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Exact WKB analysis for the degenerate third Painlevé equation of type (D8)

By Hideaki Wakako∗) and Yoshitsugu Takei∗∗)

(Communicated by Heisuke Hironaka, m.j.a., May 14, 2007)

Abstract: Exact WKB analysis for instanton-type solutions of the degenerate third Painlevé
equation of type (D8) is discussed. Explicit connection formulas are obtained through computations
of the monodromy data of the underlying linear equations.
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1. Introduction. In this paper we discuss
the exact WKB analysis for instanton-type solutions
(i.e., 2-parameter formal solutions) of the following
degenerate third Painlevé equation of type (D8) with
a large parameter η:

(P )
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q2
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− 1
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)
.

Exact WKB analysis for instanton-type solu-
tions of Painlevé equations (PJ ) (J = I, . . . ,VI) with
a large parameter has been developed in [3, 1, 4, 9]
etc. On the other hand, since the work of Sakai [8] on
geometrical classification of the space of initial con-
ditions of (PJ ), it is considered to be natural to dis-
tinguish the degenerate third Painlevé equations of
type (D7) and (D8) from the generic third Painlevé
equation (PIII): Separately from (PIII), several im-
portant properties (such as τ -functions, irreducibil-
ity etc.) and asymptotics of solutions of the degen-
erate third Painlevé equations are studied in [7] and
[5], respectively. The above equation (P ) is obtained
from an equation equivalent to the most degenerate
third Painlevé equation of type (D8) by introducing
a large parameter η through an appropriate scaling
of variables (or through the degeneration from (PIII);
cf. [10]). From the viewpoint of exact WKB analysis
(P ) is also very peculiar: There is no turning point
of (P ) in the sense of [3] while it has two singular
points t = 0 and ∞. In particular, t = 0 can be re-
garded as a non-linear analogue of a “singular point
of simple pole type” (i.e., a singular point which also
plays the role of turning points) of a second order
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linear differential equation discussed in [6]. In fact,
as we will show in §3 below, a Stokes curve of (P )
emanates from t = 0. The purpose of this paper is to
discuss the Stokes phenomenon and connection for-
mula for instanton-type solutions of (P ) on a Stokes
curve emanating from t = 0.

To analyze the Stokes phenomena, we make full
use of the well-known fact that Painlevé equations
govern the isomonodromic deformations of under-
lying systems of linear differential equations in the
sense of [2]. In the case of (P ) it is formulated as
follows (cf. [7, §3]): Let (SL) and (D) denote the
following linear differential equations, respectively.

(SL)
(
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∂x2
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)
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Then the compatibility condition of (SL) and (D) is
described by the Hamiltonian system

(H)
dq

dt
= η

∂K

∂p
,
dp

dt
= −η∂K

∂q

which is equivalent to (P ). Consequently the mon-
odromy data of (SL) are preserved (i.e., not depend-
ing on t) if a solution of (H) is substituted into the
coefficients of (SL). In this paper, following the ar-
gument of [9] where the connection formula for (PI)
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is discussed, we explicitly compute the monodromy
data of (SL) to write down the connection formula
for (P ).

2. Instanton-type solutions of (P ). First
of all, we introduce instanton-type solutions of (P ).

We can readily see that q = ±√
t and (q, p) =

±(
√
t,−η−1/(4

√
t)) respectively satisfy (P ) and (H).

As these solutions contain no free parameters, they
are called 0-parameter solutions. In what follows we
adopt

(1) q(0) =
√
t, (q(0), p(0)) =

(√
t,−η−1 1

4
√
t

)

as 0-parameter solutions of (P ) and (H).
Instanton-type formal solutions q(t, η;α, β) con-

taining 2 free parameters (α, β) (or “2-parameter so-
lutions” for short) are then constructed through the
multiple-scale analysis. See [1, §1] for details. In
particular, similarly to the case of (PI) (cf. [9, §1]),
we can construct the following 2-parameter solutions
of (P ) with homogeneity:

(2) q(t, η;α, β) =
√
t+ η−1/2

∞∑
n=0

η−n/2Ln/2(t, η),

where L0 = L0(t, η) is given by

L0 = t3/8
(
α(t1/4η)

√
2γeφη + β(t1/4η)−

√
2γe−φη

)
with γ = αβ and φ = 4

√
2t1/4, and Ln/2 = Ln/2(t, η)

(n ≥ 1) is of the form
n+1∑
k=0

c
(n/2)
n+1−2kt

(3−n)/8
(
(t1/4η)

√
2γeφη

)n+1−2k

with c(n/2)
l being constants depending only on (α, β).

