðQT ÞÞ3:

Then there exists a positive constant C depending

on the initial data and T such that

jv; vx; vtj	; 	=2; ju; �; zj2þ	; 1þ	=2 � C

and for any ðx; tÞ 2 QT

vðx; tÞ; �ðx; tÞ � 1=C; 0 � zðx; tÞ � 1:

2. Sketch of proof of Proposition 1. In

proving Proposition 1, we need several lemmas

concerning the estimates of the solution and its

derivatives. We use C0 and C, CT as positive

constants depending on the initial data and other

constants, but the former does not depend on T ,

and k � k as the usual L2ð�Þ-norm.

In [12] we already obtained the following

estimates of the solution.

Lemma 1. For any t 2 ½0; T �Z 1

0

1

2
u2 þ eþ �zþ fðxÞv

� �
dx ¼ E0;

UðtÞ þ
Z t

0

V ð
Þ d
 � C0;

Z 1

0

z dxþ
Z t

0

Z 1

0

�z dx d
 ¼
Z 1

0

z0 dx;

Z 1

0

1

2
z2 dxþ

Z t

0

Z 1

0

d

v2
zx

2 þ �z2
� �

dx d


¼
Z 1

0

1

2
z0

2 dx;Z t

0

max
x2�

�ðx; 
Þ� d
 � CT

for 0 � � � q þ 4 ðq � 0Þ,Z t

0

kuxk2 d
 � CT ;

kvxk2 þ
Z t

0

Z 1

0

�vx
2 dx d
 � CT if q � 2;Z t

0

kuxk3L3ð�Þ d
 � CT if q � 4;ð2:1Þ

and for any ðx; tÞ 2 QT

0 � zðx; tÞ � 1;

CT
�1 � vðx; tÞ � CT :ð2:2Þ

Here

E0 :¼
Z 1

0

1

2
u0

2 þ e0 þ �z0 þ fðxÞv0
� �

dx;

UðtÞ :¼
Z 1

0

cvð�� 1� log �Þ þRðv� 1� log vÞ½ � dx;

V ðtÞ :¼
Z 1

0

�ux
2

v�
þ

��x
2

v�2
þ �

�

�
z

� �
dx

8>>>>>>>><
>>>>>>>>:
and e0 :¼ cv�0 þ av0�0

4, fðxÞ :¼ pe þ
1

2
Gxð1� xÞ.

For the proof of this lemma we mainly used

the standard energy methods. Among them most

important is the pointwise estimate (2.2) of v both

from above and from below. This is derived from

the representation formula of v originally due to

Kazhikhov-Shelukhin [5]:

Lemma 2. The identity

vðx; tÞ ¼ 1

Pðx; tÞQðx; tÞRðx; tÞ

� v0ðxÞ þ
R

�

Z t

0

�ðx; 
ÞPðx; 
ÞQðx; 
ÞRðx; 
Þ d

� �

holds, where

Pðx; tÞ :¼ exp
1

�

Z x

0

ðu0ð�Þ � uð�; tÞÞ d�
� �

;

Qðx; tÞ :¼ exp
1

�
fðxÞ t

� �
;

Rðx; tÞ :¼ exp � a

3�

Z t

0

�ðx; 
Þ4 d

� �

:

8>>>>>>><
>>>>>>>:
Next, to obtain higher order estimates we

define the function
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K ¼ Kðv; �Þ :¼
Z �

0

�ðv; �Þ
v

d�:

Since (1.1)3 is rewritten as

e��t þ �p�ux ¼
�

v
ux

2 þ
�

v
�x

� �
x

þ ��z;ð2:3Þ

multiplying this by Kt and integrating it over ��
½0; t� yieldZ t

0

Z 1

0

e��tKt dx d
 þ
Z t

0

Z 1

0

�

v
�xKxt dx d
ð2:4Þ

¼
Z t

0

Z 1

0

��p�ux þ
�

v
ux

2 þ ��z

� �
Kt dx d
:

Here

Kt ¼
�

v
�t þKvux;

Kxt ¼
�

v
�x

� �
t

þKvuxx þKvvvxux þ
�

v

� �
v

vx�t;

jKvj; jKvvj � C�:

8>>>><
>>>>:

Let us introduce the following quantities:

X :¼
Z t

0

Z 1

0

1þ �qþ3
� �

�t
2 dx d
;

Y :¼ max
t2½0;T �

Z 1

0

1þ �2q
� �

�x
2 dx;

Z :¼ max
t2½0;T �

kuxxk2:

8>>>>>>><
>>>>>>>:

Then it is easily seen that by virtue of Cauchy-

Schwarz’ and standard interpolation inequalities we

have

j�jð0Þ � C þ CY
1

2qþ6 ;

max
t2½0;T �

kuxk2 � C þ CZ1=2;

juxjð0Þ � C þ CZ3=8:

8>>><
>>>:

ð2:5Þ

Estimating each term in (2.4), we can obtain

Lemma 3. If q � 2 and 0 � � < q þ 9, then

there exists a number �, 0 < � < 1 such that

X þ Y � CT 1þ Z�
� �

:ð2:6Þ

Proof. Let q � 2 and � � 0 first. Hereafter

we use C" as a positive constant depending on

" > 0. From the definition of X and Y one can

immediately derive the inequalitiesZ t

0

Z 1

0

e��t �
�

v
�t dx d
 � CX;ð2:7Þ

Z t

0

Z 1

0

�

v
�x �

�

v
�x

� �
t

dx d
ð2:8Þ

¼
1

2

Z 1

0

�

v
�x

� �2

dx�
1

2

Z 1

0

�0

v0
�0

0
� �2

dx

� CY � C

with �0 :¼ �1 þ �2v0�0
q. In the same way as that

in [12] it is not diffficult to get the following

estimates.Z t

0

Z 1

0

e��t �Kvux dx d


����
���� � "Xð2:9Þ

þ C"jux
2jð0Þ

Z t

0

max
x2�

ð1þ �Þ1�q

Z 1

0

ð1þ �Þ4 dx d


� "X þ C" 1þ Z3=4
� 	

;Z t

0

Z 1

0

�

v
�x �Kvuxx dx d


����
����ð2:10Þ

� Cj1þ �
q
2þ2jð0Þ max

t2½0;T �
kuxxk

Z t

0

ð1þ V ð
ÞÞ d


� C þ CY
q=2þ2
2qþ6 Z1=2 � "Y þ C" 1þ Z3=4

� 	
;Z t

0

Z 1

0

�

v
�x �Kvvvxux dx d


����
����ð2:11Þ

� C juxjð0ÞY 1=2

Z t

0

max
x2�

ð1þ �2Þkvxk2 d

� �1=2

� "Y þ C" 1þ Z3=4
� 	

;Z t

0

Z 1

0

�p�ux �
�

v
�t dx d


����
����ð2:12Þ

� "X þ C"j1þ �qþ5jð0Þ
Z t

0

kuxk2 d


� "ðX þ Y Þ þ C";Z t

0

Z 1

0

�p�ux �Kvux dx d


����
����ð2:13Þ

� C j1þ �5jð0Þ
Z t

0

kuxk2 d
 � "Y þ C";Z t

0

Z 1

0

�

v
ux

2 �Kvux dx d


����
����ð2:14Þ

� C juxjð0Þ max
t2½0;T �

kuxk2
Z t

0

max
x2�

� d
 � C 1þ Z7=8
� 	

;

Z t

0

Z 1

0

��z �Kvux dx d


����
����ð2:15Þ

� C j�uxjð0Þ
Z t

0

Z 1

0

�z dx d
 � "Y þ C" 1þ Z3=4
� 	

:
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Next we haveZ t

0

Z 1

0

�

v
�x �

�

v

� �
v

vx�t dx d


����
����ð2:16Þ

� "X þ C"

Z t

0

max
x2�

�

v
�x

� �2Z 1

0

1

ð1þ �Þqþ3
vx

2 dx d
:

We shall estimate the right-hand side of (2.16).

At first we derive for any t 2 ½0; T �

max
x2�

�

v
�x

� �2

ðx; tÞð2:17Þ

�
Z 1

0

�

v
�x

� �2

dxþ 2

Z 1

0

�

v
�x

����
���� �

v
�x

� �
x

����
���� dx

� Cj1þ �qþ2jð0ÞV ðtÞ þ

þ CV ðtÞ1=2
Z 1

0

ð1þ �qþ2Þ
�

v
�x

� �
x

2

dx

" #1=2
:

Substitute the inequality

�

v
�x

� �
x

2

� C
�
e�

2�t
2 þ �2p�

2ux
2 þ ux

4 þ �2z2
	
;

which follows from (2.3), into the integrand of the

rightmost hand side of (2.17). Then, noting the

inequalitiesZ t

0

Z 1

0

ð1þ �qþ2Þe�2�t2 dx d


� C j1þ �5jð0ÞX � CX þ CXY
5

2qþ6 ;Z t

0

Z 1

0

ð1þ �qþ2Þ�2p�2ux
2 dx d


� C jð1þ �2Þux
2jð0Þ

Z t

0

max
x2�

ð1þ �qþ4Þ

�
Z 1

0

ð1þ �4Þ dx d


� C þ CY
1

qþ3 þ CY
1

qþ3Z3=4 þ CZ3=4;Z t

0

Z 1

0

ð1þ �qþ2Þux
4 dx d


� jð1þ �qþ2Þux
2jð0Þ

Z t

0

kuxk2 d


� C þ CY
qþ2
2qþ6 þ CY

qþ2
2qþ6Z3=4 þ CZ3=4;Z t

0

Z 1

0

ð1þ �qþ2Þ�2z2 dx d


� C j1þ �qþ2þ�jð0Þ
Z t

0

Z 1

0

�z2 dx d
 � C þ CY
qþ2þ�
2qþ6 ;