Note that q = q(t, η;α, β) has homogeneity to the
effect that t−1/2q is a formal series of one variable
t1/4η. Using the first equation of (H), i.e., p =
η−1{t(dq/dt)− q}/(2q2), we also obtain 2-parameter
solutions (q(t, η;α, β), p(t, η;α, β)) of (H).

3. Stokes geometry of (P ) and (SL). To
define the Stokes geometry (i.e., turning points and
Stokes curves) of (P ), we consider its Frechét deriva-
tive at q(0) =

√
t:

(3) −d
2ϕ

dt2
+ η2

(
2
t3/2

− η−2 1
4t2

)
ϕ = 0.

It is transformed by a change of variables (t, ϕ) =
(t̃2, t̃1/2ϕ̃) into

(4) −d
2ϕ̃

dt̃2
+ η2

(
8
t̃
− η−2 1

4t̃2

)
ϕ̃ = 0.

Note that (4) has the same form as the equation
discussed in [6]. As is proved in [6], t̃ = 0 plays the
role of a turning point of (4). Having this result in
mind, we consider t̃ = 0, i.e., t = 0 as a turning point
of (P ), though (P ) has no ordinary turning point.

Definition 3.1. (i) We call t = 0 a turning
point of (P ).
(ii) A Stokes curve of (P ) is by definition

(5)

{
t ∈ C | Im

∫ t

0

√
2
t3/2

dt = Im(4
√

2t1/4) = 0

}
.

By the definition (5) the Stokes curves of (P ) are
explicitly given by {t ∈ C | arg

√
t = 2nπ (n ∈ Z)}.

We now study the relationship between the
Stokes geometry of (P ) and that of (SL). Here
and in what follows we assume 2-parameter solu-
tions (q(t, η;α, β), p(t, η;α, β)) are substituted into
the coefficients of (SL) and (D). Then Q be-
comes an infinite series (in η−1/2) of the form Q =∑

n≥0 η
−n/2Qn/2 with

Q0 =
(x−√

t)2

2x3
and Q1/2 ≡ 0.

Hence (SL) has only one turning point at x =
√
t,

which is double. Furthermore, letting γ be a posi-
tively oriented circle {|x| =

√
t} starting and ending

at x =
√
t, we find∫

γ

√
Q0dx =

1√
2

∫
γ

(
1√
x
−

√
t√
x3

)
dx = −4

√
2t1/4.

This implies

Im
∫

γ

√
Q0dx = 0 ⇐⇒ arg

√
t = 2nπ (n ∈ Z).

Thus we have
Proposition 3.2. (i) (SL) has a unique turn-

ing point at x =
√
t, which is double.

(ii) When and only when arg
√
t = 2nπ (n ∈ Z),

there exists a Stokes curve of (SL) that starts from√
t, encircles t = 0 and returns to

√
t. It is the circle

centered at the origin with radius
√
t (cf. Fig.1).

4. Canonical form of (SL) and (D) near
the double turning point. In this section, as
a preparation for computations of the monodromy
data of (SL), we discuss the transformation of (SL)
and (D) near the double turning point x =

√
t into

their canonical form.
We first introduce the following WKB solutions

as fundamental systems of solutions of (SL).
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Fig. 1. Stokes curves of (SL) in the case of (i) arg
√

t > 0,
(ii) arg

√
t = 0 and (iii) arg

√
t < 0.

ψ
(k)
± =

1√
Sodd

exp
(
±η2

√
2t1/4

)
×

exp±
(
η

∫ x

√
t

S−1dx+
∫ x

k

(Sodd − ηS−1)dx
)
,

(6)

where k = 0 or ∞, S =
∑

n≥−2 η
−n/2Sn/2 is a

formal power series solution of the Riccati equation
S2 + (∂S/∂x) = η2Q associated with (SL) and Sodd

denotes its odd part in the sense of [1, Def. 3.1].
Note that both WKB solutions (6) are well-defined
since Sodd = ηS−1 +

∑
n≥0 η

−n/2Sodd,n/2 satisfies
that x1/2Sodd,n/2 (resp., x3/2Sodd,n/2) are holomor-
phic at x = 0 (resp., x = ∞) for n ≥ 0. Here
and in what follows we assume the branch of (6)
is chosen so that (x − √

t)1/2 > 0 for x >
√
t and

x−3/4 > 0 for x > 0 may hold (in defining
√
S−1)

when arg
√
t = 0. (As we are interested in Stokes

phenomena for (P ), we may assume that t lies near
a Stokes curve arg

√
t = 0 of (P ).) The WKB so-

lutions (6) then become single-valued in a cut plane
indicated in Fig.2. We also have the following rela-
tion between ψ(0)

± and ψ(∞)
± :

(7) ψ
(∞)
± =

(
exp± (

πiResx=
√

t Sodd

))
ψ

(0)
± .

Now, using (∂/∂t)Sodd = (∂/∂x)(ASodd) (cf. [1,
(2.14)]), we can confirm the following

Proposition 4.1. Both WKB solutions ψ(0)
±

and ψ(∞)
± satisfy (D).

Furthermore, the WKB solutions (6) enjoy the
following homogeneity property: Letting H be a scal-
ing operator defined by H : (x, t, η) �→ (r−2x, r−4t,

rη), we find (6) are homogeneous of degree −1 for H
(i.e., ψ(k)

± (H(x, t, η)) = r−1ψ
(k)
± (x, t, η) hold).

To determine the connection formula for the
WKB solutions (6) on Stokes curves of (SL) emanat-
ing from x =

√
t, we make use of the transformation

theorem proved in [4] for Painlevé equations: Let
(SLcan) and (Dcan) denote the following equations,

0

√
t

∞

Fig. 2. x-plane with cuts. (Wiggly lines designate cuts.)

respectively.

(SLcan)
(
− ∂2

∂z2
+ η2Qcan

)
φ = 0,

(Dcan)
∂φ

∂s
= Acan

∂φ

∂z
− 1

2
∂Acan

∂z
φ,

where

Qcan = 4z2 + η−1E +
η−3/2ρ

z − η−1/2σ
+

3η−2

4(z − η−1/2σ)2
,

E = ρ2 − 4σ2, Acan =
1

2(z − η−1/2σ)
.

The compatibility condition of (SLcan) and (Dcan)
is given by the following Hamiltonian system:

(Hcan)
∂ρ

∂s
= −4ησ,

∂σ

∂s
= −ηρ

(cf. [4, Prop. 2.1]). In what follows (ρcan, σcan) de-
notes a solution of (Hcan) and Ecan = ρ2

can − 4σ2
can,

that is,

(8)



σcan(s, η) = A(η)e2ηs +B(η)e−2ηs,

ρcan(s, η) = −2A(η)e2ηs + 2B(η)e−2ηs,

Ecan(η) = −16A(η)B(η),

with A(η) =
∑
η−n/2An/2 and B(η) =∑

η−n/2Bn/2 being formal power series with con-
stant coefficients. Then the following theorem holds:

Theorem 4.2. For any given 2-parameter
(α, β) and a point t0 in question, there ex-
ist a neighborhood V of t0, a neighborhood U

of x =
√
t0, formal series (A(η), B(η)) =

(
∑
η−n/2An/2,

∑
η−n/2Bn/2), and formal series

z(x, t, η) =
∑
η−n/2zn/2(x, t) and s(t, η) =∑

η−n/2sn/2(t) whose coefficients zn/2 and sn/2 are
holomorphic on U × V and V respectively, so that
the following holds: If φ(z, s, η) is a WKB solution
of (SLcan) which also satisfies (Dcan), then