we have, by integrating (2.17), for any t 2 ½0; T �

Z t

0

max
x2�

�

v
�x

� �2

ðx; 
Þ d
 � C

�
1þX1=2 þ Y

q=2þ1þ�=2
2qþ6

þ Z3=8 þX1=2Y
5=2
2qþ6 þ Y

q=2þ1
2qþ6 Z3=8

�

� "ðX þ Y Þ þ C" 1þ Z3=4
� 	

for 0 � � < 3q þ 10. From this, the right-hand side

of (2.16) is estimated from above by

"ðX þ Y Þ þ C" 1þ Z3=4
� 	

ð2:18Þ

only for 0 � � < 3q þ 10. Moreover, the stronger

restriction on �, 0 � � < q þ 9, is necessary to getZ t

0

Z 1

0

��z �
�

v
�t dx d


����
����ð2:19Þ

� "X þ C"jð1þ �Þq�3þ�jð0Þ
Z t

0

Z 1

0

�z2 dx d


� "ðX þ Y Þ þ C":

The estimate improved essentially from the one in

[12] is Z t

0

Z 1

0

�

v
ux

2 �
�

v
�t dx d


����
����

� "X þ C"

Z t

0

Z 1

0

ð1þ �Þq�3ux
4 dx d
;

whose right-hand side is estimated from above by

"X þ C"jux
2jð0Þ

Z t

0

kuxk2 d
ð2:20Þ

� "X þ C" 1þ Z3=4
� 	

for 2 � q � 3, by

"X þ C"j1þ �q�3jð0Þjux
2jð0Þ

Z t

0

kuxk2 d
ð2:21Þ

� "X þ C" 1þ Y
q�3
2qþ6 þ Y

q�3
2qþ6Z3=4 þ Z3=4

� �
� " X þ Yð Þ þ C" 1þ Z�

� �
with a number � (0 < � < 1) for 3 < q < 4, and by

"X þ C"j 1þ �q�3
� �

uxjð0Þ
Z t

0

kuxk3L3ð�Þ d
ð2:22Þ

� "X þ C" 1þ Y
q�3
2qþ6 þ Y

q�3
2qþ6Z3=8 þ Z3=8

� �

� " X þ Yð Þ þ C" 1þ Z3=4
� 	

for q � 4 in virtue of (2.1). Combining (2.7)–

(2.15), (2.18)–(2.22) and taking " small, we

obtain (2.6). �
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Since the regularity of the solution is not

sufficient, the following arguments are formal.

However, one can justify them by using the method

of difference quotients or mollifiers.

Lemma 4. If q � 3 and 0 � � < q þ 9, then

for any t 2 ½0; T �
kux; uxx; ut; �x; �xx; �t; zx; zxx; ztk2ð2:23Þ

þ
Z t

0

kuxt; �xt; zxtk2 d
 � CT ;

juxjð0Þ; jujð0Þ; j�jð0Þ � CT ;ð2:24Þ
�ðx; tÞ � CT for any ðx; tÞ 2 QT :ð2:25Þ

Proof. Differentiating (1.1)2 with respect to t,

multiplying it by ut and integrating it with respect

to x, we have

d

dt

Z 1

0

1

2
ut

2 dxþ
Z 1

0

�

v
uxt

2 dx

¼
Z 1

0

ptuxt þ
�

v2
ux

2uxt

� �
dx:

Since pt ¼ R
v
þ 4

3 a�
3

� �
�t � R

v2
�ux, we get for q � 3

kutk2 þ
Z t

0

kuxtk2 d
ð2:26Þ

� C 1þ
Z t

0

Z 1

0

pt
2 þ ux

4
� �

dx d


� �

� C

�Z t

0

Z 1

0

1þ �6
� �

�t
2 dx d


þ jux
2jð0Þ

Z t

0

ðk�k2 þ kuxk2Þ d

�

� C 1þX þ Z3=4
� 	

� C 1þ Z�
� �

from Lemma 3. By squaring (1.1)2 and noting px ¼
R
v
þ 4

3 a�
3

� �
�x � R

v2
�vx, it follows from (2.26) that for

any t 2 ½0; T �

kuxxk2ðtÞ � C

�
1þ kutk2 þ

Z 1

0

1þ �6
� �

�x
2 dx

þ j�2jð0Þ þ ux
2

�� ��ð0Þ� 	
kvxk2

�
� C 1þ Y þ Z�

� �
:

This implies Z � C 1þ Z�
� �

, and hence, we con-

clude that Z is bounded. Then one can see from

(2.5), (2.6) and (2.26) that kux; uxx; ut; �xk, ju; �jð0Þ
and

R t
0 kuxt; �tk2 d
 are also bounded. For the

boundedness of other quantities in (2.23)–(2.25),

see the proof of Lemmas 10–13 in [12]. �

The Hölder estimates are obtained from the

classical Schauder estimates by using Lemmas 1–4

(see [12] for details).
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