(9) ψ(x, t, η) =
(∂z
∂x

)−1/2

φ(z(x, t, η), s(t, η), η)

satisfies both (SL) and (D).
For the proof see [4, Prop. 3.1]. In our case, by the
same reasoning as that used in [9, §2.3] for the un-
derlying linear equations of (PI), we can verify that
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z(x, t, η) and s(t, η) are homogeneous for H of de-
gree −1/2 and −1 respectively. Furthermore, A(η)
and B(η) can be taken so that

(10) A(η) = 2−3/4α, B(η) = 2−3/4β

may hold and E = Ecan(η) also satisfies

(11) E = −4
√

2αβ = 4 Resx=
√

t Sodd.

See [9, §2.3] for the proof of (10) and (11).
As in [9, §2.3], we take the following WKB so-

lutions of (SLcan):

φ± =
1√
Todd

(η1/2z)±E/4 ×

exp±
(
η

∫ z

0

T−1dz +
∫ z

∞

(
Todd − ηT−1 − E

4z

)
dz

)
,

where T =
∑

n≥−2 η
−n/2Tn/2 is a solution of the

Riccati equation associated with (SLcan) and Todd

denotes its odd part. For the fundamental prop-
erties (such as the well-definedness) of φ± we re-
fer the reader to [9, §2.3] and only recall the fol-
lowing important properties here: e±ηsφ± also sat-
isfy (Dcan) ([9, Lemma 2]) and further φ± are ho-
mogeneous of degree −1/4 for a scaling operator
H̃ : (z, s, η) �→ (r−1/2z, r−1s, rη).

Between φ± and (6) we have the following
Proposition 4.3.

(12) ψ
(k)
± = C

(k)
±

(∂z
∂x

)−1/2

φ±(z(x, t, η), s(t, η), η)

(k = 0,∞) hold with
(13)
C

(∞)
± = 2∓5E/16e±ηs(t,η), C

(0)
± = e∓πiE/4C

(∞)
± .

Using Theorem 4.2 and the homogeneity of ψ(∞)
± , φ±

and (z(x, t, η), s(t, η)), we can prove Proposition 4.3
by the same argument as in the proof of [9, Prop. 3].
Note that the second relation of (13) is an immediate
consequence of (7) and (11).

Combining Proposition 4.3 and the connection
formula for φ± ([9, Prop. 4]), we obtain the following
connection formulas for the WKB solutions (6): Here
we label the Stokes curves and the Stokes regions
near x =

√
t as is indicated in Fig.3. We also use

the notation ψ
(k),R
± (k = 0,∞) to denote the Borel

sum of ψ(k)
± in a Stokes region R here and in what

follows.

(14)


ψ

(k),Rj−1
+ = ψ

(k),Rj

+ +
C

(k)
+

C
(k)
−
aj−1jψ

(k),Rj

−

ψ
(k),Rj−1
− = ψ

(k),Rj

−

C1

C2

C3

C4

R0

R1R2

R3

R4

Fig. 3. Stokes curves and Stokes regions near x =
√

t.

0
∞

√
t

γ(∞)

γ(0)

γ(c)

x∞

x0

x1

x2

A

BC

D

E

Fig. 4. Paths of analytic continuation γ(0), γ(c) and γ(∞)

and Stokes curves for arg
√

t > 0. (A, B, C, . . . designate
the label of Stokes regions.)

on Cj for j = 1, 3 and

(15)



ψ

(k),Rj−1
+ = ψ

(k),Rj

+

ψ
(k),Rj−1
− = ψ

(k),Rj

− +
C

(k)
−

C
(k)
+

aj−1jψ
(k),Rj

+

on Cj for j = 2, 4, where C(k)
± (k = 0,∞) are defined

by (13) and aj−1j are given as follows:

(16) (−1)(j+1)/2 ρ+ 2σ
2

i
√

2π
Γ(1 − E

4 )
2−E/2e(j−1)πiE/4

for j = 1, 3 and

(17) (−1)(j−2)/2 ρ− 2σ
2

√
2π

Γ(1 + E
4 )

2E/2e(1−j)πiE/4

for j = 2, 4 with (ρ, σ) = (ρcan, σcan), E = −4
√

2αβ.
5. Computation of the monodromy data

of (SL). In this section, using the connection for-
mulas (14) and (15), we explicitly compute the mon-
odromy data of (SL).

First, we review the monodromy data of (SL)
(cf. [2]). As in Fig.4, let us take base points x0, x∞
and paths of analytic continuation γ(k) (k = 0, c,∞).
Further, we take fundamental systems ϕk± of holo-
morphic solutions near xk (k = 0,∞). Then, ac-
cording to [2, §2], the monodromy data of (SL) is
given by the following set of matrices

{M0, Mc, M∞},
where the matrices Mk (k = 0, c,∞) are defined by
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(γ(k)
∗ )(ϕk

+, ϕ
k
−) = (ϕk

+, ϕ
k
−)Mk (for k = 0,∞),

(γ(c)
∗ )(ϕ0

+, ϕ
0
−) = (ϕ∞

+ , ϕ
∞
− )Mc.

Here and in what follows γ∗(f) designates the ana-
lytic continuation of f along a path γ.

Remark 5.1. Since x = 0 and x = ∞ are ir-
regular singular points (with Poincaré rank 1/2) of
(SL), the monodromy matrices M0 and M∞ are ex-
pressed in terms of the (triangular) Stokes matrices
S0 and S∞ as

M0 = S0J, M∞ = JS∞ with J =


 0 −i
−i 0


 .

Note that the matrix J appears as an effect of cross-
ing a cut emanating from x = 0 or x = ∞. In the
case of (SL) we can also confirm the following

(18) −(M0)−1 = (Mc)−1M∞Mc.

Thanks to (18), if we write

S0 =


1 0

a 1


 , S∞ =


1 0

b 1


 , Mc =


c d

e f


 ,

we find that all monodromy data are determined
once a and d are computed.

In what follows, we adopt the Borel sum of ψ(k)
±

near xk (k = 0,∞) as fundamental systems of solu-
tions, i.e., ϕ0± = ψ

(0),C
± and ϕ∞± = ψ

(∞),E
± , and com-

puteM0,Mc when arg
√
t > 0 and arg

√
t < 0 respec-

tively. To illustrate how the computations are done,
we explain the computation of M0 for arg

√
t > 0 in

details here.
First, we consider the analytic continuation

from a point x1 in Region A to a point x2 in Re-
gion B (cf. Fig.4). It is described by the connection
formula (14) for j = 3, that is,
(19)

(ψ(0),A
+ , ψ

(0),A
− ) = (ψ(0),B

+ , ψ
(0),B
− )


 1 0

−C
(0)
+

C
(0)
−
a23 0


 .

Second, we discuss the analytic continuation from x2

to x0. We divide this step of analytic continuation
into the following three substeps; (i) from x2 to xD

along γBD, (ii) from xD to xA across a Stokes curve
emanating from

√
t, and (iii) from xA to x0 along

γAC (cf. Fig.5). The substep (i) is described by

(γBD)∗(ψ
(0),B
+ , ψ

(0),B
− ) = (ψ(0),D

+ , ψ
(0),D
− )


 0 −i
−i 0


 ,
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Fig. 5. Paths γBD and γAC .

the substep (ii) is described by the connection for-
mula (15) for j = 4:

(ψ(0),D
+ , ψ

(0),D
− ) = (ψ(0),A

+ , ψ
(0),A
− )


1 −C

(0)
−

C
(0)
+

a34

0 1


 ,

and the substep (iii) is described by
(20)

(γAC)∗(ψ
(0),A
+ , ψ

(0),A
− ) = (ψ(0),C

+ , ψ
(0),C
− )


0 i

i 0


 .

Combining these three substeps, we obtain
(21)

(ψ(0),B
+ , ψ

(0),B
− ) = (ψ(0),C

+ , ψ
(0),C
− )


 1 0

−C
(0)
−

C
(0)
+

a34 1




for the analytic continuation from x2 to x0. Finally,
(20) also entails
(22)

(γ−1
AC)∗(ψ

(0),C
+ , ψ

(0),C
− ) = (ψ(0),A

+ , ψ
(0),A
− )


 0 −i
−i 0


 ,

which describes the analytic continuation from x0 to
x1. We thus conclude from (19), (21) and (22) that

(23) γ
(0)
∗ (ψ(0),C

+ , ψ
(0),C
− ) = (ψ(0),C

+ , ψ
(0),C
− )M0

with

(24) M0 =


 1 0

−C
(0)
+

C
(0)
−
a23 − C

(0)
−

C
(0)
+

a34 1





 0 −i
−i 0




for arg
√
t > 0.

The computation of Mc for arg
√
t > 0 and that

of M0 and Mc for arg
√
t < 0 can be done in a similar

manner. Here, omitting the details of computations,
we give only the consequence of them:

(25) Mc =




C
(0)
+

C
(∞)
+

− (C
(0)
− )2

C
(0)
+ C

(∞)
+

a12a34 − C
(0)
−

C
(∞)
+

a12

(C
(0)
− )2

C
(0)
+ C

(∞)
−

a34
C

(0)
−

C
(∞)
−



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for arg
√
t > 0,

(26) M0 =


 1 0

−C
(0)
+

C
(0)
−
a23 − C

(0)
−

C
(0)
+

a12 1





 0 −i
−i 0


 ,

(27)

Mc =




C
(0)
+

C
(∞)
+

− C
(0)
−

C
(∞)
+

a12

(C
(0)
− )2

C
(0)
+ C

(∞)
−

a34
C

(0)
−

C
(∞)
−

− (C
(0)
− )3

(C
(0)
+ )2C

(∞)
−

a12a34




for arg
√
t < 0.

Using these results together with (8), (10), (11),
(13), (16) and (17), we thus obtain the following for-
mulas (with E = −4

√
2αβ) for the relevant mon-

odromy data a and d explained in Remark 5.1.
(When arg

√
t > 0)

a = − 2−9E/8+1/4 i
√

2πβ
Γ(−E

4 + 1)

− 29E/8+1/4e−iπE/4

√
2πα

Γ(E
4 + 1)

,

d =29E/8+1/4

√
2πα

Γ(E
4 + 1)

.

(28)

(When arg
√
t < 0)

a = − 2−9E/8+1/4 i
√

2πβ
Γ(−E

4 + 1)

+ 29E/8+1/4eiπE/4

√
2πα

Γ(E
4 + 1)

,

d =29E/8+1/4

√
2πα

Γ(E
4 + 1)

.

(29)

6. Connection formula for 2-parameter
instanton-type solutions of (P ). Finally we
discuss the connection formula for 2-parameter
instanton-type solutions of (P ).

Let us now suppose that a 2-parameter solution
q(t, η;α, β) in {t; arg

√
t > 0} and a 2-parameter so-

lution q(t, η; α̃, β̃) in {t; arg
√
t < 0} may represent

the same holomorphic solution of (P ). Then, thanks
to the result of [2], the corresponding monodromy
data of (SL) for arg

√
t > 0 should coincide with

that for arg
√
t < 0. Since the monodromy data is

explicitly given by (28) and (29), we thus conclude
(α, β) and (α̃, β̃) should satisfy

2−9E/8 iβ

Γ(−E
4 + 1)

+ 29E/8e−iπE/4 α

Γ(E
4 + 1)

= 2−9Ẽ/8 iβ̃

Γ(− Ẽ
4 + 1)

− 29Ẽ/8eiπẼ/4 α̃

Γ( Ẽ
4 + 1)

,

29E/8 α

Γ(E
4 + 1)

= 29Ẽ/8 α̃

Γ( Ẽ
4 + 1)

(30)

with E = −4
√

2αβ and Ẽ = −4
√

2α̃β̃. By (30) we
find that (α, β) and (α̃, β̃) are different in general.
This is the Stokes phenomenon for q(t, η;α, β) and
(30) gives their connection formula.
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